Remove custom alloca() (#8513)

* Use arena in DCE instead of multiple alloca()
  This requires passing the optimizer context

* Use our do_alloca() instead of alloca()

* Use emalloc in DEBUG builds instead of stack allocations for do_alloca()
  This helps detecting that we correctly free do_alloca()
This commit is contained in:
George Peter Banyard 2022-05-27 09:05:33 +01:00 committed by GitHub
parent 344555768a
commit 8685a7f03c
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
8 changed files with 80 additions and 536 deletions

View File

@ -523,7 +523,7 @@ static inline bool may_throw_dce_exception(const zend_op *opline) {
return opline->opcode == ZEND_ADD_ARRAY_ELEMENT && opline->op2_type == IS_UNUSED;
}
int dce_optimize_op_array(zend_op_array *op_array, zend_ssa *ssa, bool reorder_dtor_effects) {
int dce_optimize_op_array(zend_op_array *op_array, zend_optimizer_ctx *optimizer_ctx, zend_ssa *ssa, bool reorder_dtor_effects) {
int i;
zend_ssa_phi *phi;
int removed_ops = 0;
@ -536,20 +536,17 @@ int dce_optimize_op_array(zend_op_array *op_array, zend_ssa *ssa, bool reorder_d
ctx.op_array = op_array;
ctx.reorder_dtor_effects = reorder_dtor_effects;
void *checkpoint = zend_arena_checkpoint(optimizer_ctx->arena);
/* We have no dedicated phi vector, so we use the whole ssa var vector instead */
ctx.instr_worklist_len = zend_bitset_len(op_array->last);
ctx.instr_worklist = alloca(sizeof(zend_ulong) * ctx.instr_worklist_len);
memset(ctx.instr_worklist, 0, sizeof(zend_ulong) * ctx.instr_worklist_len);
ctx.instr_worklist = zend_arena_calloc(&optimizer_ctx->arena, ctx.instr_worklist_len, sizeof(zend_ulong));
ctx.phi_worklist_len = zend_bitset_len(ssa->vars_count);
ctx.phi_worklist = alloca(sizeof(zend_ulong) * ctx.phi_worklist_len);
memset(ctx.phi_worklist, 0, sizeof(zend_ulong) * ctx.phi_worklist_len);
ctx.phi_worklist_no_val = alloca(sizeof(zend_ulong) * ctx.phi_worklist_len);
memset(ctx.phi_worklist_no_val, 0, sizeof(zend_ulong) * ctx.phi_worklist_len);
ctx.phi_worklist = zend_arena_calloc(&optimizer_ctx->arena, ctx.phi_worklist_len, sizeof(zend_ulong));
ctx.phi_worklist_no_val = zend_arena_calloc(&optimizer_ctx->arena, ctx.phi_worklist_len, sizeof(zend_ulong));
/* Optimistically assume all instructions and phis to be dead */
ctx.instr_dead = alloca(sizeof(zend_ulong) * ctx.instr_worklist_len);
memset(ctx.instr_dead, 0, sizeof(zend_ulong) * ctx.instr_worklist_len);
ctx.phi_dead = alloca(sizeof(zend_ulong) * ctx.phi_worklist_len);
ctx.instr_dead = zend_arena_calloc(&optimizer_ctx->arena, ctx.instr_worklist_len, sizeof(zend_ulong));
ctx.phi_dead = zend_arena_alloc(&optimizer_ctx->arena, ctx.phi_worklist_len * sizeof(zend_ulong));
memset(ctx.phi_dead, 0xff, sizeof(zend_ulong) * ctx.phi_worklist_len);
/* Mark non-CV phis as live. Even if the result is unused, we generally cannot remove one
@ -664,5 +661,7 @@ int dce_optimize_op_array(zend_op_array *op_array, zend_ssa *ssa, bool reorder_d
}
} FOREACH_PHI_END();
zend_arena_release(&optimizer_ctx->arena, checkpoint);
return removed_ops;
}

View File

@ -1076,7 +1076,7 @@ void zend_dfa_optimize_op_array(zend_op_array *op_array, zend_optimizer_ctx *ctx
}
if (ZEND_OPTIMIZER_PASS_14 & ctx->optimization_level) {
if (dce_optimize_op_array(op_array, ssa, 0)) {
if (dce_optimize_op_array(op_array, ctx, ssa, 0)) {
remove_nops = 1;
}
if (zend_dfa_optimize_jmps(op_array, ssa)) {

