mirror of
https://github.com/php/php-src.git
synced 2025-01-24 04:33:39 +08:00
4543cd32ae
While JMPZNZ can avoid execution of a separate JMP opcode in some cases, it also prevents smart branch optimization, so creating JMPZNZ may actually have a negative effect. It also adds additional complexity for optimizations. Drop JMPZNZ in favor of JMPZ+JMP or JMPNZ+JMP. Closes GH-7857.
668 lines
22 KiB
C
668 lines
22 KiB
C
/*
|
|
+----------------------------------------------------------------------+
|
|
| Zend Engine, DCE - Dead Code Elimination |
|
|
+----------------------------------------------------------------------+
|
|
| Copyright (c) The PHP Group |
|
|
+----------------------------------------------------------------------+
|
|
| This source file is subject to version 3.01 of the PHP license, |
|
|
| that is bundled with this package in the file LICENSE, and is |
|
|
| available through the world-wide-web at the following url: |
|
|
| https://www.php.net/license/3_01.txt |
|
|
| If you did not receive a copy of the PHP license and are unable to |
|
|
| obtain it through the world-wide-web, please send a note to |
|
|
| license@php.net so we can mail you a copy immediately. |
|
|
+----------------------------------------------------------------------+
|
|
| Authors: Nikita Popov <nikic@php.net> |
|
|
| Dmitry Stogov <dmitry@php.net> |
|
|
+----------------------------------------------------------------------+
|
|
*/
|
|
|
|
#include "Optimizer/zend_optimizer_internal.h"
|
|
#include "Optimizer/zend_inference.h"
|
|
#include "Optimizer/zend_ssa.h"
|
|
#include "Optimizer/zend_func_info.h"
|
|
#include "Optimizer/zend_call_graph.h"
|
|
#include "zend_bitset.h"
|
|
|
|
/* This pass implements a form of dead code elimination (DCE). The algorithm optimistically assumes
|
|
* that all instructions and phis are dead. Instructions with immediate side-effects are then marked
|
|
* as live. We then recursively (using a worklist) propagate liveness to the instructions that def
|
|
* the used operands.
|
|
*
|
|
* Notes:
|
|
* * This pass does not perform unreachable code elimination. This happens as part of the SCCP
|
|
* pass.
|
|
* * The DCE is performed without taking control-dependence into account, i.e. all conditional
|
|
* branches are assumed to be live. It's possible to take control-dependence into account using
|
|
* the DCE algorithm described by Cytron et al., however it requires the construction of a
|
|
* postdominator tree and of postdominance frontiers, which does not seem worthwhile at this
|
|
* point.
|
|
* * We separate intrinsic side-effects from potential side-effects in the form of notices thrown
|
|
* by the instruction (in case we want to make this configurable). See may_have_side_effects() and
|
|
* zend_may_throw().
|
|
* * We often cannot DCE assignments and unsets while guaranteeing that dtors run in the same
|
|
* order. There is an optimization option to allow reordering of dtor effects.
|
|
* * The algorithm is able to eliminate dead modifications of non-escaping arrays
|
|
* and objects as well as dead arrays and objects allocations.
