realtek: Add support for Layer 2 Multicast

Adds support for Layer 2 multicast by implementing the DSA port_mdb_*
callbacks. The Kernel bridge listens to IGMP/MLD messages trapped to
the CPU-port, and calls the Multicast Forwarding Database updates.
The updates manage the L2 forwarding entries and the multicast
port-maps.

Signed-off-by: Birger Koblitz <git@birger-koblitz.de>
This commit is contained in:
Birger Koblitz 2021-05-01 20:39:59 +02:00 committed by Petr Štetiar
parent 4342d27ec9
commit cde31976e3
5 changed files with 1020 additions and 296 deletions

View File

@ -26,50 +26,6 @@ static void rtl83xx_init_stats(struct rtl838x_switch_priv *priv)
mutex_unlock(&priv->reg_mutex);
}
static void rtl83xx_write_cam(int idx, u32 *r)
{
u32 cmd = BIT(16) /* Execute cmd */
| BIT(15) /* Read */
| BIT(13) /* Table type 0b01 */
| (idx & 0x3f);
sw_w32(r[0], RTL838X_TBL_ACCESS_L2_DATA(0));
sw_w32(r[1], RTL838X_TBL_ACCESS_L2_DATA(1));
sw_w32(r[2], RTL838X_TBL_ACCESS_L2_DATA(2));
sw_w32(cmd, RTL838X_TBL_ACCESS_L2_CTRL);
do { } while (sw_r32(RTL838X_TBL_ACCESS_L2_CTRL) & BIT(16));
}
static u64 rtl83xx_hash_key(struct rtl838x_switch_priv *priv, u64 mac, u32 vid)
{
switch (priv->family_id) {
case RTL8380_FAMILY_ID:
return rtl838x_hash(priv, mac << 12 | vid);
case RTL8390_FAMILY_ID:
return rtl839x_hash(priv, mac << 12 | vid);
case RTL9300_FAMILY_ID:
return rtl930x_hash(priv, ((u64)vid) << 48 | mac);
default:
pr_err("Hash not implemented\n");
}
return 0;
}
static void rtl83xx_write_hash(int idx, u32 *r)
{
u32 cmd = BIT(16) /* Execute cmd */
| 0 << 15 /* Write */
| 0 << 13 /* Table type 0b00 */
| (idx & 0x1fff);
sw_w32(0, RTL838X_TBL_ACCESS_L2_DATA(0));
sw_w32(0, RTL838X_TBL_ACCESS_L2_DATA(1));
sw_w32(0, RTL838X_TBL_ACCESS_L2_DATA(2));
sw_w32(cmd, RTL838X_TBL_ACCESS_L2_CTRL);
do { } while (sw_r32(RTL838X_TBL_ACCESS_L2_CTRL) & BIT(16));
}
static void rtl83xx_enable_phy_polling(struct rtl838x_switch_priv *priv)
{
int i;
@ -79,7 +35,7 @@ static void rtl83xx_enable_phy_polling(struct rtl838x_switch_priv *priv)
/* Enable all ports with a PHY, including the SFP-ports */
for (i = 0; i < priv->cpu_port; i++) {
if (priv->ports[i].phy)
v |= BIT(i);
v |= BIT_ULL(i);
}
pr_debug("%s: %16llx\n", __func__, v);
@ -204,7 +160,7 @@ static int rtl83xx_setup(struct dsa_switch *ds)
*/
for (i = 0; i < priv->cpu_port; i++) {
if (priv->ports[i].phy) {
priv->r->set_port_reg_be(BIT_ULL(priv->cpu_port) | BIT(i),
priv->r->set_port_reg_be(BIT_ULL(priv->cpu_port) | BIT_ULL(i),
priv->r->port_iso_ctrl(i));
port_bitmap |= BIT_ULL(i);
}
@ -250,8 +206,8 @@ static int rtl930x_setup(struct dsa_switch *ds)
for (i = 0; i < priv->cpu_port; i++) {
if (priv->ports[i].phy) {
priv->r->traffic_set(i, BIT(priv->cpu_port) | BIT(i));
port_bitmap |= 1ULL << i;
priv->r->traffic_set(i, BIT_ULL(priv->cpu_port) | BIT_ULL(i));
port_bitmap |= BIT_ULL(i);
}
}
priv->r->traffic_set(priv->cpu_port, port_bitmap);
@ -276,7 +232,7 @@ static void rtl83xx_phylink_validate(struct dsa_switch *ds, int port,
struct rtl838x_switch_priv *priv = ds->priv;
__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
pr_debug("In %s port %d", __func__, port);
pr_debug("In %s port %d, state is %d", __func__, port, state->interface);
if (!phy_interface_mode_is_rgmii(state->interface) &&
state->interface != PHY_INTERFACE_MODE_NA &&
@ -313,6 +269,10 @@ static void rtl83xx_phylink_validate(struct dsa_switch *ds, int port,
if (port >= 24 && port <= 27 && priv->family_id == RTL8380_FAMILY_ID)
phylink_set(mask, 1000baseX_Full);
/* On the RTL839x family of SoCs, ports 48 to 51 are SFP ports */
if (port >=48 && port <= 51 && priv->family_id == RTL8390_FAMILY_ID)
phylink_set(mask, 1000baseX_Full);
phylink_set(mask, 10baseT_Half);
phylink_set(mask, 10baseT_Full);
phylink_set(mask, 100baseT_Half);
@ -345,7 +305,7 @@ static int rtl83xx_phylink_mac_link_state(struct dsa_switch *ds, int port,
link = priv->r->get_port_reg_le(priv->r->mac_link_sts);
if (link & BIT_ULL(port))
state->link = 1;
pr_debug("%s: link state: %llx\n", __func__, link & BIT_ULL(port));
pr_debug("%s: link state port %d: %llx\n", __func__, port, link & BIT_ULL(port));
state->duplex = 0;
