mirror of
https://github.com/php/php-src.git
synced 2024-11-25 19:05:31 +08:00
304 lines
12 KiB
C
304 lines
12 KiB
C
/*
|
|
+----------------------------------------------------------------------+
|
|
| PHP Version 5 |
|
|
+----------------------------------------------------------------------+
|
|
| Copyright (c) 1997-2009 The PHP Group |
|
|
+----------------------------------------------------------------------+
|
|
| This source file is subject to version 3.01 of the PHP license, |
|
|
| that is bundled with this package in the file LICENSE, and is |
|
|
| available through the world-wide-web at the following url: |
|
|
| http://www.php.net/license/3_01.txt |
|
|
| If you did not receive a copy of the PHP license and are unable to |
|
|
| obtain it through the world-wide-web, please send a note to |
|
|
| license@php.net so we can mail you a copy immediately. |
|
|
+----------------------------------------------------------------------+
|
|
| Algorithms are taken from a public domain source by Paul |
|
|
| Schlyter, who wrote this in December 1992 |
|
|
+----------------------------------------------------------------------+
|
|
| Authors: Derick Rethans <derick@derickrethans.nl> |
|
|
+----------------------------------------------------------------------+
|
|
*/
|
|
|
|
/* $Id$ */
|
|
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
#include "timelib.h"
|
|
|
|
#define days_since_2000_Jan_0(y,m,d) \
|
|
(367L*(y)-((7*((y)+(((m)+9)/12)))/4)+((275*(m))/9)+(d)-730530L)
|
|
|
|
#ifndef PI
|
|
#define PI 3.1415926535897932384
|
|
#endif
|
|
|
|
#define RADEG ( 180.0 / PI )
|
|
#define DEGRAD ( PI / 180.0 )
|
|
|
|
/* The trigonometric functions in degrees */
|
|
|
|
#define sind(x) sin((x)*DEGRAD)
|
|
#define cosd(x) cos((x)*DEGRAD)
|
|
#define tand(x) tan((x)*DEGRAD)
|
|
|
|
#define atand(x) (RADEG*atan(x))
|
|
#define asind(x) (RADEG*asin(x))
|
|
#define acosd(x) (RADEG*acos(x))
|
|
#define atan2d(y,x) (RADEG*atan2(y,x))
|
|
|
|
|
|
/* Following are some macros around the "workhorse" function __daylen__ */
|
|
/* They mainly fill in the desired values for the reference altitude */
|
|
/* below the horizon, and also selects whether this altitude should */
|
|
/* refer to the Sun's center or its upper limb. */
|
|
|
|
|
|
#include "astro.h"
|
|
|
|
/******************************************************************/
|
|
/* This function reduces any angle to within the first revolution */
|
|
/* by subtracting or adding even multiples of 360.0 until the */
|
|
/* result is >= 0.0 and < 360.0 */
|
|
/******************************************************************/
|
|
|
|
#define INV360 (1.0 / 360.0)
|
|
|
|
/*****************************************/
|
|
/* Reduce angle to within 0..360 degrees */
|
|
/*****************************************/
|
|
static double astro_revolution(double x)
|
|
{
|
|
return (x - 360.0 * floor(x * INV360));
|
|
}
|
|
|
|
/*********************************************/
|
|
/* Reduce angle to within +180..+180 degrees */
|
|
/*********************************************/
|
|
static double astro_rev180( double x )
|
|
{
|
|
return (x - 360.0 * floor(x * INV360 + 0.5));
|
|
}
|
|
|
|
/*******************************************************************/
|
|
/* This function computes GMST0, the Greenwich Mean Sidereal Time */
|
|
/* at 0h UT (i.e. the sidereal time at the Greenwhich meridian at */
|
|
/* 0h UT). GMST is then the sidereal time at Greenwich at any */
|
|
/* time of the day. I've generalized GMST0 as well, and define it */
|
|
/* as: GMST0 = GMST - UT -- this allows GMST0 to be computed at */
|
|
/* other times than 0h UT as well. While this sounds somewhat */
|
|
/* contradictory, it is very practical: instead of computing */
|
|
/* GMST like: */
|
|
/* */
|
|
/* GMST = (GMST0) + UT * (366.2422/365.2422) */
|
|
/* */
|
|
/* where (GMST0) is the GMST last time UT was 0 hours, one simply */
|
|
/* computes: */
|
|
/* */
|
|
/* GMST = GMST0 + UT */
|
|
/* */
|
|