|
|
*/
|
|
|
|
typedef struct {
|
|
zend_ssa *ssa;
|
|
zend_op_array *op_array;
|
|
zend_bitset instr_dead;
|
|
zend_bitset phi_dead;
|
|
zend_bitset instr_worklist;
|
|
zend_bitset phi_worklist;
|
|
zend_bitset phi_worklist_no_val;
|
|
uint32_t instr_worklist_len;
|
|
uint32_t phi_worklist_len;
|
|
unsigned reorder_dtor_effects : 1;
|
|
} context;
|
|
|
|
static inline bool is_bad_mod(const zend_ssa *ssa, int use, int def) {
|
|
if (def < 0) {
|
|
/* This modification is not tracked by SSA, assume the worst */
|
|
return 1;
|
|
}
|
|
if (ssa->var_info[use].type & MAY_BE_REF) {
|
|
/* Modification of reference may have side-effect */
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline bool may_have_side_effects(
|
|
zend_op_array *op_array, zend_ssa *ssa,
|
|
const zend_op *opline, const zend_ssa_op *ssa_op,
|
|
bool reorder_dtor_effects) {
|
|
switch (opline->opcode) {
|
|
case ZEND_NOP:
|
|
case ZEND_IS_IDENTICAL:
|
|
case ZEND_IS_NOT_IDENTICAL:
|
|
case ZEND_QM_ASSIGN:
|
|
case ZEND_FREE:
|
|
case ZEND_FE_FREE:
|
|
case ZEND_TYPE_CHECK:
|
|
case ZEND_DEFINED:
|
|
case ZEND_ADD:
|
|
case ZEND_SUB:
|
|
case ZEND_MUL:
|
|
case ZEND_POW:
|
|
case ZEND_BW_OR:
|
|
case ZEND_BW_AND:
|
|
case ZEND_BW_XOR:
|
|
case ZEND_CONCAT:
|
|
case ZEND_FAST_CONCAT:
|
|
case ZEND_DIV:
|
|
case ZEND_MOD:
|
|
case ZEND_BOOL_XOR:
|
|
case ZEND_BOOL:
|
|
case ZEND_BOOL_NOT:
|
|
case ZEND_BW_NOT:
|
|
case ZEND_SL:
|
|
case ZEND_SR:
|
|
case ZEND_IS_EQUAL:
|
|
case ZEND_IS_NOT_EQUAL:
|
|
case ZEND_IS_SMALLER:
|
|
case ZEND_IS_SMALLER_OR_EQUAL:
|
|
case ZEND_CASE:
|
|
case ZEND_CASE_STRICT:
|
|
case ZEND_CAST:
|
|
case ZEND_ROPE_INIT:
|
|
case ZEND_ROPE_ADD:
|
|
case ZEND_INIT_ARRAY:
|
|
case ZEND_SPACESHIP:
|
|
case ZEND_STRLEN:
|
|
case ZEND_COUNT:
|
|
case ZEND_GET_TYPE:
|
|
case ZEND_ISSET_ISEMPTY_THIS:
|
|
case ZEND_ISSET_ISEMPTY_DIM_OBJ:
|
|
case ZEND_FETCH_DIM_IS:
|
|
case ZEND_ISSET_ISEMPTY_CV:
|
|
case ZEND_ISSET_ISEMPTY_VAR:
|
|
case ZEND_FETCH_IS:
|
|
case ZEND_IN_ARRAY:
|
|
case ZEND_FUNC_NUM_ARGS:
|
|
case ZEND_FUNC_GET_ARGS:
|
|
case ZEND_ARRAY_KEY_EXISTS:
|
|
/* No side effects */
|
|
return 0;
|
|
case ZEND_ADD_ARRAY_ELEMENT:
|
|
/* TODO: We can't free two vars. Keep instruction alive. <?php [0, "$a" => "$b"]; */
|
|
if ((opline->op1_type & (IS_VAR|IS_TMP_VAR)) && (opline->op2_type & (IS_VAR|IS_TMP_VAR))) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
case ZEND_ROPE_END:
|
|
/* TODO: Rope dce optimization, see #76446 */
|
|
return 1;
|
|
case ZEND_JMP:
|
|
case ZEND_JMPZ:
|
|
case ZEND_JMPNZ:
|
|
case ZEND_JMPZ_EX:
|
|
case ZEND_JMPNZ_EX:
|
|
case ZEND_JMP_SET:
|
|
case ZEND_COALESCE:
|
|
case ZEND_ASSERT_CHECK:
|
|
case ZEND_JMP_NULL:
|
|
/* For our purposes a jumps and branches are side effects. */
|
|
return 1;
|
|
case ZEND_BEGIN_SILENCE:
|
|
case ZEND_END_SILENCE:
|
|
case ZEND_ECHO:
|
|
case ZEND_INCLUDE_OR_EVAL:
|
|
case ZEND_THROW:
|
|
case ZEND_MATCH_ERROR:
|
|
case ZEND_EXT_STMT:
|
|
case ZEND_EXT_FCALL_BEGIN:
|
|
case ZEND_EXT_FCALL_END:
|
|
case ZEND_TICKS:
|
|
case ZEND_YIELD:
|
|
case ZEND_YIELD_FROM:
|
|