if (priv->r->get_port_reg_le(priv->r->mac_link_dup_sts) & BIT_ULL(port))
@ -364,7 +324,8 @@ static int rtl83xx_phylink_mac_link_state(struct dsa_switch *ds, int port,
state->speed = SPEED_1000;
break;
case 3:
if (port == 24 || port == 26) /* Internal serdes */
if (priv->family_id == RTL9300_FAMILY_ID
&& (port == 24 || port == 26)) /* Internal serdes */
state->speed = SPEED_2500;
else
state->speed = SPEED_100; /* Is in fact 500Mbit */
@ -378,7 +339,6 @@ static int rtl83xx_phylink_mac_link_state(struct dsa_switch *ds, int port,
return 1;
}
static void rtl83xx_config_interface(int port, phy_interface_t interface)
{
u32 old, int_shift, sds_shift;
@ -583,8 +543,11 @@ static int rtl83xx_port_enable(struct dsa_switch *ds, int port,
v |= priv->ports[port].pm;
priv->r->traffic_set(port, v);
sw_w32_mask(0, BIT(port), RTL930X_L2_PORT_SABLK_CTRL);
sw_w32_mask(0, BIT(port), RTL930X_L2_PORT_DABLK_CTRL);
// TODO: Figure out if this is necessary
if (priv->family_id == RTL9300_FAMILY_ID) {
sw_w32_mask(0, BIT(port), RTL930X_L2_PORT_SABLK_CTRL);
sw_w32_mask(0, BIT(port), RTL930X_L2_PORT_DABLK_CTRL);
}
return 0;
}
@ -689,7 +652,7 @@ static int rtl83xx_port_bridge_join(struct dsa_switch *ds, int port,
struct net_device *bridge)
{
struct rtl838x_switch_priv *priv = ds->priv;
u64 port_bitmap = 1ULL << priv->cpu_port, v;
u64 port_bitmap = BIT_ULL(priv->cpu_port), v;
int i;
pr_debug("%s %x: %d %llx", __func__, (u32)priv, port, port_bitmap);
@ -705,8 +668,8 @@ static int rtl83xx_port_bridge_join(struct dsa_switch *ds, int port,
if (priv->ports[i].enable)
priv->r->traffic_enable(i, port);
priv->ports[i].pm |= 1ULL << port;
port_bitmap |= 1ULL << i;
priv->ports[i].pm |= BIT_ULL(port);
port_bitmap |= BIT_ULL(i);
}
}
@ -727,7 +690,7 @@ static void rtl83xx_port_bridge_leave(struct dsa_switch *ds, int port,
struct net_device *bridge)
{
struct rtl838x_switch_priv *priv = ds->priv;
u64 port_bitmap = 1ULL << priv->cpu_port, v;
u64 port_bitmap = BIT_ULL(priv->cpu_port), v;
int i;
pr_debug("%s %x: %d", __func__, (u32)priv, port);
@ -745,7 +708,7 @@ static void rtl83xx_port_bridge_leave(struct dsa_switch *ds, int port,
if (priv->ports[i].enable)
priv->r->traffic_disable(i, port);
priv->ports[i].pm |= 1ULL << port;
priv->ports[i].pm |= BIT_ULL(port);
port_bitmap &= ~BIT_ULL(i);
}
}
@ -897,17 +860,16 @@ static int rtl83xx_vlan_prepare(struct dsa_switch *ds, int port,
struct rtl838x_vlan_info info;
struct rtl838x_switch_priv *priv = ds->priv;
pr_info("%s: port %d\n", __func__, port);
priv->r->vlan_tables_read(0, &info);
mutex_lock(&priv->reg_mutex);
priv->r->vlan_profile_dump(1);
priv->r->vlan_tables_read(1, &info);
pr_info("Tagged ports %llx, untag %llx, prof %x, MC# %d, UC# %d, FID %x\n",
pr_debug("VLAN 0: Tagged ports %llx, untag %llx, profile %d, MC# %d, UC# %d, FID %x\n",
info.tagged_ports, info.untagged_ports, info.profile_id,
info.hash_mc_fid, info.hash_uc_fid, info.fid);
priv->r->vlan_tables_read(1, &info);
pr_debug("VLAN 1: Tagged ports %llx, untag %llx, profile %d, MC# %d, UC# %d, FID %x\n",
info.tagged_ports, info.untagged_ports, info.profile_id,
info.hash_mc_fid, info.hash_uc_fid, info.fid);
priv->r->vlan_set_untagged(1, info.untagged_ports);
pr_debug("SET: Untagged ports, VLAN %d: %llx\n", 1, info.untagged_ports);
@ -925,7 +887,7 @@ static void rtl83xx_vlan_add(struct dsa_switch *ds, int port,
struct rtl838x_switch_priv *priv = ds->priv;
int v;
pr_info("%s port %d, vid_end %d, vid_end %d, flags %x\n", __func__,
pr_debug("%s port %d, vid_end %d, vid_end %d, flags %x\n", __func__,
port, vlan->vid_begin, vlan->vid_end, vlan->flags);
if (vlan->vid_begin > 4095 || vlan->vid_end > 4095) {
@ -970,10 +932,10 @@ static void rtl83xx_vlan_add(struct dsa_switch *ds, int port,
info.untagged_ports |= BIT_ULL(port);
priv->r->vlan_set_untagged(v, info.untagged_ports);
pr_info("Untagged ports, VLAN %d: %llx\n", v, info.untagged_ports);
pr_debug("Untagged ports, VLAN %d: %llx\n", v, info.untagged_ports);
priv->r->vlan_set_tagged(v, &info);
pr_info("Tagged ports, VLAN %d: %llx\n", v, info.tagged_ports);
pr_debug("Tagged ports, VLAN %d: %llx\n", v, info.tagged_ports);
}
mutex_unlock(&priv->reg_mutex);