/* where GMST0 is the GMST "at 0h UT" but at the current moment! */
|
|
/* Defined in this way, GMST0 will increase with about 4 min a */
|
|
/* day. It also happens that GMST0 (in degrees, 1 hr = 15 degr) */
|
|
/* is equal to the Sun's mean longitude plus/minus 180 degrees! */
|
|
/* (if we neglect aberration, which amounts to 20 seconds of arc */
|
|
/* or 1.33 seconds of time) */
|
|
/* */
|
|
/*******************************************************************/
|
|
|
|
static double astro_GMST0(double d)
|
|
{
|
|
double sidtim0;
|
|
/* Sidtime at 0h UT = L (Sun's mean longitude) + 180.0 degr */
|
|
/* L = M + w, as defined in sunpos(). Since I'm too lazy to */
|
|
/* add these numbers, I'll let the C compiler do it for me. */
|
|
/* Any decent C compiler will add the constants at compile */
|
|
/* time, imposing no runtime or code overhead. */
|
|
sidtim0 = astro_revolution((180.0 + 356.0470 + 282.9404) + (0.9856002585 + 4.70935E-5) * d);
|
|
return sidtim0;
|
|
}
|
|
|
|
/* This function computes the Sun's position at any instant */
|
|
|
|
/******************************************************/
|
|
/* Computes the Sun's ecliptic longitude and distance */
|
|
/* at an instant given in d, number of days since */
|
|
/* 2000 Jan 0.0. The Sun's ecliptic latitude is not */
|
|
/* computed, since it's always very near 0. */
|
|
/******************************************************/
|
|
static void astro_sunpos(double d, double *lon, double *r)
|
|
{
|
|
double M, /* Mean anomaly of the Sun */
|
|
w, /* Mean longitude of perihelion */
|
|
/* Note: Sun's mean longitude = M + w */
|
|
e, /* Eccentricity of Earth's orbit */
|
|
E, /* Eccentric anomaly */
|
|
x, y, /* x, y coordinates in orbit */
|
|
v; /* True anomaly */
|
|
|
|
/* Compute mean elements */
|
|
M = astro_revolution(356.0470 + 0.9856002585 * d);
|
|
w = 282.9404 + 4.70935E-5 * d;
|
|
e = 0.016709 - 1.151E-9 * d;
|
|
|
|
/* Compute true longitude and radius vector */
|
|
E = M + e * RADEG * sind(M) * (1.0 + e * cosd(M));
|
|
x = cosd(E) - e;
|
|
y = sqrt(1.0 - e*e) * sind(E);
|
|
*r = sqrt(x*x + y*y); /* Solar distance */
|
|
v = atan2d(y, x); /* True anomaly */
|
|
*lon = v + w; /* True solar longitude */
|
|
if (*lon >= 360.0) {
|
|
*lon -= 360.0; /* Make it 0..360 degrees */
|
|
}
|
|
}
|
|
|
|
static void astro_sun_RA_dec(double d, double *RA, double *dec, double *r)
|
|
{
|
|
double lon, obl_ecl, x, y, z;
|
|
|
|
/* Compute Sun's ecliptical coordinates */
|
|
astro_sunpos(d, &lon, r);
|
|
|
|
/* Compute ecliptic rectangular coordinates (z=0) */
|
|
x = *r * cosd(lon);
|
|
y = *r * sind(lon);
|
|
|
|
/* Compute obliquity of ecliptic (inclination of Earth's axis) */
|
|
obl_ecl = 23.4393 - 3.563E-7 * d;
|
|
|
|
/* Convert to equatorial rectangular coordinates - x is unchanged */
|
|
z = y * sind(obl_ecl);
|
|
y = y * cosd(obl_ecl);
|
|
|
|
/* Convert to spherical coordinates */
|
|
*RA = atan2d(y, x);
|
|
*dec = atan2d(z, sqrt(x*x + y*y));
|
|
}
|
|
|
|
/**
|
|
* Note: timestamp = unixtimestamp (NEEDS to be 00:00:00 UT)
|
|
* Eastern longitude positive, Western longitude negative
|
|
* Northern latitude positive, Southern latitude negative
|
|
* The longitude value IS critical in this function!
|
|
* altit = the altitude which the Sun should cross
|
|
* Set to -35/60 degrees for rise/set, -6 degrees
|
|
* for civil, -12 degrees for nautical and -18
|
|
* degrees for astronomical twilight.
|
|
* upper_limb: non-zero -> upper limb, zero -> center
|
|
* Set to non-zero (e.g. 1) when computing rise/set
|
|
* times, and to zero when computing start/end of
|
|
* twilight.
|
|
* *rise = where to store the rise time
|
|
* *set = where to store the set time
|
|
* Both times are relative to the specified altitude,
|
|
* and thus this function can be used to compute
|
|
* various twilight times, as well as rise/set times
|
|
* Return value: 0 = sun rises/sets this day, times stored at
|
|
* *trise and *tset.
|
|
* +1 = sun above the specified "horizon" 24 hours.