case ZEND_VERIFY_NEVER_TYPE:
|
|
/* Intrinsic side effects */
|
|
return 1;
|
|
case ZEND_DO_FCALL:
|
|
case ZEND_DO_FCALL_BY_NAME:
|
|
case ZEND_DO_ICALL:
|
|
case ZEND_DO_UCALL:
|
|
/* For now assume all calls have side effects */
|
|
return 1;
|
|
case ZEND_RECV:
|
|
case ZEND_RECV_INIT:
|
|
/* Even though RECV_INIT can be side-effect free, these cannot be simply dropped
|
|
* due to the prologue skipping code. */
|
|
return 1;
|
|
case ZEND_ASSIGN_REF:
|
|
return 1;
|
|
case ZEND_ASSIGN:
|
|
{
|
|
if (is_bad_mod(ssa, ssa_op->op1_use, ssa_op->op1_def)) {
|
|
return 1;
|
|
}
|
|
if (!reorder_dtor_effects) {
|
|
if (opline->op2_type != IS_CONST
|
|
&& (OP2_INFO() & MAY_HAVE_DTOR)
|
|
&& ssa->vars[ssa_op->op2_use].escape_state != ESCAPE_STATE_NO_ESCAPE) {
|
|
/* DCE might shorten lifetime */
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
case ZEND_UNSET_VAR:
|
|
return 1;
|
|
case ZEND_UNSET_CV:
|
|
{
|
|
uint32_t t1 = OP1_INFO();
|
|
if (t1 & MAY_BE_REF) {
|
|
/* We don't consider uses as the LHS of an assignment as real uses during DCE, so
|
|
* an unset may be considered dead even if there is a later assignment to the
|
|
* variable. Removing the unset in this case would not be correct if the variable
|
|
* is a reference, because unset breaks references. */
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
case ZEND_PRE_INC:
|
|
case ZEND_POST_INC:
|
|
case ZEND_PRE_DEC:
|
|
case ZEND_POST_DEC:
|
|
return is_bad_mod(ssa, ssa_op->op1_use, ssa_op->op1_def);
|
|
case ZEND_ASSIGN_OP:
|
|
return is_bad_mod(ssa, ssa_op->op1_use, ssa_op->op1_def)
|
|
|| ssa->vars[ssa_op->op1_def].escape_state != ESCAPE_STATE_NO_ESCAPE;
|
|
case ZEND_ASSIGN_DIM:
|
|
case ZEND_ASSIGN_OBJ:
|
|
if (is_bad_mod(ssa, ssa_op->op1_use, ssa_op->op1_def)
|
|
|| ssa->vars[ssa_op->op1_def].escape_state != ESCAPE_STATE_NO_ESCAPE) {
|
|
return 1;
|
|
}
|
|
if (!reorder_dtor_effects) {
|
|
opline++;
|
|
ssa_op++;
|
|
if (opline->op1_type != IS_CONST
|
|
&& (OP1_INFO() & MAY_HAVE_DTOR)) {
|
|
/* DCE might shorten lifetime */
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
case ZEND_PRE_INC_OBJ:
|
|
case ZEND_PRE_DEC_OBJ:
|
|
case ZEND_POST_INC_OBJ:
|
|
case ZEND_POST_DEC_OBJ:
|
|
if (is_bad_mod(ssa, ssa_op->op1_use, ssa_op->op1_def)
|
|
|| ssa->vars[ssa_op->op1_def].escape_state != ESCAPE_STATE_NO_ESCAPE) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
case ZEND_BIND_STATIC:
|
|
if (op_array->static_variables) {
|
|
/* Implicit and Explicit bind static is effectively prologue of closure so
|
|
report it has side effects like RECV, RECV_INIT; This allows us to
|
|
reflect on the closure and discover used variable at runtime */
|
|
if ((opline->extended_value & (ZEND_BIND_IMPLICIT|ZEND_BIND_EXPLICIT))) {
|
|
return 1;
|
|
}
|
|
|
|
if ((opline->extended_value & ZEND_BIND_REF) != 0) {
|
|
zval *value =
|
|
(zval*)((char*)op_array->static_variables->arData +
|
|
(opline->extended_value & ~ZEND_BIND_REF));
|
|
if (Z_TYPE_P(value) == IS_CONSTANT_AST) {
|
|
/* AST may contain undefined constants */
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
case ZEND_CHECK_VAR:
|
|
return (OP1_INFO() & MAY_BE_UNDEF) != 0;
|
|
case ZEND_FE_RESET_R:
|
|
case ZEND_FE_RESET_RW:
|
|
/* Model as not having side-effects -- let the side-effect be introduced by
|
|
* FE_FETCH if the array is not known to be non-empty. */
|
|
return (OP1_INFO() & MAY_BE_ANY) != MAY_BE_ARRAY;
|
|
default:
|
|
/* For everything we didn't handle, assume a side-effect */
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
static zend_always_inline void add_to_worklists(context *ctx, int var_num, int check) {
|
|
zend_ssa_var *var = &ctx->ssa->vars[var_num];
|
|
if (var->definition >= 0) {
|
|
if (!check || zend_bitset_in(ctx->instr_dead, var->definition)) {
|
|
zend_bitset_incl(ctx->instr_worklist, var->definition);
|
|
}
|
|
} else if (var->definition_phi) {
|
|
if (!check || zend_bitset_in(ctx->phi_dead, var_num)) {
|
|
zend_bitset_incl(ctx->phi_worklist, var_num);
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void add_to_phi_worklist_no_val(context *ctx, int var_num) {
|
|
zend_ssa_var *var = &ctx->ssa->vars[var_num];
|
|
if (var->definition_phi && zend_bitset_in(ctx->phi_dead, var_num)) {
|
|
zend_bitset_incl(ctx->phi_worklist_no_val, var_num);
|
|
}
|
|
}
|
|
|
|
static zend_always_inline void add_operands_to_worklists(context *ctx, zend_op *opline, zend_ssa_op *ssa_op, zend_ssa *ssa, int check) {
|
|
if (ssa_op->result_use >= 0) {
|
|
add_to_worklists(ctx, ssa_op->result_use, check);
|
|
}
|
|
if (ssa_op->op1_use >= 0) {
|
|
if (!zend_ssa_is_no_val_use(opline, ssa_op, ssa_op->op1_use)
|
|
|| (opline->opcode == ZEND_ASSIGN
|
|
&& (ssa->var_info[ssa_op->op1_use].type & MAY_BE_REF) != 0)) {
|
|
add_to_worklists(ctx, ssa_op->op1_use, check);
|
|
} else {
|
|
add_to_phi_worklist_no_val(ctx, ssa_op->op1_use);
|
|
}
|
|
}
|
|
if (ssa_op->op2_use >= 0) {
|
|
if (!zend_ssa_is_no_val_use(opline, ssa_op, ssa_op->op2_use)
|
|
|| (opline->opcode == ZEND_FE_FETCH_R
|
|
&& (ssa->var_info[ssa_op->op2_use].type & MAY_BE_REF) != 0)) {
|
|
add_to_worklists(ctx, ssa_op->op2_use, check);
|
|
} else {
|
|
add_to_phi_worklist_no_val(ctx, ssa_op->op2_use);
|
|
}
|
|
}
|
|
}
|
|
|
|
static zend_always_inline void add_phi_sources_to_worklists(context *ctx, zend_ssa_phi *phi, int check) {
|
|
zend_ssa *ssa = ctx->ssa;
|
|
int source;
|
|
FOREACH_PHI_SOURCE(phi, source) {
|
|
add_to_worklists(ctx, source, check);
|
|
} FOREACH_PHI_SOURCE_END();
|
|
}
|
|
|
|
static inline bool is_var_dead(context *ctx, int var_num) {
|
|
zend_ssa_var *var = &ctx->ssa->vars[var_num];
|
|
if (var->definition_phi) {
|
|
return zend_bitset_in(ctx->phi_dead, var_num);
|
|
} else if (var->definition >= 0) {
|
|
return zend_bitset_in(ctx->instr_dead, var->definition);
|
|
} else {
|
|
/* Variable has no definition, so either the definition has already been removed (var is
|
|
* dead) or this is one of the implicit variables at the start of the function (for our
|
|
* purposes live) */
|
|
return var_num >= ctx->op_array->last_var;
|
|
}
|
|
}
|
|
|
|
// Sometimes we can mark the var as EXT_UNUSED
|
|
static bool try_remove_var_def(context *ctx, int free_var, int use_chain, zend_op *opline) {