View File

@ -121,7 +121,7 @@ uint32_t zend_optimizer_classify_function(zend_string *name, uint32_t num_args);
void zend_optimizer_migrate_jump(zend_op_array *op_array, zend_op *new_opline, zend_op *opline);
void zend_optimizer_shift_jump(zend_op_array *op_array, zend_op *opline, uint32_t *shiftlist);
int sccp_optimize_op_array(zend_optimizer_ctx *ctx, zend_op_array *op_array, zend_ssa *ssa, zend_call_info **call_map);
int dce_optimize_op_array(zend_op_array *op_array, zend_ssa *ssa, bool reorder_dtor_effects);
int dce_optimize_op_array(zend_op_array *op_array, zend_optimizer_ctx *optimizer_ctx, zend_ssa *ssa, bool reorder_dtor_effects);
zend_result zend_ssa_escape_analysis(const zend_script *script, zend_op_array *op_array, zend_ssa *ssa);
typedef void (*zend_op_array_func_t)(zend_op_array *, void *context);

View File

@ -63,10 +63,6 @@
#include <limits.h>
#if HAVE_ALLOCA_H && !defined(_ALLOCA_H)
# include <alloca.h>
#endif
#if defined(ZEND_WIN32) && !defined(__clang__)
#include <intrin.h>
#endif
@ -181,6 +177,9 @@
# define ZEND_EXTENSIONS_SUPPORT 0
#endif
#if defined(HAVE_ALLOCA_H) && !defined(_ALLOCA_H)
# include <alloca.h>
#endif
/* AIX requires this to be the first thing in the file. */
#ifndef __GNUC__
# ifndef HAVE_ALLOCA_H
@ -194,6 +193,25 @@ char *alloca();
# endif
#endif
#if !ZEND_DEBUG && (defined(HAVE_ALLOCA) || (defined (__GNUC__) && __GNUC__ >= 2)) && !(defined(ZTS) && defined(HPUX)) && !defined(DARWIN)
# define ZEND_ALLOCA_MAX_SIZE (32 * 1024)
# define ALLOCA_FLAG(name) \
bool name;
# define SET_ALLOCA_FLAG(name) \
name = true
# define do_alloca_ex(size, limit, use_heap) \
((use_heap = (UNEXPECTED((size) > (limit)))) ? emalloc(size) : alloca(size))
# define do_alloca(size, use_heap) \
do_alloca_ex(size, ZEND_ALLOCA_MAX_SIZE, use_heap)
# define free_alloca(p, use_heap) \
do { if (UNEXPECTED(use_heap)) efree(p); } while (0)
#else
# define ALLOCA_FLAG(name)
# define SET_ALLOCA_FLAG(name)
# define do_alloca(p, use_heap) emalloc(p)
# define free_alloca(p, use_heap) efree(p)
#endif
#if ZEND_GCC_VERSION >= 2096 || __has_attribute(__malloc__)
# define ZEND_ATTRIBUTE_MALLOC __attribute__ ((__malloc__))
#else
@ -345,25 +363,6 @@ char *alloca();
# define XtOffsetOf(s_type, field) offsetof(s_type, field)
#endif
#if (defined(HAVE_ALLOCA) || (defined (__GNUC__) && __GNUC__ >= 2)) && !(defined(ZTS) && defined(HPUX)) && !defined(DARWIN)
# define ZEND_ALLOCA_MAX_SIZE (32 * 1024)
# define ALLOCA_FLAG(name) \
bool name;
# define SET_ALLOCA_FLAG(name) \
name = 1
# define do_alloca_ex(size, limit, use_heap) \
((use_heap = (UNEXPECTED((size) > (limit)))) ? emalloc(size) : alloca(size))
# define do_alloca(size, use_heap) \
do_alloca_ex(size, ZEND_ALLOCA_MAX_SIZE, use_heap)
# define free_alloca(p, use_heap) \
do { if (UNEXPECTED(use_heap)) efree(p); } while (0)
#else
# define ALLOCA_FLAG(name)
# define SET_ALLOCA_FLAG(name)
# define do_alloca(p, use_heap) emalloc(p)
# define free_alloca(p, use_heap) efree(p)
#endif
#ifdef HAVE_SIGSETJMP
# define SETJMP(a) sigsetjmp(a, 0)
# define LONGJMP(a,b) siglongjmp(a, b)