@ -1024,59 +986,136 @@ static int rtl83xx_vlan_del(struct dsa_switch *ds, int port,
return 0;
}
static int rtl83xx_port_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
static void dump_l2_entry(struct rtl838x_l2_entry *e)
{
struct rtl838x_switch_priv *priv = ds->priv;
u64 mac = ether_addr_to_u64(addr);
u32 key = rtl83xx_hash_key(priv, mac, vid);
struct rtl838x_l2_entry e;
u32 r[3];
pr_info("MAC: %02x:%02x:%02x:%02x:%02x:%02x vid: %d, rvid: %d, port: %d, valid: %d\n",
e->mac[0], e->mac[1], e->mac[2], e->mac[3], e->mac[4], e->mac[5],
e->vid, e->rvid, e->port, e->valid);
if (e->type != L2_MULTICAST) {
pr_info("Type: %d, is_static: %d, is_ip_mc: %d, is_ipv6_mc: %d, block_da: %d\n",
e->type, e->is_static, e->is_ip_mc, e->is_ipv6_mc, e->block_da);
pr_info(" block_sa: %d, susp: %d, nh: %d, age: %d, is_trunk: %d, trunk: %d\n",
e->block_sa, e->suspended, e->next_hop, e->age, e->is_trunk, e->trunk);
}
if (e->type == L2_MULTICAST)
pr_info(" L2_MULTICAST mc_portmask_index: %d\n", e->mc_portmask_index);
if (e->is_ip_mc || e->is_ipv6_mc)
pr_info(" mc_portmask_index: %d, mc_gip: %d, mc_sip: %d\n",
e->mc_portmask_index, e->mc_gip, e->mc_sip);
pr_info(" stack_dev: %d\n", e->stack_dev);
if (e->next_hop)
pr_info(" nh_route_id: %d\n", e->nh_route_id);
}
static void rtl83xx_setup_l2_uc_entry(struct rtl838x_l2_entry *e, int port, int vid, u64 mac)
{
e->is_ip_mc = e->is_ipv6_mc = false;
e->valid = true;
e->age = 3;
e->port = port,
e->vid = vid;
u64_to_ether_addr(mac, e->mac);
}
static void rtl83xx_setup_l2_mc_entry(struct rtl838x_switch_priv *priv,
struct rtl838x_l2_entry *e, int vid, u64 mac, int mc_group)
{
e->is_ip_mc = e->is_ipv6_mc = false;
e->valid = true;
e->mc_portmask_index = mc_group;
e->type = L2_MULTICAST;
e->rvid = e->vid = vid;
pr_debug("%s: vid: %d, rvid: %d\n", __func__, e->vid, e->rvid);
u64_to_ether_addr(mac, e->mac);
}
/*
* Uses the seed to identify a hash bucket in the L2 using the derived hash key and then loops
* over the entries in the bucket until either a matching entry is found or an empty slot
* Returns the filled in rtl838x_l2_entry and the index in the bucket when an entry was found
* when an empty slot was found and must exist is false, the index of the slot is returned
* when no slots are available returns -1
*/
static int rtl83xx_find_l2_hash_entry(struct rtl838x_switch_priv *priv, u64 seed,
bool must_exist, struct rtl838x_l2_entry *e)
{
int i, idx = -1;
u32 key = priv->r->l2_hash_key(priv, seed);
u64 entry;
int idx = -1, err = 0, i;
mutex_lock(&priv->reg_mutex);
for (i = 0; i < 4; i++) {
entry = priv->r->read_l2_entry_using_hash(key, i, &e);
if (!e.valid) {
idx = (key << 2) | i;
break;
}
if ((entry & 0x0fffffffffffffffULL) == ((mac << 12) | vid)) {
idx = (key << 2) | i;
pr_debug("%s: using key %x, for seed %016llx\n", __func__, key, seed);
// Loop over all entries in the hash-bucket and over the second block on 93xx SoCs
for (i = 0; i < priv->l2_bucket_size; i++) {
entry = priv->r->read_l2_entry_using_hash(key, i, e);
pr_debug("valid %d, mac %016llx\n", e->valid, ether_addr_to_u64(&e->mac[0]));
if (must_exist && !e->valid)
continue;
if (!e->valid || ((entry & 0x0fffffffffffffffULL) == seed)) {
idx = i > 3 ? ((key >> 14) & 0xffff) | i >> 1 : ((key << 2) | i) & 0xffff;
break;
}
}
if (idx >= 0) {
r[0] = 3 << 17 | port << 12; // Aging and port
r[0] |= vid;
r[1] = mac >> 16;
r[2] = (mac & 0xffff) << 12; /* rvid = 0 */
rtl83xx_write_hash(idx, r);
goto out;
}
/* Hash buckets full, try CAM */
return idx;
}
/*
* Uses the seed to identify an entry in the CAM by looping over all its entries
* Returns the filled in rtl838x_l2_entry and the index in the CAM when an entry was found
* when an empty slot was found the index of the slot is returned
* when no slots are available returns -1
*/
static int rtl83xx_find_l2_cam_entry(struct rtl838x_switch_priv *priv, u64 seed,
bool must_exist, struct rtl838x_l2_entry *e)
{
int i, idx = -1;
u64 entry;
for (i = 0; i < 64; i++) {
entry = priv->r->read_cam(i, &e);
if (!e.valid) {
entry = priv->r->read_cam(i, e);
if (!must_exist && !e->valid) {
if (idx < 0) /* First empty entry? */
idx = i;
break;
} else if ((entry & 0x0fffffffffffffffULL) == ((mac << 12) | vid)) {