|
|
if (use_chain >= 0) {
|
|
return 0;
|
|
}
|
|
zend_ssa_var *var = &ctx->ssa->vars[free_var];
|
|
int def = var->definition;
|
|
|
|
if (def >= 0) {
|
|
zend_ssa_op *def_op = &ctx->ssa->ops[def];
|
|
|
|
if (def_op->result_def == free_var
|
|
&& var->phi_use_chain == NULL
|
|
&& var->use_chain == (opline - ctx->op_array->opcodes)) {
|
|
zend_op *def_opline = &ctx->op_array->opcodes[def];
|
|
|
|
switch (def_opline->opcode) {
|
|
case ZEND_ASSIGN:
|
|
case ZEND_ASSIGN_REF:
|
|
case ZEND_ASSIGN_DIM:
|
|
case ZEND_ASSIGN_OBJ:
|
|
case ZEND_ASSIGN_OBJ_REF:
|
|
case ZEND_ASSIGN_STATIC_PROP:
|
|
case ZEND_ASSIGN_STATIC_PROP_REF:
|
|
case ZEND_ASSIGN_OP:
|
|
case ZEND_ASSIGN_DIM_OP:
|
|
case ZEND_ASSIGN_OBJ_OP:
|
|
case ZEND_ASSIGN_STATIC_PROP_OP:
|
|
case ZEND_PRE_INC:
|
|
case ZEND_PRE_DEC:
|
|
case ZEND_PRE_INC_OBJ:
|
|
case ZEND_PRE_DEC_OBJ:
|
|
case ZEND_DO_ICALL:
|
|
case ZEND_DO_UCALL:
|
|
case ZEND_DO_FCALL_BY_NAME:
|
|
case ZEND_DO_FCALL:
|
|
case ZEND_INCLUDE_OR_EVAL:
|
|
case ZEND_YIELD:
|
|
case ZEND_YIELD_FROM:
|
|
case ZEND_ASSERT_CHECK:
|
|
def_opline->result_type = IS_UNUSED;
|
|
def_opline->result.var = 0;
|
|
def_op->result_def = -1;
|
|
var->definition = -1;
|
|
return 1;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static zend_always_inline bool may_be_refcounted(uint32_t type) {
|
|
return (type & (MAY_BE_STRING|MAY_BE_ARRAY|MAY_BE_OBJECT|MAY_BE_RESOURCE|MAY_BE_REF)) != 0;
|
|
}
|
|
|
|
static inline bool is_free_of_live_var(context *ctx, zend_op *opline, zend_ssa_op *ssa_op) {
|
|
switch (opline->opcode) {
|
|
case ZEND_FREE:
|
|
/* It is always safe to remove FREEs of non-refcounted values, even if they are live. */
|
|
if (!may_be_refcounted(ctx->ssa->var_info[ssa_op->op1_use].type)) {
|
|
return 0;
|
|
}
|
|
ZEND_FALLTHROUGH;
|
|
case ZEND_FE_FREE:
|
|
return !is_var_dead(ctx, ssa_op->op1_use);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Returns whether the instruction has been DCEd */
|
|
static bool dce_instr(context *ctx, zend_op *opline, zend_ssa_op *ssa_op) {
|
|
zend_ssa *ssa = ctx->ssa;
|
|
int free_var = -1;
|
|
zend_uchar free_var_type;
|
|
|
|
if (opline->opcode == ZEND_NOP) {
|
|
return 0;
|
|
}
|
|
|
|
/* We mark FREEs as dead, but they're only really dead if the destroyed var is dead */
|
|
if (is_free_of_live_var(ctx, opline, ssa_op)) {
|
|
return 0;
|
|
}
|
|
|
|
if ((opline->op1_type & (IS_VAR|IS_TMP_VAR))&& !is_var_dead(ctx, ssa_op->op1_use)) {
|
|
if (!try_remove_var_def(ctx, ssa_op->op1_use, ssa_op->op1_use_chain, opline)) {
|
|
if (may_be_refcounted(ssa->var_info[ssa_op->op1_use].type)
|
|
&& opline->opcode != ZEND_CASE && opline->opcode != ZEND_CASE_STRICT) {
|
|
free_var = ssa_op->op1_use;
|
|
free_var_type = opline->op1_type;
|
|
}
|
|
}
|
|
}
|
|
if ((opline->op2_type & (IS_VAR|IS_TMP_VAR)) && !is_var_dead(ctx, ssa_op->op2_use)) {
|
|
if (!try_remove_var_def(ctx, ssa_op->op2_use, ssa_op->op2_use_chain, opline)) {
|
|
if (may_be_refcounted(ssa->var_info[ssa_op->op2_use].type)) {
|
|
if (free_var >= 0) {
|
|
// TODO: We can't free two vars. Keep instruction alive.
