php-src/ext/sockets/sendrecvmsg.c

1415 lines
39 KiB
C
Raw Normal View History

/*
+----------------------------------------------------------------------+
| PHP Version 5 |
+----------------------------------------------------------------------+
| Copyright (c) 1997-2012 The PHP Group |
+----------------------------------------------------------------------+
| This source file is subject to version 3.01 of the PHP license, |
| that is bundled with this package in the file LICENSE, and is |
| available through the world-wide-web at the following url: |
| http://www.php.net/license/3_01.txt |
| If you did not receive a copy of the PHP license and are unable to |
| obtain it through the world-wide-web, please send a note to |
| license@php.net so we can mail you a copy immediately. |
+----------------------------------------------------------------------+
| Authors: Gustavo Lopes <cataphract@php.net> |
+----------------------------------------------------------------------+
*/
#include <php.h>
#include "php_sockets.h"
#include "sockaddr_conv.h"
#include "sendrecvmsg.h"
#include <arpa/inet.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <limits.h>
#include <stdarg.h>
#include <netinet/in.h>
#include <stddef.h>
#include <Zend/zend_llist.h>
#include <ext/standard/php_smart_str.h>
#ifdef ZTS
#include <TSRM/TSRM.h>
#endif
#define MAX_USER_BUFF_SIZE ((size_t)(100*1024*1024))
#define DEFAULT_BUFF_SIZE 8192
#define MAX_ARRAY_KEY_SIZE 128
#define LONG_CHECK_VALID_INT(l) \
do { \
if ((l) < INT_MIN && (l) > INT_MAX) { \
php_error_docref0(NULL TSRMLS_CC, E_WARNING, "The value %ld does not fit inside " \
"the boundaries of a native integer", (l)); \
return; \
} \
} while (0)
struct err_s {
int has_error;
char *msg;
int level;
int should_free;
};
typedef struct {
HashTable params; /* stores pointers; has to be first */
struct err_s err;
zend_llist keys,
/* common part to res_context ends here */
allocations;
php_socket *sock;
} ser_context;
typedef struct {
HashTable params; /* stores pointers; has to be first */
struct err_s err;
zend_llist keys;
} res_context;
struct key_value {
const char *key;
unsigned key_size;
void *value;
};
#define KEY_FILL_SOCKADDR "fill_sockaddr"
#define KEY_RECVMSG_RET "recvmsg_ret"
typedef void (from_zval_write_field)(const zval *arr_value, char *field, ser_context *ctx);
typedef void (to_zval_read_field)(const char *data, zval *zv, res_context *ctx);
typedef struct {
/* zval info */
const char *name;
unsigned name_size;
int required;
/* structure info */
size_t field_offset; /* 0 to pass full structure, e.g. when more than
one field is to be changed; in that case the
callbacks need to know the name of the fields */
/* callbacks */
from_zval_write_field *from_zval;
to_zval_read_field *to_zval;
} field_descriptor;
typedef struct {
int cmsg_level; /* originating protocol */
int cmsg_type; /* protocol-specific type */
} anc_reg_key;
static struct {
int initialized;
HashTable ht;
} ancillary_registry;
typedef socklen_t (*ancillary_size)(void);
typedef struct {
socklen_t size; /* size of native structure */
from_zval_write_field *from_array;
to_zval_read_field *to_array;
} ancillary_reg_entry;
/* PARAMETERS */
static int param_get_bool(void *ctx, const char *key, int def)
{
int **elem;
if (zend_hash_find(ctx, key, strlen(key) + 1, (void**)&elem) == SUCCESS) {
return **elem;
} else {
return def;
}
}
/* FORWARD DECLARATIONS */
static ancillary_reg_entry *get_ancillary_reg_entry(int cmsg_level, int msg_type);
static inline void *accounted_emalloc(size_t alloc_size, ser_context *ctx)
{
void *ret = emalloc(alloc_size);
zend_llist_add_element(&ctx->allocations, &ret);
return ret;
}
static inline void *accounted_ecalloc(size_t nmemb, size_t alloc_size, ser_context *ctx)
{
void *ret = ecalloc(nmemb, alloc_size);
zend_llist_add_element(&ctx->allocations, &ret);
return ret;
}
static inline void *accounted_safe_ecalloc(size_t nmemb, size_t alloc_size, size_t offset, ser_context *ctx)
{
void *ret = safe_emalloc(nmemb, alloc_size, offset);
memset(ret, '\0', nmemb * alloc_size + offset);
zend_llist_add_element(&ctx->allocations, &ret);
return ret;
}
static void do_from_to_zval_err(struct err_s *err,
zend_llist *keys,
const char *what_conv,
const char *fmt,
va_list ap)
{
smart_str path = {0};
const char **node;
char *user_msg;
int user_msg_size;
zend_llist_position pos;
if (err->has_error) {
return;
}
for (node = zend_llist_get_first_ex(keys, &pos);
node != NULL;
node = zend_llist_get_next_ex(keys, &pos)) {
smart_str_appends(&path, *node);
smart_str_appends(&path, " > ");
}
if (path.len > 3) {
path.len -= 3;
}
smart_str_0(&path);
user_msg_size = vspprintf(&user_msg, 0, fmt, ap);
err->has_error = 1;
err->level = E_WARNING;
spprintf(&err->msg, 0, "error converting %s data (path: %s): %.*s",
what_conv,
path.c && path.c != '\0' ? path.c : "unavailable",
user_msg_size, user_msg);
err->should_free = 1;
efree(user_msg);
smart_str_free_ex(&path, 0);
}
__attribute__ ((format (printf, 2, 3)))
static void do_from_zval_err(ser_context *ctx, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
do_from_to_zval_err(&ctx->err, &ctx->keys, "user", fmt, ap);
va_end(ap);
}
__attribute__ ((format (printf, 2, 3)))
static void do_to_zval_err(res_context *ctx, const char *fmt, ...)