} else if ((entry & 0x0fffffffffffffffULL) == seed) {
pr_debug("Found entry in CAM\n");
idx = i;
break;
}
}
return idx;
}
static int rtl83xx_port_fdb_add(struct dsa_switch *ds, int port,
const unsigned char *addr, u16 vid)
{
struct rtl838x_switch_priv *priv = ds->priv;
u64 mac = ether_addr_to_u64(addr);
struct rtl838x_l2_entry e;
int err = 0, idx;
u64 seed = priv->r->l2_hash_seed(mac, vid);
mutex_lock(&priv->reg_mutex);
idx = rtl83xx_find_l2_hash_entry(priv, seed, false, &e);
// Found an existing or empty entry
if (idx >= 0) {
r[0] = 3 << 17 | port << 12; // Aging
r[0] |= vid;
r[1] = mac >> 16;
r[2] = (mac & 0xffff) << 12; /* rvid = 0 */
rtl83xx_write_cam(idx, r);
rtl83xx_setup_l2_uc_entry(&e, port, vid, mac);
priv->r->write_l2_entry_using_hash(idx >> 2, idx & 0x3, &e);
goto out;
}
// Hash buckets full, try CAM
rtl83xx_find_l2_cam_entry(priv, seed, false, &e);
if (idx >= 0) {
rtl83xx_setup_l2_uc_entry(&e, port, vid, mac);
priv->r->write_cam(idx, &e);
goto out;
}
err = -ENOTSUPP;
out:
mutex_unlock(&priv->reg_mutex);
@ -1088,41 +1127,29 @@ static int rtl83xx_port_fdb_del(struct dsa_switch *ds, int port,
{
struct rtl838x_switch_priv *priv = ds->priv;
u64 mac = ether_addr_to_u64(addr);
u32 key = rtl83xx_hash_key(priv, mac, vid);
struct rtl838x_l2_entry e;
u32 r[3];
u64 entry;
int idx = -1, err = 0, i;
int err = 0, idx;
u64 seed = priv->r->l2_hash_seed(mac, vid);
pr_debug("In %s, mac %llx, vid: %d, key: %x08x\n", __func__, mac, vid, key);
pr_info("In %s, mac %llx, vid: %d\n", __func__, mac, vid);
mutex_lock(&priv->reg_mutex);
for (i = 0; i < 4; i++) {
entry = priv->r->read_l2_entry_using_hash(key, i, &e);
if (!e.valid)
continue;
if ((entry & 0x0fffffffffffffffULL) == ((mac << 12) | vid)) {
idx = (key << 2) | i;
break;
}
}
idx = rtl83xx_find_l2_hash_entry(priv, seed, true, &e);
pr_info("Found entry index %d, key %d and bucket %d\n", idx, idx >> 2, idx & 3);
if (idx >= 0) {
r[0] = r[1] = r[2] = 0;
rtl83xx_write_hash(idx, r);
e.valid = false;
dump_l2_entry(&e);
priv->r->write_l2_entry_using_hash(idx >> 2, idx & 0x3, &e);
goto out;
}
/* Check CAM for spillover from hash buckets */
for (i = 0; i < 64; i++) {
entry = priv->r->read_cam(i, &e);
if ((entry & 0x0fffffffffffffffULL) == ((mac << 12) | vid)) {
idx = i;
break;
}
}
rtl83xx_find_l2_cam_entry(priv, seed, true, &e);
if (idx >= 0) {
r[0] = r[1] = r[2] = 0;
rtl83xx_write_cam(idx, r);
e.valid = false;
priv->r->write_cam(idx, &e);
goto out;
}
err = -ENOENT;
@ -1137,8 +1164,7 @@ static int rtl83xx_port_fdb_dump(struct dsa_switch *ds, int port,
struct rtl838x_l2_entry e;
struct rtl838x_switch_priv *priv = ds->priv;
int i;
u32 fid;
u32 pkey;
u32 fid, pkey;
u64 mac;
mutex_lock(&priv->reg_mutex);
@ -1150,13 +1176,25 @@ static int rtl83xx_port_fdb_dump(struct dsa_switch *ds, int port,
continue;
if (e.port == port) {
fid = (i & 0x3ff) | (e.rvid & ~0x3ff);
fid = ((i >> 2) & 0x3ff) | (e.rvid & ~0x3ff);
mac = ether_addr_to_u64(&e.mac[0]);
pkey = rtl838x_hash(priv, mac << 12 | fid);
pkey = priv->r->l2_hash_key(priv, priv->r->l2_hash_seed(mac, fid));
fid = (pkey & 0x3ff) | (fid & ~0x3ff);
pr_debug("-> mac %016llx, fid: %d\n", mac, fid);
pr_info("-> index %d, key %x, bucket %d, dmac %016llx, fid: %x rvid: %x\n",
i, i >> 2, i & 0x3, mac, fid, e.rvid);
dump_l2_entry(&e);
u64 seed = priv->r->l2_hash_seed(mac, e.rvid);
u32 key = priv->r->l2_hash_key(priv, seed);
pr_info("seed: %016llx, key based on rvid: %08x\n", seed, key);
cb(e.mac, e.vid, e.is_static, data);
}
if (e.type == L2_MULTICAST) {
u64 portmask = priv->r->read_mcast_pmask(e.mc_portmask_index);
if (portmask & BIT_ULL(port)) {
dump_l2_entry(&e);
pr_info(" PM: %016llx\n", portmask);
}
}
}
for (i = 0; i < 64; i++) {
@ -1173,6 +1211,164 @@ static int rtl83xx_port_fdb_dump(struct dsa_switch *ds, int port,
return 0;
}
static int rtl83xx_port_mdb_prepare(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb)
{
struct rtl838x_switch_priv *priv = ds->priv;
if (priv->id >= 0x9300)
return -EOPNOTSUPP;
return 0;
}
static int rtl83xx_mc_group_alloc(struct rtl838x_switch_priv *priv, int port)
{
int mc_group = find_first_zero_bit(priv->mc_group_bm, MAX_MC_GROUPS - 1);
u64 portmask;