View File

@ -1610,7 +1610,7 @@ PHP_INSTALL_HEADERS([Zend/Optimizer], [ \
PHP_ADD_SOURCES(TSRM, TSRM.c, -DZEND_ENABLE_STATIC_TSRMLS_CACHE=1)
PHP_ADD_SOURCES(main, main.c snprintf.c spprintf.c \
fopen_wrappers.c alloca.c php_scandir.c \
fopen_wrappers.c php_scandir.c \
php_ini_builder.c \
php_ini.c SAPI.c rfc1867.c php_content_types.c strlcpy.c \
strlcat.c explicit_bzero.c reentrancy.c php_variables.c php_ticks.c \

View File

@ -10,7 +10,6 @@
#ifdef PHP_WIN32
# define __alignof__ __alignof
# define alloca _alloca
#else
# ifndef HAVE_ALIGNOF
# include <stddef.h>
@ -370,16 +369,23 @@ char * php_sha256_crypt_r(const char *key, const char *salt, char *buffer, int b
salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX);
key_len = strlen(key);
char *tmp_key = NULL;
ALLOCA_FLAG(use_heap_key);
char *tmp_salt = NULL;
ALLOCA_FLAG(use_heap_salt);
SET_ALLOCA_FLAG(use_heap_key);
SET_ALLOCA_FLAG(use_heap_salt);
if ((key - (char *) 0) % __alignof__ (uint32_t) != 0) {
char *tmp = (char *) alloca(key_len + __alignof__(uint32_t));
key = copied_key = memcpy(tmp + __alignof__(uint32_t) - (tmp - (char *) 0) % __alignof__(uint32_t), key, key_len);
tmp_key = (char *) do_alloca(key_len + __alignof__(uint32_t), use_heap_key);
key = copied_key = memcpy(tmp_key + __alignof__(uint32_t) - (tmp_key - (char *) 0) % __alignof__(uint32_t), key, key_len);
}
if ((salt - (char *) 0) % __alignof__(uint32_t) != 0) {
char *tmp = (char *) alloca(salt_len + 1 + __alignof__(uint32_t));
tmp_salt = (char *) do_alloca(salt_len + 1 + __alignof__(uint32_t), use_heap_salt);
salt = copied_salt =
memcpy(tmp + __alignof__(uint32_t) - (tmp - (char *) 0) % __alignof__ (uint32_t), salt, salt_len);
memcpy(tmp_salt + __alignof__(uint32_t) - (tmp_salt - (char *) 0) % __alignof__ (uint32_t), salt, salt_len);
copied_salt[salt_len] = 0;
}
@ -443,7 +449,8 @@ char * php_sha256_crypt_r(const char *key, const char *salt, char *buffer, int b
sha256_finish_ctx(&alt_ctx, temp_result);
/* Create byte sequence P. */
cp = p_bytes = alloca(key_len);
ALLOCA_FLAG(use_heap_p_bytes);
cp = p_bytes = do_alloca(key_len, use_heap_p_bytes);
for (cnt = key_len; cnt >= 32; cnt -= 32) {
cp = __php_mempcpy((void *)cp, (const void *)temp_result, 32);
}
@ -461,7 +468,8 @@ char * php_sha256_crypt_r(const char *key, const char *salt, char *buffer, int b
sha256_finish_ctx(&alt_ctx, temp_result);
/* Create byte sequence S. */
cp = s_bytes = alloca(salt_len);
ALLOCA_FLAG(use_heap_s_bytes);
cp = s_bytes = do_alloca(salt_len, use_heap_s_bytes);
for (cnt = salt_len; cnt >= 32; cnt -= 32) {
cp = __php_mempcpy(cp, temp_result, 32);
}
@ -571,6 +579,14 @@ char * php_sha256_crypt_r(const char *key, const char *salt, char *buffer, int b
if (copied_salt != NULL) {
ZEND_SECURE_ZERO(copied_salt, salt_len);
}
if (tmp_key != NULL) {
free_alloca(tmp_key, use_heap_key);
}
if (tmp_salt != NULL) {
free_alloca(tmp_salt, use_heap_salt);
}
free_alloca(p_bytes, use_heap_p_bytes);
free_alloca(s_bytes, use_heap_s_bytes);
return buffer;
}