{
va_list ap;
va_start(ap, fmt);
do_from_to_zval_err(&ctx->err, &ctx->keys, "native", fmt, ap);
va_end(ap);
}
static void err_msg_dispose(struct err_s *err TSRMLS_DC)
{
if (err->msg != NULL) {
php_error_docref0(NULL TSRMLS_CC, err->level, "%s", err->msg);
if (err->should_free) {
efree(err->msg);
}
}
}
/* Generic Aggregated conversions */
static void from_zval_write_aggregation(const zval *container,
char *structure,
const field_descriptor *descriptors,
ser_context *ctx)
{
const field_descriptor *descr;
zval **elem;
if (Z_TYPE_P(container) != IS_ARRAY) {
do_from_zval_err(ctx, "%s", "expected an array here");
}
for (descr = descriptors; descr->name != NULL && !ctx->err.has_error; descr++) {
if (zend_hash_find(Z_ARRVAL_P(container),
descr->name, descr->name_size, (void**)&elem) == SUCCESS) {
if (descr->from_zval == NULL) {
do_from_zval_err(ctx, "No information on how to convert value "
"of key '%s'", descr->name);
break;
}
zend_llist_add_element(&ctx->keys, (void*)&descr->name);
descr->from_zval(*elem, ((char*)structure) + descr->field_offset, ctx);
zend_llist_remove_tail(&ctx->keys);
} else if (descr->required) {
do_from_zval_err(ctx, "The key '%s' is required", descr->name);
break;
}
}
}
static void to_zval_read_aggregation(const char *structure,
zval *zarr, /* initialized array */
const field_descriptor *descriptors,
res_context *ctx)
{
const field_descriptor *descr;
assert(Z_TYPE_P(zarr) == IS_ARRAY);
assert(Z_ARRVAL_P(zarr) != NULL);
for (descr = descriptors; descr->name != NULL && !ctx->err.has_error; descr++) {
zval *new_zv;
if (descr->to_zval == NULL) {
do_to_zval_err(ctx, "No information on how to convert native "
"field into value for key '%s'", descr->name);
break;
}
ALLOC_INIT_ZVAL(new_zv);
add_assoc_zval_ex(zarr, descr->name, descr->name_size, new_zv);
zend_llist_add_element(&ctx->keys, (void*)&descr->name);
descr->to_zval(structure + descr->field_offset, new_zv, ctx);
zend_llist_remove_tail(&ctx->keys);
}
}
/* CONVERSIONS for integers */
static long from_zval_integer_common(const zval *arr_value, ser_context *ctx)
{
long ret = 0;
zval lzval = zval_used_for_init;
if (Z_TYPE_P(arr_value) != IS_LONG) {
ZVAL_COPY_VALUE(&lzval, arr_value);
zval_copy_ctor(&lzval);
arr_value = &lzval;
}
switch (Z_TYPE_P(arr_value)) {
case IS_LONG:
long_case:
ret = Z_LVAL_P(arr_value);
break;
/* if not long we're operating on lzval */
case IS_DOUBLE:
double_case:
convert_to_long(&lzval);
goto long_case;
case IS_OBJECT:
case IS_STRING: {
long lval;
double dval;
convert_to_string(&lzval);
switch (is_numeric_string(Z_STRVAL(lzval), Z_STRLEN(lzval), &lval, &dval, 0)) {
case IS_DOUBLE:
zval_dtor(&lzval);
Z_TYPE(lzval) = IS_DOUBLE;
Z_DVAL(lzval) = dval;
goto double_case;
case IS_LONG:
zval_dtor(&lzval);
Z_TYPE(lzval) = IS_LONG;
Z_DVAL(lzval) = lval;
goto long_case;
}
/* if we get here, we don't have a numeric string */
do_from_zval_err(ctx, "expected an integer, but got a non numeric "
"string (possibly from a converted object): '%s'", Z_STRVAL_P(arr_value));
break;
}
default:
do_from_zval_err(ctx, "%s", "expected an integer, either of a PHP "
"integer type or of a convertible type");
break;
}
zval_dtor(&lzval);
return ret;
}
static void from_zval_write_int(const zval *arr_value, char *field, ser_context *ctx)
{
long lval;
int ival;
lval = from_zval_integer_common(arr_value, ctx);
if (ctx->err.has_error) {
return;
}
if (lval > INT_MAX || lval < INT_MIN) {
do_from_zval_err(ctx, "%s", "given PHP integer is out of bounds "
"for a native int");
return;
}
ival = (int)lval;
memcpy(field, &ival, sizeof(ival));
}
static void from_zval_write_unsigned(const zval *arr_value, char *field, ser_context *ctx)
{
long lval;
unsigned ival;
lval = from_zval_integer_common(arr_value, ctx);
if (ctx->err.has_error) {
return;
}
if (sizeof(long) > sizeof(ival) && (lval < 0 || lval > UINT_MAX)) {
do_from_zval_err(ctx, "%s", "given PHP integer is out of bounds "
"for a native unsigned int");
return;
}
ival = (unsigned)lval;
memcpy(field, &ival, sizeof(ival));
}
static void from_zval_write_uint32(const zval *arr_value, char *field, ser_context *ctx)
{
long lval;
uint32_t ival;
lval = from_zval_integer_common(arr_value, ctx);
if (ctx->err.has_error) {
return;
}
if (sizeof(long) > sizeof(uint32_t) && (lval < 0 || lval > 0xFFFFFFFF)) {
do_from_zval_err(ctx, "%s", "given PHP integer is out of bounds "
"for an unsigned 32-bit integer");
return;
}
ival = (uint32_t)lval;
memcpy(field, &ival, sizeof(ival));
}
static void from_zval_write_net_uint16(const zval *arr_value, char *field, ser_context *ctx)
{
long lval;
uint16_t ival;
lval = from_zval_integer_common(arr_value, ctx);
if (ctx->err.has_error) {
return;