if (mc_group >= MAX_MC_GROUPS - 1)
return -1;
pr_debug("Using MC group %d\n", mc_group);
set_bit(mc_group, priv->mc_group_bm);
mc_group++; // We cannot use group 0, as this is used for lookup miss flooding
portmask = BIT_ULL(port);
priv->r->write_mcast_pmask(mc_group, portmask);
return mc_group;
}
static u64 rtl83xx_mc_group_add_port(struct rtl838x_switch_priv *priv, int mc_group, int port)
{
u64 portmask = priv->r->read_mcast_pmask(mc_group);
portmask |= BIT_ULL(port);
priv->r->write_mcast_pmask(mc_group, portmask);
return portmask;
}
static u64 rtl83xx_mc_group_del_port(struct rtl838x_switch_priv *priv, int mc_group, int port)
{
u64 portmask = priv->r->read_mcast_pmask(mc_group);
portmask &= ~BIT_ULL(port);
priv->r->write_mcast_pmask(mc_group, portmask);
if (!portmask)
clear_bit(mc_group, priv->mc_group_bm);
return portmask;
}
static void rtl83xx_port_mdb_add(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb)
{
struct rtl838x_switch_priv *priv = ds->priv;
u64 mac = ether_addr_to_u64(mdb->addr);
struct rtl838x_l2_entry e;
int err = 0, idx;
int vid = mdb->vid;
u64 seed = priv->r->l2_hash_seed(mac, vid);
int mc_group;
pr_debug("In %s port %d, mac %llx, vid: %d\n", __func__, port, mac, vid);
mutex_lock(&priv->reg_mutex);
idx = rtl83xx_find_l2_hash_entry(priv, seed, false, &e);
// Found an existing or empty entry
if (idx >= 0) {
if (e.valid) {
pr_debug("Found an existing entry %016llx, mc_group %d\n",
ether_addr_to_u64(e.mac), e.mc_portmask_index);
rtl83xx_mc_group_add_port(priv, e.mc_portmask_index, port);
} else {
pr_debug("New entry for seed %016llx\n", seed);
mc_group = rtl83xx_mc_group_alloc(priv, port);
if (mc_group < 0) {
err = -ENOTSUPP;
goto out;
}
rtl83xx_setup_l2_mc_entry(priv, &e, vid, mac, mc_group);
priv->r->write_l2_entry_using_hash(idx >> 2, idx & 0x3, &e);
}
goto out;
}
// Hash buckets full, try CAM
rtl83xx_find_l2_cam_entry(priv, seed, false, &e);
if (idx >= 0) {
if (e.valid) {
pr_debug("Found existing CAM entry %016llx, mc_group %d\n",
ether_addr_to_u64(e.mac), e.mc_portmask_index);
rtl83xx_mc_group_add_port(priv, e.mc_portmask_index, port);
} else {
pr_debug("New entry\n");
mc_group = rtl83xx_mc_group_alloc(priv, port);
if (mc_group < 0) {
err = -ENOTSUPP;
goto out;
}
rtl83xx_setup_l2_mc_entry(priv, &e, vid, mac, mc_group);
priv->r->write_cam(idx, &e);
}
goto out;
}
err = -ENOTSUPP;
out:
mutex_unlock(&priv->reg_mutex);
if (err)
dev_err(ds->dev, "failed to add MDB entry\n");
}
int rtl83xx_port_mdb_del(struct dsa_switch *ds, int port,
const struct switchdev_obj_port_mdb *mdb)
{
struct rtl838x_switch_priv *priv = ds->priv;
u64 mac = ether_addr_to_u64(mdb->addr);
struct rtl838x_l2_entry e;
int err = 0, idx;
int vid = mdb->vid;
u64 seed = priv->r->l2_hash_seed(mac, vid);
u64 portmask;
pr_debug("In %s, port %d, mac %llx, vid: %d\n", __func__, port, mac, vid);
mutex_lock(&priv->reg_mutex);
idx = rtl83xx_find_l2_hash_entry(priv, seed, true, &e);
pr_debug("Found entry index %d, key %d and bucket %d\n", idx, idx >> 2, idx & 3);
if (idx >= 0) {
portmask = rtl83xx_mc_group_del_port(priv, e.mc_portmask_index, port);
if (!portmask) {
e.valid = false;
// dump_l2_entry(&e);
priv->r->write_l2_entry_using_hash(idx >> 2, idx & 0x3, &e);
}
goto out;
}
/* Check CAM for spillover from hash buckets */
rtl83xx_find_l2_cam_entry(priv, seed, true, &e);
if (idx >= 0) {
portmask = rtl83xx_mc_group_del_port(priv, e.mc_portmask_index, port);
if (!portmask) {
e.valid = false;
// dump_l2_entry(&e);
priv->r->write_cam(idx, &e);
}
goto out;
}
// TODO: Re-enable with a newer kernel: err = -ENOENT;
out:
mutex_unlock(&priv->reg_mutex);
return err;
}
static int rtl83xx_port_mirror_add(struct dsa_switch *ds, int port,
struct dsa_mall_mirror_tc_entry *mirror,
bool ingress)
@ -1339,6 +1535,10 @@ const struct dsa_switch_ops rtl83xx_switch_ops = {
.port_fdb_del = rtl83xx_port_fdb_del,
.port_fdb_dump = rtl83xx_port_fdb_dump,
.port_mdb_prepare = rtl83xx_port_mdb_prepare,
.port_mdb_add = rtl83xx_port_mdb_add,
.port_mdb_del = rtl83xx_port_mdb_del,
.port_mirror_add = rtl83xx_port_mirror_add,
.port_mirror_del = rtl83xx_port_mirror_del,
};
@ -1380,4 +1580,9 @@ const struct dsa_switch_ops rtl930x_switch_ops = {