View File

@ -9,7 +9,6 @@
#include <limits.h>
#ifdef PHP_WIN32
# define __alignof__ __alignof
# define alloca _alloca
#else
# ifndef HAVE_ALIGNOF
# include <stddef.h>
@ -404,16 +403,23 @@ php_sha512_crypt_r(const char *key, const char *salt, char *buffer, int buflen)
salt_len = MIN(strcspn(salt, "$"), SALT_LEN_MAX);
key_len = strlen(key);
char *tmp_key = NULL;
ALLOCA_FLAG(use_heap_key);
char *tmp_salt = NULL;
ALLOCA_FLAG(use_heap_salt);
SET_ALLOCA_FLAG(use_heap_key);
SET_ALLOCA_FLAG(use_heap_salt);
if ((key - (char *) 0) % __alignof__ (uint64_t) != 0) {
char *tmp = (char *) alloca (key_len + __alignof__ (uint64_t));
tmp_key = (char *) do_alloca(key_len + __alignof__ (uint64_t), use_heap_key);
key = copied_key =
memcpy(tmp + __alignof__(uint64_t) - (tmp - (char *) 0) % __alignof__(uint64_t), key, key_len);
memcpy(tmp_key + __alignof__(uint64_t) - (tmp_key - (char *) 0) % __alignof__(uint64_t), key, key_len);
}
if ((salt - (char *) 0) % __alignof__ (uint64_t) != 0) {
char *tmp = (char *) alloca(salt_len + 1 + __alignof__(uint64_t));
salt = copied_salt = memcpy(tmp + __alignof__(uint64_t) - (tmp - (char *) 0) % __alignof__(uint64_t), salt, salt_len);
tmp_salt = (char *) do_alloca(salt_len + 1 + __alignof__(uint64_t), use_heap_salt);
salt = copied_salt = memcpy(tmp_salt + __alignof__(uint64_t) - (tmp_salt - (char *) 0) % __alignof__(uint64_t), salt, salt_len);
copied_salt[salt_len] = 0;
}
@ -477,7 +483,8 @@ php_sha512_crypt_r(const char *key, const char *salt, char *buffer, int buflen)
sha512_finish_ctx(&alt_ctx, temp_result);
/* Create byte sequence P. */
cp = p_bytes = alloca(key_len);
ALLOCA_FLAG(use_heap_p_bytes);
cp = p_bytes = do_alloca(key_len, use_heap_p_bytes);
for (cnt = key_len; cnt >= 64; cnt -= 64) {
cp = __php_mempcpy((void *) cp, (const void *)temp_result, 64);
}
@ -496,7 +503,8 @@ php_sha512_crypt_r(const char *key, const char *salt, char *buffer, int buflen)
sha512_finish_ctx(&alt_ctx, temp_result);
/* Create byte sequence S. */
cp = s_bytes = alloca(salt_len);
ALLOCA_FLAG(use_heap_s_bytes);
cp = s_bytes = do_alloca(salt_len, use_heap_s_bytes);
for (cnt = salt_len; cnt >= 64; cnt -= 64) {
cp = __php_mempcpy(cp, temp_result, 64);
}
@ -618,6 +626,14 @@ php_sha512_crypt_r(const char *key, const char *salt, char *buffer, int buflen)
if (copied_salt != NULL) {
ZEND_SECURE_ZERO(copied_salt, salt_len);
}
if (tmp_key != NULL) {
free_alloca(tmp_key, use_heap_key);
}
if (tmp_salt != NULL) {
free_alloca(tmp_salt, use_heap_salt);
}
free_alloca(p_bytes, use_heap_p_bytes);
free_alloca(s_bytes, use_heap_s_bytes);
return buffer;
}