}
if (lval < 0 || lval > 0xFFFF) {
do_from_zval_err(ctx, "%s", "given PHP integer is out of bounds "
"for an unsigned 16-bit integer");
return;
}
ival = htons((uint16_t)lval);
memcpy(field, &ival, sizeof(ival));
}
static void from_zval_write_sa_family(const zval *arr_value, char *field, ser_context *ctx)
{
long lval;
sa_family_t ival;
lval = from_zval_integer_common(arr_value, ctx);
if (ctx->err.has_error) {
return;
}
if (lval < 0 || lval > (sa_family_t)-1) { /* sa_family_t is unsigned */
do_from_zval_err(ctx, "%s", "given PHP integer is out of bounds "
"for a sa_family_t value");
return;
}
ival = (sa_family_t)lval;
memcpy(field, &ival, sizeof(ival));
}
static void to_zval_read_int(const char *data, zval *zv, res_context *ctx)
{
int ival;
memcpy(&ival, data, sizeof(ival));
ZVAL_LONG(zv, (long)ival);
}
static void to_zval_read_unsigned(const char *data, zval *zv, res_context *ctx)
{
unsigned ival;
memcpy(&ival, data, sizeof(ival));
ZVAL_LONG(zv, (long)ival);
}
static void to_zval_read_net_uint16(const char *data, zval *zv, res_context *ctx)
{
uint16_t ival;
memcpy(&ival, data, sizeof(ival));
ZVAL_LONG(zv, (long)ntohs(ival));
}
static void to_zval_read_uint32(const char *data, zval *zv, res_context *ctx)
{
uint32_t ival;
memcpy(&ival, data, sizeof(ival));
ZVAL_LONG(zv, (long)ival);
}
static void to_zval_read_sa_family(const char *data, zval *zv, res_context *ctx)
{
sa_family_t ival;
memcpy(&ival, data, sizeof(ival));
ZVAL_LONG(zv, (long)ival);
}
/* CONVERSIONS for sockaddr */
static void from_zval_write_sin_addr(const zval *zaddr_str, char *inaddr, ser_context *ctx)
{
int res;
struct sockaddr_in saddr = {0};
zval lzval = zval_used_for_init;
TSRMLS_FETCH();
if (Z_TYPE_P(zaddr_str) != IS_STRING) {
ZVAL_COPY_VALUE(&lzval, zaddr_str);
zval_copy_ctor(&lzval);
convert_to_string(&lzval);
zaddr_str = &lzval;
}
res = php_set_inet_addr(&saddr, Z_STRVAL_P(zaddr_str), ctx->sock TSRMLS_CC);
if (res) {
memcpy(inaddr, &saddr.sin_addr, sizeof saddr.sin_addr);
} else {
/* error already emitted, but let's emit another more relevant */
do_from_zval_err(ctx, "could not resolve address '%s' to get an AF_INET "
"address", Z_STRVAL_P(zaddr_str));
}
zval_dtor(&lzval);
}
static void to_zval_read_sin_addr(const char *data, zval *zv, res_context *ctx)
{
const struct in_addr *addr = (const struct in_addr *)data;
socklen_t size = INET_ADDRSTRLEN;
Z_TYPE_P(zv) = IS_STRING;
Z_STRVAL_P(zv) = ecalloc(1, size);
Z_STRLEN_P(zv) = 0;
if (inet_ntop(AF_INET, addr, Z_STRVAL_P(zv), size) == NULL) {
do_to_zval_err(ctx, "could not convert IPv4 address to string "
"(errno %d)", errno);
return;
}
Z_STRLEN_P(zv) = strlen(Z_STRVAL_P(zv));
}
static const field_descriptor descriptors_sockaddr_in[] = {
{"family", sizeof("family"), 0, offsetof(struct sockaddr_in, sin_family), from_zval_write_sa_family, to_zval_read_sa_family},
{"addr", sizeof("addr"), 0, offsetof(struct sockaddr_in, sin_addr), from_zval_write_sin_addr, to_zval_read_sin_addr},
{"port", sizeof("port"), 0, offsetof(struct sockaddr_in, sin_port), from_zval_write_net_uint16, to_zval_read_net_uint16},
{0}
};
static void from_zval_write_sockaddr_in(const zval *container, char *sockaddr, ser_context *ctx)
{
from_zval_write_aggregation(container, sockaddr, descriptors_sockaddr_in, ctx);
}
static void to_zval_read_sockaddr_in(const char *data, zval *zv, res_context *ctx)
{
to_zval_read_aggregation(data, zv, descriptors_sockaddr_in, ctx);
}
static void from_zval_write_sin6_addr(const zval *zaddr_str, char *addr6, ser_context *ctx)
{
int res;
struct sockaddr_in6 saddr6 = {0};
zval lzval = zval_used_for_init;
TSRMLS_FETCH();
if (Z_TYPE_P(zaddr_str) != IS_STRING) {
ZVAL_COPY_VALUE(&lzval, zaddr_str);
zval_copy_ctor(&lzval);
convert_to_string(&lzval);
zaddr_str = &lzval;
}
res = php_set_inet6_addr(&saddr6,
Z_STRVAL_P(zaddr_str), ctx->sock TSRMLS_CC);
if (res) {
memcpy(addr6, &saddr6.sin6_addr, sizeof saddr6.sin6_addr);
} else {
/* error already emitted, but let's emit another more relevant */
do_from_zval_err(ctx, "could not resolve address '%s' to get an AF_INET6 "
"address", Z_STRVAL_P(zaddr_str));
}
zval_dtor(&lzval);
}
static void to_zval_read_sin6_addr(const char *data, zval *zv, res_context *ctx)
{
const struct in6_addr *addr = (const struct in6_addr *)data;
socklen_t size = INET6_ADDRSTRLEN;
Z_TYPE_P(zv) = IS_STRING;
Z_STRVAL_P(zv) = ecalloc(1, size);
Z_STRLEN_P(zv) = 0;
if (inet_ntop(AF_INET6, addr, Z_STRVAL_P(zv), size) == NULL) {
do_to_zval_err(ctx, "could not convert IPv6 address to string "
"(errno %d)", errno);
return;
}
Z_STRLEN_P(zv) = strlen(Z_STRVAL_P(zv));
}
static const field_descriptor descriptors_sockaddr_in6[] = {