|
|
zend_bitset_excl(ctx->instr_dead, opline - ctx->op_array->opcodes);
|
|
return 0;
|
|
}
|
|
free_var = ssa_op->op2_use;
|
|
free_var_type = opline->op2_type;
|
|
}
|
|
}
|
|
}
|
|
|
|
zend_ssa_rename_defs_of_instr(ctx->ssa, ssa_op);
|
|
zend_ssa_remove_instr(ctx->ssa, opline, ssa_op);
|
|
|
|
if (free_var >= 0) {
|
|
opline->opcode = ZEND_FREE;
|
|
opline->op1.var = EX_NUM_TO_VAR(ssa->vars[free_var].var);
|
|
opline->op1_type = free_var_type;
|
|
|
|
ssa_op->op1_use = free_var;
|
|
ssa_op->op1_use_chain = ssa->vars[free_var].use_chain;
|
|
ssa->vars[free_var].use_chain = ssa_op - ssa->ops;
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static inline int get_common_phi_source(zend_ssa *ssa, zend_ssa_phi *phi) {
|
|
int common_source = -1;
|
|
int source;
|
|
FOREACH_PHI_SOURCE(phi, source) {
|
|
if (source == phi->ssa_var) {
|
|
continue;
|
|
}
|
|
if (common_source == -1) {
|
|
common_source = source;
|
|
} else if (common_source != source) {
|
|
return -1;
|
|
}
|
|
} FOREACH_PHI_SOURCE_END();
|
|
|
|
/* If all sources are phi->ssa_var this phi must be in an unreachable cycle.
|
|
* We can't easily drop the phi in that case, as we don't have something to replace it with.
|
|
* Ideally SCCP would eliminate the whole cycle. */
|
|
return common_source;
|
|
}
|
|
|
|
static void try_remove_trivial_phi(context *ctx, zend_ssa_phi *phi) {
|
|
zend_ssa *ssa = ctx->ssa;
|
|
if (phi->pi < 0) {
|
|
/* Phi assignment with identical source operands */
|
|
int common_source = get_common_phi_source(ssa, phi);
|
|
if (common_source >= 0) {
|
|
zend_ssa_rename_var_uses(ssa, phi->ssa_var, common_source, 1);
|
|
zend_ssa_remove_phi(ssa, phi);
|
|
}
|
|
} else {
|
|
/* Pi assignment that is only used in Phi/Pi assignments */
|
|
// TODO What if we want to rerun type inference after DCE? Maybe separate this?
|
|
/*ZEND_ASSERT(phi->sources[0] != -1);
|
|
if (ssa->vars[phi->ssa_var].use_chain < 0) {
|
|
zend_ssa_rename_var_uses_keep_types(ssa, phi->ssa_var, phi->sources[0], 1);
|
|
zend_ssa_remove_phi(ssa, phi);
|
|
}*/
|
|
}
|
|
}
|
|
|
|
static inline bool may_break_varargs(const zend_op_array *op_array, const zend_ssa *ssa, const zend_ssa_op *ssa_op) {
|
|
if (ssa_op->op1_def >= 0
|
|
&& ssa->vars[ssa_op->op1_def].var < op_array->num_args) {
|
|
return 1;
|
|
}
|
|
if (ssa_op->op2_def >= 0
|
|
&& ssa->vars[ssa_op->op2_def].var < op_array->num_args) {
|
|
return 1;
|
|
}
|
|
if (ssa_op->result_def >= 0
|
|
&& ssa->vars[ssa_op->result_def].var < op_array->num_args) {
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline bool may_throw_dce_exception(const zend_op *opline) {
|
|
return opline->opcode == ZEND_ADD_ARRAY_ELEMENT && opline->op2_type == IS_UNUSED;
|
|
}
|
|
|
|
int dce_optimize_op_array(zend_op_array *op_array, zend_ssa *ssa, bool reorder_dtor_effects) {
|
|
int i;
|
|
zend_ssa_phi *phi;
|
|
int removed_ops = 0;
|
|
|
|