View File

@ -1,486 +0,0 @@
/* alloca.c -- allocate automatically reclaimed memory
(Mostly) portable public-domain implementation -- D A Gwyn
This implementation of the PWB library alloca function,
which is used to allocate space off the run-time stack so
that it is automatically reclaimed upon procedure exit,
was inspired by discussions with J. Q. Johnson of Cornell.
J.Otto Tennant <jot@cray.com> contributed the Cray support.
There are some preprocessor constants that can
be defined when compiling for your specific system, for
improved efficiency; however, the defaults should be okay.
The general concept of this implementation is to keep
track of all alloca-allocated blocks, and reclaim any
that are found to be deeper in the stack than the current
invocation. This heuristic does not reclaim storage as
soon as it becomes invalid, but it will do so eventually.
As a special case, alloca(0) reclaims storage without
allocating any. It is a good idea to use alloca(0) in
your main control loop, etc. to force garbage collection. */
#include <php_config.h>
#if !HAVE_ALLOCA
#include <string.h>
#include <stdlib.h>
#ifdef emacs
#include "blockinput.h"
#endif
/* If compiling with GCC 2, this file's not needed. */
#if !defined (__GNUC__) || __GNUC__ < 2
/* If someone has defined alloca as a macro,
there must be some other way alloca is supposed to work. */
#ifndef alloca
#ifdef emacs
#ifdef static
/* actually, only want this if static is defined as ""
-- this is for usg, in which emacs must undefine static
in order to make unexec workable
*/
#ifndef STACK_DIRECTION
you
lose
-- must know STACK_DIRECTION at compile-time
#endif /* STACK_DIRECTION undefined */
#endif /* static */
#endif /* emacs */
/* If your stack is a linked list of frames, you have to
provide an "address metric" ADDRESS_FUNCTION macro. */
#if defined (CRAY) && defined (CRAY_STACKSEG_END)
long i00afunc ();
#define ADDRESS_FUNCTION(arg) (char *) i00afunc (&(arg))
#else
#define ADDRESS_FUNCTION(arg) &(arg)
#endif
#if __STDC__
typedef void *pointer;
#else
typedef char *pointer;
#endif
#ifndef NULL
#define NULL 0
#endif
/* Define STACK_DIRECTION if you know the direction of stack
growth for your system; otherwise it will be automatically
deduced at run-time.
STACK_DIRECTION > 0 => grows toward higher addresses
STACK_DIRECTION < 0 => grows toward lower addresses
STACK_DIRECTION = 0 => direction of growth unknown */
#ifndef STACK_DIRECTION
#define STACK_DIRECTION 0 /* Direction unknown. */
#endif
#if STACK_DIRECTION != 0
#define STACK_DIR STACK_DIRECTION /* Known at compile-time. */
#else /* STACK_DIRECTION == 0; need run-time code. */
static int stack_dir; /* 1 or -1 once known. */
#define STACK_DIR stack_dir
static void
find_stack_direction ()
{
static char *addr = NULL; /* Address of first `dummy', once known. */
auto char dummy; /* To get stack address. */
if (addr == NULL)
{ /* Initial entry. */
addr = ADDRESS_FUNCTION (dummy);
find_stack_direction (); /* Recurse once. */
}
else
{
/* Second entry. */
if (ADDRESS_FUNCTION (dummy) > addr)
stack_dir = 1; /* Stack grew upward. */
else
stack_dir = -1; /* Stack grew downward. */
}
}
#endif /* STACK_DIRECTION == 0 */
/* An "alloca header" is used to:
(a) chain together all alloca'd blocks;
(b) keep track of stack depth.
It is very important that sizeof(header) agree with malloc
alignment chunk size. The following default should work okay. */
#ifndef ALIGN_SIZE
#define ALIGN_SIZE sizeof(double)
#endif
typedef union hdr
{
char align[ALIGN_SIZE]; /* To force sizeof(header). */
struct
{
union hdr *next; /* For chaining headers. */
char *deep; /* For stack depth measure. */
} h;
} header;
static header *last_alloca_header = NULL; /* -> last alloca header. */
/* Return a pointer to at least SIZE bytes of storage,
which will be automatically reclaimed upon exit from
the procedure that called alloca. Originally, this space
was supposed to be taken from the current stack frame of the
caller, but that method cannot be made to work for some
implementations of C, for example under Gould's UTX/32. */
pointer
alloca (size)
size_t size;
{
auto char probe; /* Probes stack depth: */