{"family", sizeof("family"), 0, offsetof(struct sockaddr_in6, sin6_family), from_zval_write_sa_family, to_zval_read_sa_family},
{"addr", sizeof("addr"), 0, offsetof(struct sockaddr_in6, sin6_addr), from_zval_write_sin6_addr, to_zval_read_sin6_addr},
{"port", sizeof("port"), 0, offsetof(struct sockaddr_in6, sin6_port), from_zval_write_net_uint16, to_zval_read_net_uint16},
{"flowinfo", sizeof("flowinfo"), 0, offsetof(struct sockaddr_in6, sin6_flowinfo), from_zval_write_uint32, to_zval_read_uint32},
{"scope_id", sizeof("scope_id"), 0, offsetof(struct sockaddr_in6, sin6_scope_id), from_zval_write_uint32, to_zval_read_uint32},
{0}
};
static void from_zval_write_sockaddr_in6(const zval *container, char *sockaddr6, ser_context *ctx)
{
from_zval_write_aggregation(container, sockaddr6, descriptors_sockaddr_in6, ctx);
}
static void to_zval_read_sockaddr_in6(const char *data, zval *zv, res_context *ctx)
{
to_zval_read_aggregation(data, zv, descriptors_sockaddr_in6, ctx);
}
static void from_zval_write_sockaddr_aux(const zval *container,
struct sockaddr **sockaddr_ptr,
socklen_t *sockaddr_len,
ser_context *ctx)
{
int family;
zval **elem;
int fill_sockaddr;
if (Z_TYPE_P(container) != IS_ARRAY) {
do_from_zval_err(ctx, "%s", "expected an array here");
return;
}
fill_sockaddr = param_get_bool(ctx, KEY_FILL_SOCKADDR, 1);
if (zend_hash_find(Z_ARRVAL_P(container), "family", sizeof("family"), (void**)&elem) == SUCCESS
&& Z_TYPE_PP(elem) != IS_NULL) {
const char *node = "family";
zend_llist_add_element(&ctx->keys, &node);
from_zval_write_int(*elem, (char*)&family, ctx);
zend_llist_remove_tail(&ctx->keys);
} else {
family = ctx->sock->type;
}
switch (family) {
case AF_INET:
/* though not all OSes support sockaddr_in used in IPv6 sockets */
if (ctx->sock->type != AF_INET && ctx->sock->type != AF_INET6) {
do_from_zval_err(ctx, "the specified family (number %d) is not "
"supported on this socket", family);
return;
}
*sockaddr_ptr = accounted_ecalloc(1, sizeof(struct sockaddr_in), ctx);
*sockaddr_len = sizeof(struct sockaddr_in);
if (fill_sockaddr) {
from_zval_write_sockaddr_in(container, (char*)*sockaddr_ptr, ctx);
(*sockaddr_ptr)->sa_family = AF_INET;
}
break;
case AF_INET6:
if (ctx->sock->type != AF_INET6) {
do_from_zval_err(ctx, "the specified family (AF_INET6) is not "
"supported on this socket");
return;
}
*sockaddr_ptr = accounted_ecalloc(1, sizeof(struct sockaddr_in6), ctx);
*sockaddr_len = sizeof(struct sockaddr_in6);
if (fill_sockaddr) {
from_zval_write_sockaddr_in6(container, (char*)*sockaddr_ptr, ctx);
(*sockaddr_ptr)->sa_family = AF_INET6;
}
break;
default:
do_from_zval_err(ctx, "%s", "the only families currently supported are "
"AF_INET and AF_INET6");
break;
}
}
static void to_zval_read_sockaddr_aux(const char *sockaddr_c, zval *zv, res_context *ctx)
{
const struct sockaddr *saddr = (struct sockaddr *)sockaddr_c;
assert(Z_TYPE_P(zv) == IS_ARRAY);
switch (saddr->sa_family) {
case AF_INET:
to_zval_read_sockaddr_in(sockaddr_c, zv, ctx);
break;
case AF_INET6:
to_zval_read_sockaddr_in6(sockaddr_c, zv, ctx);
break;
default:
do_to_zval_err(ctx, "cannot read struct sockaddr with family %d; "
"not supported",
(int)saddr->sa_family);
break;
}
}
/* CONVERSIONS for cmsghdr */
/*
* [ level => , type => , data => [],]
* struct cmsghdr {
* socklen_t cmsg_len; // data byte count, including header
* int cmsg_level; // originating protocol
* int cmsg_type; // protocol-specific type
* // followed by unsigned char cmsg_data[];
* };
*/
static void from_zval_write_control(const zval *arr,
void **control_buf,
zend_llist_element *alloc,
size_t *control_len,
size_t *offset,
ser_context *ctx)
{
struct cmsghdr *cmsghdr;
int level,
type;
size_t req_space,
space_left;
ancillary_reg_entry *entry;
static const field_descriptor descriptor_level[] = {
{"level", sizeof("level"), 0, 0, from_zval_write_int, 0},
{0}
};
static const field_descriptor descriptor_type[] = {
{"type", sizeof("type"), 0, 0, from_zval_write_int, 0},
{0}
};
field_descriptor descriptor_data[] = {
{"data", sizeof("data"), 0, 0, 0, 0},
{0}
};
from_zval_write_aggregation(arr, (char *)&level, descriptor_level, ctx);
if (ctx->err.has_error) {
return;
}
from_zval_write_aggregation(arr, (char *)&type, descriptor_type, ctx);
if (ctx->err.has_error) {
return;
}
entry = get_ancillary_reg_entry(level, type);
if (entry == NULL) {
do_from_zval_err(ctx, "cmsghdr with level %d and type %d not supported",
level, type);
return;
}
req_space = CMSG_SPACE(entry->size);
space_left = *control_len - *offset;
assert(*control_len >= *offset);
if (space_left < req_space) {
*control_buf = safe_erealloc(*control_buf, 2, req_space, *control_len);
*control_len += 2 * req_space;