/* DCE of CV operations that changes arguments may affect vararg functions. */
|
|
bool has_varargs = (ssa->cfg.flags & ZEND_FUNC_VARARG) != 0;
|
|
|
|
context ctx;
|
|
ctx.ssa = ssa;
|
|
ctx.op_array = op_array;
|
|
ctx.reorder_dtor_effects = reorder_dtor_effects;
|
|
|
|
/* We have no dedicated phi vector, so we use the whole ssa var vector instead */
|
|
ctx.instr_worklist_len = zend_bitset_len(op_array->last);
|
|
ctx.instr_worklist = alloca(sizeof(zend_ulong) * ctx.instr_worklist_len);
|
|
memset(ctx.instr_worklist, 0, sizeof(zend_ulong) * ctx.instr_worklist_len);
|
|
ctx.phi_worklist_len = zend_bitset_len(ssa->vars_count);
|
|
ctx.phi_worklist = alloca(sizeof(zend_ulong) * ctx.phi_worklist_len);
|
|
memset(ctx.phi_worklist, 0, sizeof(zend_ulong) * ctx.phi_worklist_len);
|
|
ctx.phi_worklist_no_val = alloca(sizeof(zend_ulong) * ctx.phi_worklist_len);
|
|
memset(ctx.phi_worklist_no_val, 0, sizeof(zend_ulong) * ctx.phi_worklist_len);
|
|
|
|
/* Optimistically assume all instructions and phis to be dead */
|
|
ctx.instr_dead = alloca(sizeof(zend_ulong) * ctx.instr_worklist_len);
|
|
memset(ctx.instr_dead, 0, sizeof(zend_ulong) * ctx.instr_worklist_len);
|
|
ctx.phi_dead = alloca(sizeof(zend_ulong) * ctx.phi_worklist_len);
|
|
memset(ctx.phi_dead, 0xff, sizeof(zend_ulong) * ctx.phi_worklist_len);
|
|
|
|
/* Mark non-CV phis as live. Even if the result is unused, we generally cannot remove one
|
|
* of the producing instructions, as it combines producing the result with control flow.
|
|
* This can be made more precise if there are any cases where this is not the case. */
|
|
FOREACH_PHI(phi) {
|
|
if (phi->var >= op_array->last_var
|
|
&& may_be_refcounted(ssa->var_info[phi->ssa_var].type)) {
|
|
zend_bitset_excl(ctx.phi_dead, phi->ssa_var);
|
|
add_phi_sources_to_worklists(&ctx, phi, 0);
|
|
}
|
|
} FOREACH_PHI_END();
|
|
|
|
/* Mark reachable instruction without side effects as dead */
|
|
int b = ssa->cfg.blocks_count;
|
|
while (b > 0) {
|
|
int op_data = -1;
|
|
|
|
b--;
|
|
zend_basic_block *block = &ssa->cfg.blocks[b];
|
|
if (!(block->flags & ZEND_BB_REACHABLE)) {
|
|
continue;
|
|
}
|
|
i = block->start + block->len;
|
|
while (i > block->start) {
|
|
i--;
|
|
|
|
if (op_array->opcodes[i].opcode == ZEND_OP_DATA) {
|
|
op_data = i;
|
|
continue;
|
|
}
|
|
|
|
if (zend_bitset_in(ctx.instr_worklist, i)) {
|
|
zend_bitset_excl(ctx.instr_worklist, i);
|
|
add_operands_to_worklists(&ctx, &op_array->opcodes[i], &ssa->ops[i], ssa, 0);
|
|
if (op_data >= 0) {
|
|
add_operands_to_worklists(&ctx, &op_array->opcodes[op_data], &ssa->ops[op_data], ssa, 0);
|
|
}
|
|
} else if (may_have_side_effects(op_array, ssa, &op_array->opcodes[i], &ssa->ops[i], ctx.reorder_dtor_effects)
|
|
|| (zend_may_throw(&op_array->opcodes[i], &ssa->ops[i], op_array, ssa)
|
|
&& !may_throw_dce_exception(&op_array->opcodes[i]))
|
|
|| (has_varargs && may_break_varargs(op_array, ssa, &ssa->ops[i]))) {
|
|
