Go to file
Stijn Segers c4bfe68c83 realtek: add support for ZyXEL GS1900-8HP v1 and v2
The ZyXEL GS1900-8HP is an 8 port gigabit switch with PoE+ support.
There are two versions on the market (v1 & v2) which share similar
specs (same flash size and flash layout, same RAM size, same PoE+ power
envelope) but have a different case and board layout that they each
share with other GS1900 siblings.

The v1 seems to share its PCB and case with non-PoE GS1900-8; as such,
adding support for the GS1900-8 would probably be trivial. The v2 seems
to share its casing and platform with its already supported bigger
brother, the GS1900-10HP - its board looks the same, except for two
holes where the GS1900-10 has its SFP ports.

Like their 10 port sibling, both devices have a dual firmware layout.
Both GS1900-8HP boards have the same 70W PoE+ power budget. In order to
manipulate the PoE+, one needs the rtl83xx-poe package [1].

After careful consideration it was decided to go with separate images
for each version.

Specifications (v1)
-------------------
* SoC:       Realtek RTL8380M 500 MHz MIPS 4KEc
* Flash:     Macronix MX25L12835F 16 MiB
* RAM:       Nanya NT5TU128M8HE-AC 128 MiB DDR2 SDRAM
* Ethernet:  8x 10/100/1000 Mbit
* PoE+:      Broadcom BCM59111KMLG (IEEE 802.3at-2009 compliant, 2x)
* UART:      1 serial header with populated standard pin connector on the
             left side of the PCB, towards the bottom. Pins are labeled:
             + VCC (3.3V)
             + TX
             + RX
             + GND

Specifications (v2)
-------------------
* SoC:       Realtek RTL8380M 500 MHz MIPS 4KEc
* Flash:     Macronix MX25L12835F 16 MiB
* RAM:       Samsung K4B1G0846G 128 MiB DDR3 SDRAM
* Ethernet:  8x 10/100/1000 Mbit
* PoE+:      Broadcom BCM59121B0KMLG (IEEE 802.3at-2009 compliant)
* UART:      1 angled serial header with populated standard pin connector
             accessible from outside through the ventilation slits on the
             side. Pins from top to bottom are clearly marked on the PCB:
             + VCC (3.3V)
             + TX
             + RX
             + GND

Serial connection parameters for both devices: 115200 8N1.

Installation
------------
Instructions are identical to those for the GS1900-10HP and apply both
to the GS1900-8HP v1 and v2 as well.

* Configure your client with a static 192.168.1.x IP (e.g. 192.168.1.10).
* Set up a TFTP server on your client and make it serve the initramfs
  image.
* Connect serial, power up the switch, interrupt U-boot by hitting the
  space bar, and enable the network:
  > rtk network on
* Since the GS1900-10HP is a dual-partition device, you want to keep the
  OEM firmware on the backup partition for the time being. OpenWrt can
  only boot off the first partition anyway (hardcoded in the DTS). To
  make sure we are manipulating the first partition, issue the following
  commands:
  > setsys bootpartition 0
  > savesys
* Download the image onto the device and boot from it:
  > tftpboot 0x84f00000 192.168.1.10:openwrt-realtek-generic-zyxel_gs1900-8hp-v{1,2}-initramfs-kernel.bin
  > bootm
* Once OpenWrt has booted, scp the sysupgrade image to /tmp and flash it:
  > sysupgrade /tmp//tmp/openwrt-realtek-generic-zyxel_gs1900-8hp-v{1,2}-squashfs-sysupgrade.bin

Signed-off-by: Stijn Segers <foss@volatilesystems.org>
[merge PoE case, keep device definitions separate, change all those
hashes in the commit message to something else so they don't get
removed when changing the commit ...]
Signed-off-by: Adrian Schmutzler <freifunk@adrianschmutzler.de>
2021-01-08 20:48:22 +01:00
.github build: Update README & github help 2018-07-08 09:41:53 +01:00
config kernel: only strip proc for small flash devices 2020-12-22 19:11:50 +01:00
include build: use ccache -C for cleaning the cache 2021-01-06 15:31:18 -10:00
package kernel: add hid-cp2112 driver support 2021-01-07 22:30:34 -10:00
scripts scripts/feed: no warn on toolchain/linux overwrite 2021-01-06 14:04:34 -10:00
target realtek: add support for ZyXEL GS1900-8HP v1 and v2 2021-01-08 20:48:22 +01:00
toolchain glibc: update to latest 2.32 commit 2020-12-30 21:00:59 +01:00
tools tools/cmake: always use non-ccache CC and CXX variables 2021-01-06 21:44:56 -10:00
.gitattributes add .gitattributes to prevent the git autocrlf option from messing with CRLF/LF in files 2012-05-08 13:30:49 +00:00
.gitignore build: improve ccache support 2020-07-11 15:19:53 +02:00
BSDmakefile add missing copyright header 2007-02-26 01:05:09 +00:00
Config.in merge: base: update base-files and basic config 2017-12-08 19:41:18 +01:00
feeds.conf.default feeds: add freifunk feed 2020-06-24 14:58:17 +02:00
LICENSE LICENSE: use updated GNU copy 2020-08-02 15:54:43 +02:00
Makefile build: use ccache -C for cleaning the cache 2021-01-06 15:31:18 -10:00
README.md build: require rsync 2020-12-07 18:23:13 +02:00
rules.mk rules.mk: use -fPIC instead of -fpic on arm64 2020-12-07 18:23:13 +02:00

OpenWrt logo

OpenWrt Project is a Linux operating system targeting embedded devices. Instead of trying to create a single, static firmware, OpenWrt provides a fully writable filesystem with package management. This frees you from the application selection and configuration provided by the vendor and allows you to customize the device through the use of packages to suit any application. For developers, OpenWrt is the framework to build an application without having to build a complete firmware around it; for users this means the ability for full customization, to use the device in ways never envisioned.

Sunshine!

Development

To build your own firmware you need a GNU/Linux, BSD or MacOSX system (case sensitive filesystem required). Cygwin is unsupported because of the lack of a case sensitive file system.

Requirements

You need the following tools to compile OpenWrt, the package names vary between distributions. A complete list with distribution specific packages is found in the Build System Setup documentation.

gcc binutils bzip2 flex python3 perl make find grep diff unzip gawk getopt
subversion libz-dev libc-dev rsync

Quickstart

  1. Run ./scripts/feeds update -a to obtain all the latest package definitions defined in feeds.conf / feeds.conf.default

  2. Run ./scripts/feeds install -a to install symlinks for all obtained packages into package/feeds/

  3. Run make menuconfig to select your preferred configuration for the toolchain, target system & firmware packages.

  4. Run make to build your firmware. This will download all sources, build the cross-compile toolchain and then cross-compile the GNU/Linux kernel & all chosen applications for your target system.

The main repository uses multiple sub-repositories to manage packages of different categories. All packages are installed via the OpenWrt package manager called opkg. If you're looking to develop the web interface or port packages to OpenWrt, please find the fitting repository below.

Support Information

For a list of supported devices see the OpenWrt Hardware Database

Documentation

Support Community

  • Forum: For usage, projects, discussions and hardware advise.
  • Support Chat: Channel #openwrt on freenode.net.

Developer Community

License

OpenWrt is licensed under GPL-2.0