register char *depth = ADDRESS_FUNCTION (probe);
#if STACK_DIRECTION == 0
if (STACK_DIR == 0) /* Unknown growth direction. */
find_stack_direction ();
#endif
/* Reclaim garbage, defined as all alloca'd storage that
was allocated from deeper in the stack than currently. */
{
register header *hp; /* Traverses linked list. */
#ifdef emacs
BLOCK_INPUT;
#endif
for (hp = last_alloca_header; hp != NULL;)
if ((STACK_DIR > 0 && hp->h.deep > depth)
|| (STACK_DIR < 0 && hp->h.deep < depth))
{
register header *np = hp->h.next;
free ((pointer) hp); /* Collect garbage. */
hp = np; /* -> next header. */
}
else
break; /* Rest are not deeper. */
last_alloca_header = hp; /* -> last valid storage. */
#ifdef emacs
UNBLOCK_INPUT;
#endif
}
if (size == 0)
return NULL; /* No allocation required. */
/* Allocate combined header + user data storage. */
{
register pointer new = malloc (sizeof (header) + size);
/* Address of header. */
if (new == 0)
abort();
((header *) new)->h.next = last_alloca_header;
((header *) new)->h.deep = depth;
last_alloca_header = (header *) new;
/* User storage begins just after header. */
return (pointer) ((char *) new + sizeof (header));
}
}
#if defined (CRAY) && defined (CRAY_STACKSEG_END)
#ifdef DEBUG_I00AFUNC
#include <stdio.h>
#endif
#ifndef CRAY_STACK
#define CRAY_STACK
#ifndef CRAY2
/* Stack structures for CRAY-1, CRAY X-MP, and CRAY Y-MP */
struct stack_control_header
{
long shgrow:32; /* Number of times stack has grown. */
long shaseg:32; /* Size of increments to stack. */
long shhwm:32; /* High water mark of stack. */
long shsize:32; /* Current size of stack (all segments). */
};
/* The stack segment linkage control information occurs at
the high-address end of a stack segment. (The stack
grows from low addresses to high addresses.) The initial
part of the stack segment linkage control information is
0200 (octal) words. This provides for register storage
for the routine which overflows the stack. */
struct stack_segment_linkage
{
long ss[0200]; /* 0200 overflow words. */
long sssize:32; /* Number of words in this segment. */
long ssbase:32; /* Offset to stack base. */
long:32;
long sspseg:32; /* Offset to linkage control of previous
segment of stack. */
long:32;
long sstcpt:32; /* Pointer to task common address block. */
long sscsnm; /* Private control structure number for
microtasking. */
long ssusr1; /* Reserved for user. */
long ssusr2; /* Reserved for user. */
long sstpid; /* Process ID for pid based multi-tasking. */
long ssgvup; /* Pointer to multitasking thread give up. */
long sscray[7]; /* Reserved for Cray Research. */
long ssa0;
long ssa1;
long ssa2;
long ssa3;
long ssa4;
long ssa5;
long ssa6;
long ssa7;
long sss0;
long sss1;
long sss2;
long sss3;
long sss4;
long sss5;
long sss6;
long sss7;
};
#else /* CRAY2 */
/* The following structure defines the vector of words
returned by the STKSTAT library routine. */
struct stk_stat
{
long now; /* Current total stack size. */
long maxc; /* Amount of contiguous space which would
be required to satisfy the maximum
stack demand to date. */
long high_water; /* Stack high-water mark. */
long overflows; /* Number of stack overflow ($STKOFEN) calls. */
long hits; /* Number of internal buffer hits. */
long extends; /* Number of block extensions. */
long stko_mallocs; /* Block allocations by $STKOFEN. */
long underflows; /* Number of stack underflow calls ($STKRETN). */
long stko_free; /* Number of deallocations by $STKRETN. */
long stkm_free; /* Number of deallocations by $STKMRET. */
long segments; /* Current number of stack segments. */
long maxs; /* Maximum number of stack segments so far. */
long pad_size; /* Stack pad size. */
long current_address; /* Current stack segment address. */
long current_size; /* Current stack segment size. This
number is actually corrupted by STKSTAT to
include the fifteen word trailer area. */
long initial_address; /* Address of initial segment. */
long initial_size; /* Size of initial segment. */
};
/* The following structure describes the data structure which trails
any stack segment. I think that the description in 'asdef' is
out of date. I only describe the parts that I am sure about. */