memcpy(&alloc->data, *control_buf, sizeof *control_buf);
}
cmsghdr = (struct cmsghdr*)(((char*)*control_buf) + *offset);
cmsghdr->cmsg_level = level;
cmsghdr->cmsg_type = type;
cmsghdr->cmsg_len = CMSG_LEN(entry->size);
descriptor_data[0].from_zval = entry->from_array;
from_zval_write_aggregation(arr, (char*)CMSG_DATA(cmsghdr), descriptor_data, ctx);
*offset += req_space;
}
static void from_zval_write_control_array(const zval *arr, char *msghdr_c, ser_context *ctx)
{
HashPosition pos;
char buf[sizeof("element #4294967295")];
char *bufp = buf;
zval **elem;
uint32_t i;
int num_elems;
void *control_buf;
zend_llist_element *alloc;
size_t control_len,
cur_offset;
struct msghdr *msg = (struct msghdr*)msghdr_c;
if (Z_TYPE_P(arr) != IS_ARRAY) {
do_from_zval_err(ctx, "%s", "expected an array here");
return;
}
num_elems = zend_hash_num_elements(Z_ARRVAL_P(arr));
if (num_elems == 0) {
return;
}
/* estimate each message at 20 bytes */
control_buf = accounted_safe_ecalloc(num_elems, CMSG_SPACE(20), 0, ctx);
alloc = ctx->allocations.tail;
control_len = (size_t)num_elems * CMSG_SPACE(20);
cur_offset = 0;
for (zend_hash_internal_pointer_reset_ex(Z_ARRVAL_P(arr), &pos), i = 0;
!ctx->err.has_error
&& zend_hash_get_current_data_ex(Z_ARRVAL_P(arr), (void **)&elem, &pos) == SUCCESS;
zend_hash_move_forward_ex(Z_ARRVAL_P(arr), &pos)) {
if (snprintf(buf, sizeof(buf), "element #%u", (unsigned)i++) >= sizeof(buf)) {
memcpy(buf, "element", sizeof("element"));
}
zend_llist_add_element(&ctx->keys, &bufp);
from_zval_write_control(*elem, &control_buf, alloc, &control_len,
&cur_offset, ctx);
zend_llist_remove_tail(&ctx->keys);
}
msg->msg_control = control_buf;
msg->msg_controllen = cur_offset; /* not control_len, which may be larger */
}
static void to_zval_read_cmsg_data(const char *cmsghdr_c, zval *zv, res_context *ctx)
{
const struct cmsghdr *cmsg = (const struct cmsghdr *)cmsghdr_c;
ancillary_reg_entry *entry;
entry = get_ancillary_reg_entry(cmsg->cmsg_level, cmsg->cmsg_type);
if (entry == NULL) {
do_to_zval_err(ctx, "cmsghdr with level %d and type %d not supported",
cmsg->cmsg_level, cmsg->cmsg_type);
return;
}
if (CMSG_LEN(entry->size) > cmsg->cmsg_len) {
do_to_zval_err(ctx, "the cmsghdr structure is unexpectedly small; "
"expected a length of at least %ld, but got %ld",
(long)CMSG_LEN(entry->size), (long)cmsg->cmsg_len);
return;
}
entry->to_array((const char *)CMSG_DATA(cmsg), zv, ctx);
}
static void to_zval_read_control(const char *cmsghdr_c, zval *zv, res_context *ctx)
{
/* takes a cmsghdr, not a msghdr like from_zval_write_control */
static const field_descriptor descriptors[] = {
{"level", sizeof("level"), 0, offsetof(struct cmsghdr, cmsg_level), 0, to_zval_read_int},
{"type", sizeof("type"), 0, offsetof(struct cmsghdr, cmsg_type), 0, to_zval_read_int},
{"data", sizeof("data"), 0, 0 /* cmsghdr passed */, 0, to_zval_read_cmsg_data},
{0}
};
array_init_size(zv, 3);
to_zval_read_aggregation(cmsghdr_c, zv, descriptors, ctx);
}
static void to_zval_read_control_array(const char *msghdr_c, zval *zv, res_context *ctx)
{
struct msghdr *msg = (struct msghdr *)msghdr_c;
struct cmsghdr *cmsg;
char buf[sizeof("element #4294967295")];
char *bufp = buf;
uint32_t i = 1;
/*if (msg->msg_flags & MSG_CTRUNC) {
php_error_docref0(NULL, E_WARNING, "The MSG_CTRUNC flag is present; will not "
"attempt to read control messages");
ZVAL_FALSE(zv);
return;
}*/
array_init(zv);
for (cmsg = CMSG_FIRSTHDR(msg);
cmsg != NULL && !ctx->err.has_error;
cmsg = CMSG_NXTHDR(msg,cmsg)) {
zval *elem;
ALLOC_INIT_ZVAL(elem);
add_next_index_zval(zv, elem);
if (snprintf(buf, sizeof(buf), "element #%u", (unsigned)i++) >= sizeof(buf)) {
memcpy(buf, "element", sizeof("element"));
}
zend_llist_add_element(&ctx->keys, &bufp);
to_zval_read_control((const char *)cmsg, elem, ctx);
zend_llist_remove_tail(&ctx->keys);
}
}
/* CONVERSIONS for msghdr */
static void from_zval_write_name(const zval *zname_arr, char *msghdr_c, ser_context *ctx)
{
struct sockaddr *sockaddr;
socklen_t sockaddr_len;
struct msghdr *msghdr = (struct msghdr *)msghdr_c;
from_zval_write_sockaddr_aux(zname_arr, &sockaddr, &sockaddr_len, ctx);
msghdr->msg_name = sockaddr;
msghdr->msg_namelen = sockaddr_len;
}
static void to_zval_read_name(const char *sockaddr_p, zval *zv, res_context *ctx)
{
void *name = (void*)*(void**)sockaddr_p;
if (name == NULL) {
ZVAL_NULL(zv);
} else {
array_init(zv);
to_zval_read_sockaddr_aux(name, zv, ctx);
}
}
static void from_zval_write_msghdr_buffer_size(const zval *elem, char *msghdr_c, ser_context *ctx)
{
long lval;
struct msghdr *msghdr = (struct msghdr *)msghdr_c;
lval = from_zval_integer_common(elem, ctx);
if (ctx->err.has_error) {