.port_fdb_add = rtl83xx_port_fdb_add,
.port_fdb_del = rtl83xx_port_fdb_del,
.port_fdb_dump = rtl83xx_port_fdb_dump,
.port_mdb_prepare = rtl83xx_port_mdb_prepare,
.port_mdb_add = rtl83xx_port_mdb_add,
.port_mdb_del = rtl83xx_port_mdb_del,
};

View File

@ -102,6 +102,40 @@ static void rtl838x_vlan_fwd_on_inner(int port, bool is_set)
sw_w32_mask(0, BIT(port), RTL838X_VLAN_PORT_FWD);
}
static u64 rtl838x_l2_hash_seed(u64 mac, u32 vid)
{
return mac << 12 | vid;
}
/*
* Applies the same hash algorithm as the one used currently by the ASIC to the seed
* and returns a key into the L2 hash table
*/
static u32 rtl838x_l2_hash_key(struct rtl838x_switch_priv *priv, u64 seed)
{
u32 h1, h2, h3, h;
if (sw_r32(priv->r->l2_ctrl_0) & 1) {
h1 = (seed >> 11) & 0x7ff;
h1 = ((h1 & 0x1f) << 6) | ((h1 >> 5) & 0x3f);
h2 = (seed >> 33) & 0x7ff;
h2 = ((h2 & 0x3f) << 5) | ((h2 >> 6) & 0x1f);
h3 = (seed >> 44) & 0x7ff;
h3 = ((h3 & 0x7f) << 4) | ((h3 >> 7) & 0xf);
h = h1 ^ h2 ^ h3 ^ ((seed >> 55) & 0x1ff);
h ^= ((seed >> 22) & 0x7ff) ^ (seed & 0x7ff);
} else {
h = ((seed >> 55) & 0x1ff) ^ ((seed >> 44) & 0x7ff)
^ ((seed >> 33) & 0x7ff) ^ ((seed >> 22) & 0x7ff)
^ ((seed >> 11) & 0x7ff) ^ (seed & 0x7ff);
}
return h;
}
static inline int rtl838x_mac_force_mode_ctrl(int p)
{
return RTL838X_MAC_FORCE_MODE_CTRL + (p << 2);
@ -132,84 +166,202 @@ inline static int rtl838x_trk_mbr_ctr(int group)
return RTL838X_TRK_MBR_CTR + (group << 2);
}
static u64 rtl838x_read_l2_entry_using_hash(u32 hash, u32 position, struct rtl838x_l2_entry *e)
/*
* Fills an L2 entry structure from the SoC registers
*/
static void rtl838x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
{
/* Table contains different entry types, we need to identify the right one:
* Check for MC entries, first
* In contrast to the RTL93xx SoCs, there is no valid bit, use heuristics to
* identify valid entries
*/
e->is_ip_mc = !!(r[0] & BIT(22));
e->is_ipv6_mc = !!(r[0] & BIT(21));
e->type = L2_INVALID;
if (!e->is_ip_mc && !e->is_ipv6_mc) {
e->mac[0] = (r[1] >> 20);
e->mac[1] = (r[1] >> 12);
e->mac[2] = (r[1] >> 4);
e->mac[3] = (r[1] & 0xf) << 4 | (r[2] >> 28);
e->mac[4] = (r[2] >> 20);
e->mac[5] = (r[2] >> 12);
e->rvid = r[2] & 0xfff;
e->vid = r[0] & 0xfff;
/* Is it a unicast entry? check multicast bit */
if (!(e->mac[0] & 1)) {
e->is_static = !!((r[0] >> 19) & 1);
e->port = (r[0] >> 12) & 0x1f;
e->block_da = !!(r[1] & BIT(30));
e->block_sa = !!(r[1] & BIT(31));
e->suspended = !!(r[1] & BIT(29));
e->next_hop = !!(r[1] & BIT(28));
if (e->next_hop) {
pr_info("Found next hop entry, need to read extra data\n");
e->nh_vlan_target = !!(r[0] & BIT(9));
e->nh_route_id = r[0] & 0x1ff;
}
e->age = (r[0] >> 17) & 0x3;
e->valid = true;
/* A valid entry has one of mutli-cast, aging, sa/da-blocking,
* next-hop or static entry bit set */
if (!(r[0] & 0x007c0000) && !(r[1] & 0xd0000000))
e->valid = false;
else
e->type = L2_UNICAST;
} else { // L2 multicast
pr_info("Got L2 MC entry: %08x %08x %08x\n", r[0], r[1], r[2]);
e->valid = true;
e->type = L2_MULTICAST;
e->mc_portmask_index = (r[0] >> 12) & 0x1ff;
}
} else { // IPv4 and IPv6 multicast
e->valid = true;
e->mc_portmask_index = (r[0] >> 12) & 0x1ff;
e->mc_gip = r[1];
e->mc_sip = r[2];
e->rvid = r[0] & 0xfff;
}
if (e->is_ip_mc)
e->type = IP4_MULTICAST;
if (e->is_ipv6_mc)
e->type = IP6_MULTICAST;
}
/*
* Fills the 3 SoC table registers r[] with the information of in the rtl838x_l2_entry
*/
static void rtl838x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e)
{
u64 mac = ether_addr_to_u64(e->mac);
if (!e->valid) {
r[0] = r[1] = r[2] = 0;
return;
}
r[0] = e->is_ip_mc ? BIT(22) : 0;
r[0] |= e->is_ipv6_mc ? BIT(21) : 0;
if (!e->is_ip_mc && !e->is_ipv6_mc) {
r[1] = mac >> 20;
r[2] = (mac & 0xfffff) << 12;
/* Is it a unicast entry? check multicast bit */
if (!(e->mac[0] & 1)) {
r[0] |= e->is_static ? BIT(19) : 0;
r[0] |= (e->port & 0x3f) << 12;
r[0] |= e->vid;
r[1] |= e->block_da ? BIT(30) : 0;
r[1] |= e->block_sa ? BIT(31) : 0;
r[1] |= e->suspended ? BIT(29) : 0;
r[2] |= e->rvid & 0xfff;
if (e->next_hop) {
r[1] |= BIT(28);
r[0] |= e->nh_vlan_target ? BIT(9) : 0;
r[0] |= e->nh_route_id &0x1ff;
}