|
|
* *trise set to time when the sun is at south,
|
|
* minus 12 hours while *tset is set to the south
|
|
* time plus 12 hours. "Day" length = 24 hours
|
|
* -1 = sun is below the specified "horizon" 24 hours
|
|
* "Day" length = 0 hours, *trise and *tset are
|
|
* both set to the time when the sun is at south.
|
|
*
|
|
*/
|
|
int timelib_astro_rise_set_altitude(timelib_time *t_loc, double lon, double lat, double altit, int upper_limb, double *h_rise, double *h_set, timelib_sll *ts_rise, timelib_sll *ts_set, timelib_sll *ts_transit)
|
|
{
|
|
double d, /* Days since 2000 Jan 0.0 (negative before) */
|
|
sr, /* Solar distance, astronomical units */
|
|
sRA, /* Sun's Right Ascension */
|
|
sdec, /* Sun's declination */
|
|
sradius, /* Sun's apparent radius */
|
|
t, /* Diurnal arc */
|
|
tsouth, /* Time when Sun is at south */
|
|
sidtime; /* Local sidereal time */
|
|
timelib_time *t_utc;
|
|
timelib_sll timestamp, old_sse;
|
|
|
|
int rc = 0; /* Return cde from function - usually 0 */
|
|
|
|
/* Normalize time */
|
|
old_sse = t_loc->sse;
|
|
t_loc->h = 12;
|
|
t_loc->i = t_loc->s = 0;
|
|
timelib_update_ts(t_loc, NULL);
|
|
|
|
/* Calculate TS belonging to UTC 00:00 of the current day */
|
|
t_utc = timelib_time_ctor();
|
|
t_utc->y = t_loc->y;
|
|
t_utc->m = t_loc->m;
|
|
t_utc->d = t_loc->d;
|
|
t_utc->h = t_utc->i = t_utc->s = 0;
|
|
timelib_update_ts(t_utc, NULL);
|
|
|
|
/* Compute d of 12h local mean solar time */
|
|
timestamp = t_loc->sse;
|
|
d = timelib_ts_to_juliandate(timestamp) - lon/360.0;
|
|
|
|
/* Compute local sidereal time of this moment */
|
|
sidtime = astro_revolution(astro_GMST0(d) + 180.0 + lon);
|
|
|
|
/* Compute Sun's RA + Decl at this moment */
|
|
astro_sun_RA_dec( d, &sRA, &sdec, &sr );
|
|
|
|
/* Compute time when Sun is at south - in hours UT */
|
|
tsouth = 12.0 - astro_rev180(sidtime - sRA) / 15.0;
|
|
|
|
/* Compute the Sun's apparent radius, degrees */
|
|
sradius = 0.2666 / sr;
|
|
|
|
/* Do correction to upper limb, if necessary */
|
|
if (upper_limb) {
|
|
altit -= sradius;
|
|
}
|
|
|
|
/* Compute the diurnal arc that the Sun traverses to reach */
|
|
/* the specified altitude altit: */
|
|
{
|
|
double cost;
|
|
cost = (sind(altit) - sind(lat) * sind(sdec)) / (cosd(lat) * cosd(sdec));
|
|
*ts_transit = t_utc->sse + (tsouth * 3600);
|
|
if (cost >= 1.0) {
|
|
rc = -1;
|
|
t = 0.0; /* Sun always below altit */
|
|
|
|
*ts_rise = *ts_set = t_utc->sse + (tsouth * 3600);
|
|
} else if (cost <= -1.0) {
|
|
rc = +1;
|
|
t = 12.0; /* Sun always above altit */
|
|
|
|
*ts_rise = t_loc->sse - (12 * 3600);
|
|
*ts_set = t_loc->sse + (12 * 3600);
|
|
} else {
|
|
t = acosd(cost) / 15.0; /* The diurnal arc, hours */
|
|
|
|
/* Store rise and set times - as Unix Timestamp */
|
|
*ts_rise = ((tsouth - t) * 3600) + t_utc->sse;
|
|
*ts_set = ((tsouth + t) * 3600) + t_utc->sse;
|
|
|
|
*h_rise = (tsouth - t);
|
|
*h_set = (tsouth + t);
|
|
}
|
|
}
|
|
|
|
/* Kill temporary time and restore original sse */
|
|
timelib_time_dtor(t_utc);
|
|
t_loc->sse = old_sse;
|
|
|
|
return rc;
|
|
}
|
|
|
|
double timelib_ts_to_juliandate(timelib_sll ts)
|
|
{
|
|
double tmp;
|
|
|
|
tmp = ts;
|
|
tmp /= 86400;
|
|
tmp += 2440587.5;
|
|
tmp -= 2451543;
|
|
|
|
return tmp;
|
|
}
|