return;
}
if (lval < 0 || lval > MAX_USER_BUFF_SIZE) {
do_from_zval_err(ctx, "the buffer size must be between 1 and %ld; "
"given %ld", (long)MAX_USER_BUFF_SIZE, lval);
return;
}
msghdr->msg_iovlen = 1;
msghdr->msg_iov = accounted_emalloc(sizeof(*msghdr->msg_iov) * 1, ctx);
msghdr->msg_iov[0].iov_base = accounted_emalloc((size_t)lval, ctx);
msghdr->msg_iov[0].iov_len = (size_t)lval;
}
static void from_zval_write_iov_array(const zval *arr, char *msghdr_c, ser_context *ctx)
{
HashPosition pos;
int num_elem;
zval **elem;
unsigned i;
struct msghdr *msg = (struct msghdr*)msghdr_c;
char buf[sizeof("element #4294967295")];
char *bufp = buf;
if (Z_TYPE_P(arr) != IS_ARRAY) {
do_from_zval_err(ctx, "%s", "expected an array here");
2012-11-05 18:36:00 +08:00
return;
}
num_elem = zend_hash_num_elements(Z_ARRVAL_P(arr));
if (num_elem == 0) {
return;
}
msg->msg_iov = accounted_safe_ecalloc(num_elem, sizeof *msg->msg_iov, 0, ctx);
msg->msg_iovlen = (size_t)num_elem;
for (zend_hash_internal_pointer_reset_ex(Z_ARRVAL_P(arr), &pos), i = 0;
!ctx->err.has_error
&& zend_hash_get_current_data_ex(Z_ARRVAL_P(arr), (void **)&elem, &pos) == SUCCESS;
zend_hash_move_forward_ex(Z_ARRVAL_P(arr), &pos)) {
size_t len;
if (snprintf(buf, sizeof(buf), "element #%u", (unsigned)i++) >= sizeof(buf)) {
memcpy(buf, "element", sizeof("element"));
}
zend_llist_add_element(&ctx->keys, &bufp);
zval_add_ref(elem);
convert_to_string_ex(elem);
len = Z_STRLEN_PP(elem);
msg->msg_iov[i - 1].iov_base = accounted_emalloc(len, ctx);
msg->msg_iov[i - 1].iov_len = len;
memcpy(msg->msg_iov[i - 1].iov_base, Z_STRVAL_PP(elem), len);
zval_ptr_dtor(elem);
zend_llist_remove_tail(&ctx->keys);
}
}
static void from_zval_write_controllen(const zval *elem, char *msghdr_c, ser_context *ctx)
{
struct msghdr *msghdr = (struct msghdr *)msghdr_c;
uint32_t len;
/* controllen should be an unsigned with at least 32-bit. Let's assume
* this least common denominator
*/
from_zval_write_uint32(elem, (char*)&len, ctx);
if (!ctx->err.has_error && len == 0) {
do_from_zval_err(ctx, "controllen cannot be 0");
2012-11-05 18:36:00 +08:00
return;
}
msghdr->msg_control = accounted_emalloc(len, ctx);
msghdr->msg_controllen = len;
}
static void from_zval_write_msghdr_send(const zval *container, char *msghdr_c, ser_context *ctx)
{
static const field_descriptor descriptors[] = {
{"name", sizeof("name"), 0, 0, from_zval_write_name, 0},
{"iov", sizeof("iov"), 0, 0, from_zval_write_iov_array, 0},
{"control", sizeof("control"), 0, 0, from_zval_write_control_array, 0},
{0}
};
from_zval_write_aggregation(container, msghdr_c, descriptors, ctx);
}
static void from_zval_write_msghdr_recv(const zval *container, char *msghdr_c, ser_context *ctx)
{
/* zval to struct msghdr, version for recvmsg(). It differs from the version
* for sendmsg() in that it:
* - has a buffer_size instead of an iov array;
* - has no control element; has a controllen element instead
* struct msghdr {
* void *msg_name;
* socklen_t msg_namelen;
* struct iovec *msg_iov;
* size_t msg_iovlen;
* void *msg_control;
* size_t msg_controllen; //can also be socklen_t
* int msg_flags;
* };
*/
static const field_descriptor descriptors[] = {
{"name", sizeof("name"), 0, 0, from_zval_write_name, 0},
{"buffer_size", sizeof("buffer_size"), 0, 0, from_zval_write_msghdr_buffer_size, 0},
{"controllen", sizeof("controllen"), 1, 0, from_zval_write_controllen, 0},
{0}
};
struct msghdr *msghdr = (struct msghdr *)msghdr_c;
const int falsev = 0,
*falsevp = &falsev;
if (zend_hash_add(&ctx->params, KEY_FILL_SOCKADDR, sizeof(KEY_FILL_SOCKADDR),
(void*)&falsevp, sizeof(falsevp), NULL) == FAILURE) {
do_from_zval_err(ctx, "could not add fill_sockaddr; this is a bug");
return;
}
from_zval_write_aggregation(container, msghdr_c, descriptors, ctx);
zend_hash_del(&ctx->params, KEY_FILL_SOCKADDR, sizeof(KEY_FILL_SOCKADDR));
if (ctx->err.has_error) {
return;
}
if (msghdr->msg_iovlen == 0) {
msghdr->msg_iovlen = 1;
msghdr->msg_iov = accounted_emalloc(sizeof(*msghdr->msg_iov) * 1, ctx);
msghdr->msg_iov[0].iov_base = accounted_emalloc((size_t)DEFAULT_BUFF_SIZE, ctx);
msghdr->msg_iov[0].iov_len = (size_t)DEFAULT_BUFF_SIZE;
}
}
static void to_zval_read_iov(const char *msghdr_c, zval *zv, res_context *ctx)
{
const struct msghdr *msghdr = (const struct msghdr *)msghdr_c;
size_t iovlen = msghdr->msg_iovlen;
ssize_t **recvmsg_ret,
bytes_left;
uint i;
if (iovlen > UINT_MAX) {
do_to_zval_err(ctx, "unexpectedly large value for iov_len: %lu",
(unsigned long)iovlen);
}
array_init_size(zv, (uint)iovlen);
if (zend_hash_find(&ctx->params, KEY_RECVMSG_RET, sizeof(KEY_RECVMSG_RET),
(void**)&recvmsg_ret) == FAILURE) {