r[0] |= (e->age & 0x3) << 17;
} else { // L2 Multicast
r[0] |= (e->mc_portmask_index & 0x1ff) << 12;
r[2] |= e->rvid & 0xfff;
r[0] |= e->vid & 0xfff;
pr_info("FILL MC: %08x %08x %08x\n", r[0], r[1], r[2]);
}
} else { // IPv4 and IPv6 multicast
r[1] = e->mc_gip;
r[2] = e->mc_sip;
r[0] |= e->rvid;
}
}
/*
* Read an L2 UC or MC entry out of a hash bucket of the L2 forwarding table
* hash is the id of the bucket and pos is the position of the entry in that bucket
* The data read from the SoC is filled into rtl838x_l2_entry
*/
static u64 rtl838x_read_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
{
u64 entry;
u32 r[3];
struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 0); // Access L2 Table 0
u32 idx = (0 << 14) | (hash << 2) | pos; // Search SRAM, with hash and at pos in bucket
int i;
/* Search in SRAM, with hash and at position in hash bucket (0-3) */
u32 idx = (0 << 14) | (hash << 2) | position;
rtl_table_read(q, idx);
for (i= 0; i < 3; i++)
r[i] = sw_r32(rtl_table_data(q, i));
u32 cmd = BIT(16) /* Execute cmd */
| BIT(15) /* Read */
| 0 << 13 /* Table type 0b00 */
| (idx & 0x1fff);
rtl_table_release(q);
sw_w32(cmd, RTL838X_TBL_ACCESS_L2_CTRL);
do { } while (sw_r32(RTL838X_TBL_ACCESS_L2_CTRL) & BIT(16));
r[0] = sw_r32(RTL838X_TBL_ACCESS_L2_DATA(0));
r[1] = sw_r32(RTL838X_TBL_ACCESS_L2_DATA(1));
r[2] = sw_r32(RTL838X_TBL_ACCESS_L2_DATA(2));
e->mac[0] = (r[1] >> 20);
e->mac[1] = (r[1] >> 12);
e->mac[2] = (r[1] >> 4);
e->mac[3] = (r[1] & 0xf) << 4 | (r[2] >> 28);
e->mac[4] = (r[2] >> 20);
e->mac[5] = (r[2] >> 12);
e->is_static = !!((r[0] >> 19) & 1);
e->vid = r[0] & 0xfff;
e->rvid = r[2] & 0xfff;
e->port = (r[0] >> 12) & 0x1f;
e->valid = true;
if (!(r[0] >> 17)) /* Check for invalid entry */
e->valid = false;
if (e->valid)
pr_debug("Found in Hash: R1 %x R2 %x R3 %x\n", r[0], r[1], r[2]);
rtl838x_fill_l2_entry(r, e);
if (!e->valid)
return 0;
entry = (((u64) r[1]) << 32) | (r[2] & 0xfffff000) | (r[0] & 0xfff);
return entry;
}
static void rtl838x_write_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
{
u32 r[3];
struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 0);
int i;
u32 idx = (0 << 14) | (hash << 2) | pos; // Access SRAM, with hash and at pos in bucket
rtl838x_fill_l2_row(r, e);
for (i= 0; i < 3; i++)
sw_w32(r[i], rtl_table_data(q, i));
rtl_table_write(q, idx);
rtl_table_release(q);
}
static u64 rtl838x_read_cam(int idx, struct rtl838x_l2_entry *e)
{
u64 entry;
u32 r[3];
struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 1); // Access L2 Table 1
int i;
u32 cmd = BIT(16) /* Execute cmd */
| BIT(15) /* Read */
| BIT(13) /* Table type 0b01 */
| (idx & 0x3f);
sw_w32(cmd, RTL838X_TBL_ACCESS_L2_CTRL);
do { } while (sw_r32(RTL838X_TBL_ACCESS_L2_CTRL) & BIT(16));
r[0] = sw_r32(RTL838X_TBL_ACCESS_L2_DATA(0));
r[1] = sw_r32(RTL838X_TBL_ACCESS_L2_DATA(1));
r[2] = sw_r32(RTL838X_TBL_ACCESS_L2_DATA(2));
rtl_table_read(q, idx);
for (i= 0; i < 3; i++)
r[i] = sw_r32(rtl_table_data(q, i));
e->mac[0] = (r[1] >> 20);
e->mac[1] = (r[1] >> 12);
e->mac[2] = (r[1] >> 4);
e->mac[3] = (r[1] & 0xf) << 4 | (r[2] >> 28);
e->mac[4] = (r[2] >> 20);
e->mac[5] = (r[2] >> 12);
e->is_static = !!((r[0] >> 19) & 1);
e->vid = r[0] & 0xfff;
e->rvid = r[2] & 0xfff;
e->port = (r[0] >> 12) & 0x1f;
rtl_table_release(q);
e->valid = true;
if (!(r[0] >> 17)) /* Check for invalid entry */
e->valid = false;
rtl838x_fill_l2_entry(r, e);
if (!e->valid)
return 0;
if (e->valid)
pr_debug("Found in CAM: R1 %x R2 %x R3 %x\n", r[0], r[1], r[2]);
pr_debug("Found in CAM: R1 %x R2 %x R3 %x\n", r[0], r[1], r[2]);
// Return MAC with concatenated VID ac concatenated ID
entry = (((u64) r[1]) << 32) | (r[2] & 0xfffff000) | (r[0] & 0xfff);
return entry;
}
static void rtl838x_write_cam(int idx, struct rtl838x_l2_entry *e)
{
u32 r[3];
struct table_reg *q = rtl_table_get(RTL8380_TBL_L2, 1); // Access L2 Table 1
int i;
rtl838x_fill_l2_row(r, e);
for (i= 0; i < 3; i++)
sw_w32(r[i], rtl_table_data(q, i));
rtl_table_write(q, idx);
rtl_table_release(q);
}
static u64 rtl838x_read_mcast_pmask(int idx)
{
u32 portmask;
@ -431,7 +583,9 @@ const struct rtl838x_reg rtl838x_reg = {
.mac_rx_pause_sts = RTL838X_MAC_RX_PAUSE_STS,