if (op_array->opcodes[i].opcode == ZEND_NEW
|
|
&& op_array->opcodes[i+1].opcode == ZEND_DO_FCALL
|
|
&& ssa->ops[i].result_def >= 0
|
|
&& ssa->vars[ssa->ops[i].result_def].escape_state == ESCAPE_STATE_NO_ESCAPE) {
|
|
zend_bitset_incl(ctx.instr_dead, i);
|
|
zend_bitset_incl(ctx.instr_dead, i+1);
|
|
} else {
|
|
add_operands_to_worklists(&ctx, &op_array->opcodes[i], &ssa->ops[i], ssa, 0);
|
|
if (op_data >= 0) {
|
|
add_operands_to_worklists(&ctx, &op_array->opcodes[op_data], &ssa->ops[op_data], ssa, 0);
|
|
}
|
|
}
|
|
} else {
|
|
zend_bitset_incl(ctx.instr_dead, i);
|
|
if (op_data >= 0) {
|
|
zend_bitset_incl(ctx.instr_dead, op_data);
|
|
}
|
|
}
|
|
op_data = -1;
|
|
}
|
|
}
|
|
|
|
/* Propagate liveness backwards to all definitions of used vars */
|
|
while (!zend_bitset_empty(ctx.instr_worklist, ctx.instr_worklist_len)
|
|
|| !zend_bitset_empty(ctx.phi_worklist, ctx.phi_worklist_len)) {
|
|
while ((i = zend_bitset_pop_first(ctx.instr_worklist, ctx.instr_worklist_len)) >= 0) {
|
|
zend_bitset_excl(ctx.instr_dead, i);
|
|
add_operands_to_worklists(&ctx, &op_array->opcodes[i], &ssa->ops[i], ssa, 1);
|
|
if (i < op_array->last
|
|
&& (op_array->opcodes[i+1].opcode == ZEND_OP_DATA
|
|
|| (op_array->opcodes[i].opcode == ZEND_NEW
|
|
&& op_array->opcodes[i+1].opcode == ZEND_DO_FCALL))) {
|
|
zend_bitset_excl(ctx.instr_dead, i+1);
|
|
add_operands_to_worklists(&ctx, &op_array->opcodes[i+1], &ssa->ops[i+1], ssa, 1);
|
|
}
|
|
}
|
|
while ((i = zend_bitset_pop_first(ctx.phi_worklist, ctx.phi_worklist_len)) >= 0) {
|
|
zend_bitset_excl(ctx.phi_dead, i);
|
|
zend_bitset_excl(ctx.phi_worklist_no_val, i);
|
|
add_phi_sources_to_worklists(&ctx, ssa->vars[i].definition_phi, 1);
|
|
}
|
|
}
|
|
|
|
/* Eliminate dead instructions */
|
|
ZEND_BITSET_FOREACH(ctx.instr_dead, ctx.instr_worklist_len, i) {
|
|
removed_ops += dce_instr(&ctx, &op_array->opcodes[i], &ssa->ops[i]);
|
|
} ZEND_BITSET_FOREACH_END();
|
|
|
|
/* Improper uses don't count as "uses" for the purpose of instruction elimination,
|
|
* but we have to retain phis defining them.
|
|
* Propagate this information backwards, marking any phi with an improperly used
|
|
* target as non-dead. */
|
|
while ((i = zend_bitset_pop_first(ctx.phi_worklist_no_val, ctx.phi_worklist_len)) >= 0) {
|
|
zend_ssa_phi *phi = ssa->vars[i].definition_phi;
|
|
int source;
|
|
zend_bitset_excl(ctx.phi_dead, i);
|
|
FOREACH_PHI_SOURCE(phi, source) {
|
|
add_to_phi_worklist_no_val(&ctx, source);
|
|
} FOREACH_PHI_SOURCE_END();
|
|
}
|
|
|
|
/* Now collect the actually dead phis */
|
|
FOREACH_PHI(phi) {
|
|
if (zend_bitset_in(ctx.phi_dead, phi->ssa_var)) {
|
|
zend_ssa_remove_uses_of_var(ssa, phi->ssa_var);
|
|
zend_ssa_remove_phi(ssa, phi);
|
|
} else {
|
|
/* Remove trivial phis (phis with identical source operands) */
|
|
try_remove_trivial_phi(&ctx, phi);
|
|
}
|
|
} FOREACH_PHI_END();
|
|
|
|
return removed_ops;
|
|
}
|