do_to_zval_err(ctx, "recvmsg_ret not found in params. This is a bug");
return;
}
bytes_left = **recvmsg_ret;
for (i = 0; bytes_left > 0 && i < (uint)iovlen; i++) {
zval *elem;
size_t len = MIN(msghdr->msg_iov[i].iov_len, bytes_left);
char *buf = safe_emalloc(1, len, 1);
MAKE_STD_ZVAL(elem);
memcpy(buf, msghdr->msg_iov[i].iov_base, len);
buf[len] = '\0';
ZVAL_STRINGL(elem, buf, len, 0);
add_next_index_zval(zv, elem);
bytes_left -= len;
}
}
static void to_zval_read_msghdr(const char *msghdr_c, zval *zv, res_context *ctx)
{
static const field_descriptor descriptors[] = {
{"name", sizeof("name"), 0, offsetof(struct msghdr, msg_name), 0, to_zval_read_name},
{"control", sizeof("control"), 0, 0, 0, to_zval_read_control_array},
{"iov", sizeof("iov"), 0, 0, 0, to_zval_read_iov},
{"flags", sizeof("flags"), 0, offsetof(struct msghdr, msg_flags), 0, to_zval_read_int},
{0}
};
array_init_size(zv, 4);
to_zval_read_aggregation(msghdr_c, zv, descriptors, ctx);
}
/* CONVERSIONS for struct in6_pktinfo */
static const field_descriptor descriptors_in6_pktinfo[] = {
{"addr", sizeof("addr"), 1, offsetof(struct in6_pktinfo, ipi6_addr), from_zval_write_sin6_addr, to_zval_read_sin6_addr},
{"ifindex", sizeof("ifindex"), 1, offsetof(struct in6_pktinfo, ipi6_ifindex), from_zval_write_unsigned, to_zval_read_unsigned},
{0}
};
static void from_zval_write_in6_pktinfo(const zval *container, char *in6_pktinfo_c, ser_context *ctx)
{
from_zval_write_aggregation(container, in6_pktinfo_c, descriptors_in6_pktinfo, ctx);
}
static void to_zval_read_in6_pktinfo(const char *data, zval *zv, res_context *ctx)
{
array_init_size(zv, 2);
to_zval_read_aggregation(data, zv, descriptors_in6_pktinfo, ctx);
}
/* ENTRY POINT for conversions */
static void free_from_zval_allocation(void *alloc_ptr_ptr)
{
efree(*(void**)alloc_ptr_ptr);
}
static void *from_zval_run_conversions(const zval *container,
php_socket *sock,
from_zval_write_field *writer,
size_t struct_size,
const char *top_name,
zend_llist **allocations /* out */,
struct err_s *err /* in/out */)
{
ser_context ctx = {{0}};
char *structure = NULL;
*allocations = NULL;
if (err->has_error) {
return NULL;
}
zend_hash_init(&ctx.params, 8, NULL, NULL, 0);
zend_llist_init(&ctx.keys, sizeof(const char *), NULL, 0);
zend_llist_init(&ctx.allocations, sizeof(void *), &free_from_zval_allocation, 0);
ctx.sock = sock;
structure = ecalloc(1, struct_size);
zend_llist_add_element(&ctx.keys, &top_name);
zend_llist_add_element(&ctx.allocations, &structure);
/* main call */
writer(container, structure, &ctx);
if (ctx.err.has_error) {
zend_llist_destroy(&ctx.allocations); /* deallocates structure as well */
structure = NULL;
*err = ctx.err;
} else {
*allocations = emalloc(sizeof **allocations);
**allocations = ctx.allocations;
}
zend_llist_destroy(&ctx.keys);
zend_hash_destroy(&ctx.params);
return structure;
}
static zval *to_zval_run_conversions(const char *structure,
to_zval_read_field *reader,
const char *top_name,
const struct key_value *key_value_pairs,
struct err_s *err)
{
res_context ctx = {{0}, {0}};
const struct key_value *kv;
zval *zv = NULL;
if (err->has_error) {
return NULL;
}
ALLOC_INIT_ZVAL(zv);
zend_llist_init(&ctx.keys, sizeof(const char *), NULL, 0);
zend_llist_add_element(&ctx.keys, &top_name);
zend_hash_init(&ctx.params, 8, NULL, NULL, 0);
for (kv = key_value_pairs; kv->key != NULL; kv++) {
zend_hash_update(&ctx.params, kv->key, kv->key_size,
(void*)&kv->value, sizeof(kv->value), NULL);
}
/* main call */
reader(structure, zv, &ctx);
if (ctx.err.has_error) {
zval_ptr_dtor(&zv);
zv = NULL;
*err = ctx.err;
}
zend_llist_destroy(&ctx.keys);
zend_hash_destroy(&ctx.params);
return zv;
}
#ifdef ZTS
static MUTEX_T ancillary_mutex;
#endif
static void init_ancillary_registry(void)
{
ancillary_reg_entry entry;
anc_reg_key key;
ancillary_registry.initialized = 1;
zend_hash_init(&ancillary_registry.ht, 32, NULL, NULL, 1);
#define PUT_ENTRY() \
zend_hash_update(&ancillary_registry.ht, (char*)&key, sizeof(key), \
(void*)&entry, sizeof(entry), NULL)
entry.size = sizeof(struct in6_pktinfo);
entry.from_array = from_zval_write_in6_pktinfo;
entry.to_array = to_zval_read_in6_pktinfo;
key.cmsg_level = IPPROTO_IPV6;
key.cmsg_type = IPV6_PKTINFO;
PUT_ENTRY();
entry.size = sizeof(int);
entry.from_array = from_zval_write_int;
entry.to_array = to_zval_read_int;
key.cmsg_level = IPPROTO_IPV6;
key.cmsg_type = IPV6_HOPLIMIT;
PUT_ENTRY();
entry.size = sizeof(int);
entry.from_array = from_zval_write_int;
entry.to_array = to_zval_read_int;
key.cmsg_level = IPPROTO_IPV6;
key.cmsg_type = IPV6_TCLASS;
PUT_ENTRY();
}
static ancillary_reg_entry *get_ancillary_reg_entry(int cmsg_level, int msg_type)
{