struct stk_trailer
{
long this_address; /* Address of this block. */
long this_size; /* Size of this block (does not include
this trailer). */
long unknown2;
long unknown3;
long link; /* Address of trailer block of previous
segment. */
long unknown5;
long unknown6;
long unknown7;
long unknown8;
long unknown9;
long unknown10;
long unknown11;
long unknown12;
long unknown13;
long unknown14;
};
#endif /* CRAY2 */
#endif /* not CRAY_STACK */
#ifdef CRAY2
/* Determine a "stack measure" for an arbitrary ADDRESS.
I doubt that "lint" will like this much. */
static long
i00afunc (long *address)
{
struct stk_stat status;
struct stk_trailer *trailer;
long *block, size;
long result = 0;
/* We want to iterate through all of the segments. The first
step is to get the stack status structure. We could do this
more quickly and more directly, perhaps, by referencing the
$LM00 common block, but I know that this works. */
STKSTAT (&status);
/* Set up the iteration. */
trailer = (struct stk_trailer *) (status.current_address
+ status.current_size
- 15);
/* There must be at least one stack segment. Therefore it is
a fatal error if "trailer" is null. */
if (trailer == 0)
abort ();
/* Discard segments that do not contain our argument address. */
while (trailer != 0)
{
block = (long *) trailer->this_address;
size = trailer->this_size;
if (block == 0 || size == 0)
abort ();
trailer = (struct stk_trailer *) trailer->link;
if ((block <= address) && (address < (block + size)))
break;
}
/* Set the result to the offset in this segment and add the sizes
of all predecessor segments. */
result = address - block;
if (trailer == 0)
{
return result;
}
do
{
if (trailer->this_size <= 0)
abort ();
result += trailer->this_size;
trailer = (struct stk_trailer *) trailer->link;
}
while (trailer != 0);
/* We are done. Note that if you present a bogus address (one
not in any segment), you will get a different number back, formed
from subtracting the address of the first block. This is probably
not what you want. */
return (result);
}
#else /* not CRAY2 */
/* Stack address function for a CRAY-1, CRAY X-MP, or CRAY Y-MP.
Determine the number of the cell within the stack,
given the address of the cell. The purpose of this
routine is to linearize, in some sense, stack addresses
for alloca. */
static long
i00afunc (long address)
{
long stkl = 0;
long size, pseg, this_segment, stack;
long result = 0;
struct stack_segment_linkage *ssptr;
/* Register B67 contains the address of the end of the
current stack segment. If you (as a subprogram) store
your registers on the stack and find that you are past
the contents of B67, you have overflowed the segment.
B67 also points to the stack segment linkage control
area, which is what we are really interested in. */
stkl = CRAY_STACKSEG_END ();
ssptr = (struct stack_segment_linkage *) stkl;
/* If one subtracts 'size' from the end of the segment,
one has the address of the first word of the segment.
If this is not the first segment, 'pseg' will be
nonzero. */
pseg = ssptr->sspseg;
size = ssptr->sssize;
this_segment = stkl - size;
/* It is possible that calling this routine itself caused
a stack overflow. Discard stack segments which do not
contain the target address. */
while (!(this_segment <= address && address <= stkl))
{
#ifdef DEBUG_I00AFUNC
fprintf (stderr, "%011o %011o %011o\n", this_segment, address, stkl);
#endif
if (pseg == 0)
break;
stkl = stkl - pseg;
ssptr = (struct stack_segment_linkage *) stkl;
size = ssptr->sssize;
pseg = ssptr->sspseg;
this_segment = stkl - size;
}
result = address - this_segment;
/* If you subtract pseg from the current end of the stack,
you get the address of the previous stack segment's end.
This seems a little convoluted to me, but I'll bet you save
a cycle somewhere. */
while (pseg != 0)
{
#ifdef DEBUG_I00AFUNC
fprintf (stderr, "%011o %011o\n", pseg, size);
#endif
stkl = stkl - pseg;
ssptr = (struct stack_segment_linkage *) stkl;
size = ssptr->sssize;
pseg = ssptr->sspseg;
result += size;
}
return (result);
}
#endif /* not CRAY2 */
#endif /* CRAY */
#endif /* no alloca */
#endif /* not GCC version 2 */
#endif /* HAVE_ALLOCA */