anc_reg_key key = { cmsg_level, msg_type };
ancillary_reg_entry *entry;
#ifdef ZTS
tsrm_mutex_lock(ancillary_mutex);
#endif
if (!ancillary_registry.initialized) {
init_ancillary_registry();
}
#ifdef ZTS
tsrm_mutex_unlock(ancillary_mutex);
#endif
if (zend_hash_find(&ancillary_registry.ht, (char*)&key, sizeof(key),
(void**)&entry) == SUCCESS) {
return entry;
} else {
return NULL;
}
}
PHP_FUNCTION(socket_sendmsg)
{
zval *zsocket,
*zmsg;
long flags = 0;
php_socket *php_sock;
struct msghdr *msghdr;
zend_llist *allocations;
struct err_s err = {0};
ssize_t res;
/* zmsg should be passed by ref */
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "ra|l", &zsocket, &zmsg, &flags) == FAILURE) {
return;
}
LONG_CHECK_VALID_INT(flags);
ZEND_FETCH_RESOURCE(php_sock, php_socket *, &zsocket, -1,
php_sockets_le_socket_name, php_sockets_le_socket());
msghdr = from_zval_run_conversions(zmsg, php_sock, from_zval_write_msghdr_send,
sizeof(*msghdr), "msghdr", &allocations, &err);
if (err.has_error) {
err_msg_dispose(&err TSRMLS_CC);
RETURN_FALSE;
}
res = sendmsg(php_sock->bsd_socket, msghdr, (int)flags);
if (res != -1) {
zend_llist_destroy(allocations);
efree(allocations);
RETURN_LONG((long)res);
} else {
SOCKETS_G(last_error) = errno;
php_error_docref(NULL TSRMLS_CC, E_WARNING, "error in sendmsg [%d]: %s",
errno, sockets_strerror(errno TSRMLS_CC));
RETURN_FALSE;
}
}
PHP_FUNCTION(socket_recvmsg)
{
zval *zsocket,
*zmsg;
long flags = 0;
php_socket *php_sock;
ssize_t res;
struct msghdr *msghdr;
zend_llist *allocations;
struct err_s err = {0};
//ssize_t recvmsg(int sockfd, struct msghdr *msg, int flags);
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "ra|l",
&zsocket, &zmsg, &flags) == FAILURE) {
return;
}
LONG_CHECK_VALID_INT(flags);
ZEND_FETCH_RESOURCE(php_sock, php_socket *, &zsocket, -1,
php_sockets_le_socket_name, php_sockets_le_socket());
msghdr = from_zval_run_conversions(zmsg, php_sock, from_zval_write_msghdr_recv,
sizeof(*msghdr), "msghdr", &allocations, &err);
if (err.has_error) {
err_msg_dispose(&err TSRMLS_CC);
RETURN_FALSE;
}
res = recvmsg(php_sock->bsd_socket, msghdr, (int)flags);
if (res != -1) {
zval *zres;
struct key_value kv[] = {
{KEY_RECVMSG_RET, sizeof(KEY_RECVMSG_RET), &res},
{0}
};
zres = to_zval_run_conversions((char *)msghdr, to_zval_read_msghdr,
"msghdr", kv, &err);
/* we don;t need msghdr anymore; free it */
msghdr = NULL;
zend_llist_destroy(allocations);
efree(allocations);
zval_dtor(zmsg);
if (!err.has_error) {
ZVAL_COPY_VALUE(zmsg, zres);
efree(zres); /* only shallow destruction */
} else {
err_msg_dispose(&err TSRMLS_CC);
ZVAL_FALSE(zmsg);
/* no need to destroy/free zres -- it's NULL in this circumstance */
assert(zres == NULL);
}
} else {
SOCKETS_G(last_error) = errno;
php_error_docref(NULL TSRMLS_CC, E_WARNING, "error in recvmsg [%d]: %s",
errno, sockets_strerror(errno TSRMLS_CC));
RETURN_FALSE;
}
RETURN_LONG((long)res);
}
PHP_FUNCTION(socket_cmsg_space)
{
long level,
type;
ancillary_reg_entry *entry;
if (zend_parse_parameters(ZEND_NUM_ARGS() TSRMLS_CC, "ll", &level, &type) == FAILURE) {
return;
}
LONG_CHECK_VALID_INT(level);
LONG_CHECK_VALID_INT(type);
entry = get_ancillary_reg_entry(level, type);
if (entry == NULL) {
php_error_docref0(NULL TSRMLS_CC, E_WARNING, "The pair level %ld/type %ld is "
"not supported by PHP", level, type);
return;
}
RETURN_LONG((long)CMSG_SPACE(entry->size));
}
void _socket_sendrecvmsg_init(INIT_FUNC_ARGS)
{
REGISTER_LONG_CONSTANT("IPV6_RECVPKTINFO", IPV6_RECVPKTINFO, CONST_CS | CONST_PERSISTENT);
REGISTER_LONG_CONSTANT("IPV6_RECVHOPLIMIT", IPV6_RECVHOPLIMIT, CONST_CS | CONST_PERSISTENT);
/* would require some effort:
REGISTER_LONG_CONSTANT("IPV6_RECVRTHDR", IPV6_RECVRTHDR, CONST_CS | CONST_PERSISTENT);
REGISTER_LONG_CONSTANT("IPV6_RECVHOPOPTS", IPV6_RECVHOPOPTS, CONST_CS | CONST_PERSISTENT);
REGISTER_LONG_CONSTANT("IPV6_RECVDSTOPTS", IPV6_RECVDSTOPTS, CONST_CS | CONST_PERSISTENT);
*/
REGISTER_LONG_CONSTANT("IPV6_RECVTCLASS", IPV6_RECVTCLASS, CONST_CS | CONST_PERSISTENT);
REGISTER_LONG_CONSTANT("IPV6_PKTINFO", IPV6_PKTINFO, CONST_CS | CONST_PERSISTENT);
REGISTER_LONG_CONSTANT("IPV6_HOPLIMIT", IPV6_HOPLIMIT, CONST_CS | CONST_PERSISTENT);
/*
REGISTER_LONG_CONSTANT("IPV6_RTHDR", IPV6_RTHDR, CONST_CS | CONST_PERSISTENT);
REGISTER_LONG_CONSTANT("IPV6_HOPOPTS", IPV6_HOPOPTS, CONST_CS | CONST_PERSISTENT);
REGISTER_LONG_CONSTANT("IPV6_DSTOPTS", IPV6_DSTOPTS, CONST_CS | CONST_PERSISTENT);
*/
REGISTER_LONG_CONSTANT("IPV6_TCLASS", IPV6_TCLASS, CONST_CS | CONST_PERSISTENT);
#ifdef ZTS
ancillary_mutex = tsrm_mutex_alloc();
#endif
}
void _socket_sendrecvmsg_shutdown(SHUTDOWN_FUNC_ARGS)
{
#ifdef ZTS
tsrm_mutex_free(ancillary_mutex);
#endif
}