.mac_tx_pause_sts = RTL838X_MAC_TX_PAUSE_STS,
.read_l2_entry_using_hash = rtl838x_read_l2_entry_using_hash,
.write_l2_entry_using_hash = rtl838x_write_l2_entry_using_hash,
.read_cam = rtl838x_read_cam,
.write_cam = rtl838x_write_cam,
.vlan_port_egr_filter = RTL838X_VLAN_PORT_EGR_FLTR,
.vlan_port_igr_filter = RTL838X_VLAN_PORT_IGR_FLTR(0),
.vlan_port_pb = RTL838X_VLAN_PORT_PB_VLAN,
@ -442,6 +596,8 @@ const struct rtl838x_reg rtl838x_reg = {
.init_eee = rtl838x_init_eee,
.port_eee_set = rtl838x_port_eee_set,
.eee_port_ability = rtl838x_eee_port_ability,
.l2_hash_seed = rtl838x_l2_hash_seed,
.l2_hash_key = rtl838x_l2_hash_key,
.read_mcast_pmask = rtl838x_read_mcast_pmask,
.write_mcast_pmask = rtl838x_write_mcast_pmask,
};
@ -659,34 +815,6 @@ void rtl8380_get_version(struct rtl838x_switch_priv *priv)
}
}
/*
* Applies the same hash algorithm as the one used currently by the ASIC
*/
u32 rtl838x_hash(struct rtl838x_switch_priv *priv, u64 seed)
{
u32 h1, h2, h3, h;
if (sw_r32(priv->r->l2_ctrl_0) & 1) {
h1 = (seed >> 11) & 0x7ff;
h1 = ((h1 & 0x1f) << 6) | ((h1 >> 5) & 0x3f);
h2 = (seed >> 33) & 0x7ff;
h2 = ((h2 & 0x3f) << 5) | ((h2 >> 6) & 0x1f);
h3 = (seed >> 44) & 0x7ff;
h3 = ((h3 & 0x7f) << 4) | ((h3 >> 7) & 0xf);
h = h1 ^ h2 ^ h3 ^ ((seed >> 55) & 0x1ff);
h ^= ((seed >> 22) & 0x7ff) ^ (seed & 0x7ff);
} else {
h = ((seed >> 55) & 0x1ff) ^ ((seed >> 44) & 0x7ff)
^ ((seed >> 33) & 0x7ff) ^ ((seed >> 22) & 0x7ff)
^ ((seed >> 11) & 0x7ff) ^ (seed & 0x7ff);
}
return h;
}
void rtl838x_vlan_profile_dump(int profile)
{
u32 p;

View File

@ -341,6 +341,7 @@
#define MAX_VLANS 4096
#define MAX_LAGS 16
#define MAX_PRIOS 8
#define RTL930X_PORT_IGNORE 0x3f
#define MAX_MC_GROUPS 512
#define UNKNOWN_MC_PMASK (MAX_MC_GROUPS - 1)
@ -398,8 +399,27 @@ struct rtl838x_l2_entry {
bool next_hop;
int age;
u8 trunk;
u8 stackDev;
bool is_trunk;
u8 stack_dev;
u16 mc_portmask_index;
u32 mc_gip;
u32 mc_sip;
u16 mc_mac_index;
u16 nh_route_id;
bool nh_vlan_target; // Only RTL83xx: VLAN used for next hop
};
struct rtl838x_nexthop {
u16 id; // ID in HW Nexthop table
u32 ip; // IP Addres of nexthop
u32 dev_id;
u16 port;
u16 vid;
u16 fid;
u64 mac;
u16 mac_id;
u16 l2_id; // Index of this next hop forwarding entry in L2 FIB table
u16 if_id;
};
struct rtl838x_switch_priv;
@ -451,7 +471,9 @@ struct rtl838x_reg {
int mac_rx_pause_sts;
int mac_tx_pause_sts;
u64 (*read_l2_entry_using_hash)(u32 hash, u32 position, struct rtl838x_l2_entry *e);
void (*write_l2_entry_using_hash)(u32 hash, u32 pos, struct rtl838x_l2_entry *e);
u64 (*read_cam)(int idx, struct rtl838x_l2_entry *e);
void (*write_cam)(int idx, struct rtl838x_l2_entry *e);
int vlan_port_egr_filter;
int vlan_port_igr_filter;
int vlan_port_pb;
@ -464,6 +486,8 @@ struct rtl838x_reg {
void (*port_eee_set)(struct rtl838x_switch_priv *priv, int port, bool enable);
int (*eee_port_ability)(struct rtl838x_switch_priv *priv,
struct ethtool_eee *e, int port);
u64 (*l2_hash_seed)(u64 mac, u32 vid);
u32 (*l2_hash_key)(struct rtl838x_switch_priv *priv, u64 seed);
u64 (*read_mcast_pmask)(int idx);
void (*write_mcast_pmask)(int idx, u64 portmask);
void (*vlan_fwd_on_inner)(int port, bool is_set);
@ -494,6 +518,7 @@ struct rtl838x_switch_priv {
struct net_device *lag_devs[MAX_LAGS];
struct notifier_block nb;
bool eee_enabled;
unsigned long int mc_group_bm[MAX_MC_GROUPS >> 5];
};
void rtl838x_dbgfs_init(struct rtl838x_switch_priv *priv);

View File

@ -125,6 +125,45 @@ static void rtl839x_vlan_fwd_on_inner(int port, bool is_set)
rtl839x_mask_port_reg_be(0ULL, BIT_ULL(port), RTL839X_VLAN_PORT_FWD);
}
/*
* Hash seed is vid (actually rvid) concatenated with the MAC address
*/
static u64 rtl839x_l2_hash_seed(u64 mac, u32 vid)
{
u64 v = vid;
v <<= 48;
v |= mac;
return v;
}
/*
* Applies the same hash algorithm as the one used currently by the ASIC to the seed
* and returns a key into the L2 hash table
*/
static u32 rtl839x_l2_hash_key(struct rtl838x_switch_priv *priv, u64 seed)
{
u32 h1, h2, h;
if (sw_r32(priv->r->l2_ctrl_0) & 1) {
h1 = (u32) (((seed >> 60) & 0x3f) ^ ((seed >> 54) & 0x3f)
^ ((seed >> 36) & 0x3f) ^ ((seed >> 30) & 0x3f)
^ ((seed >> 12) & 0x3f) ^ ((seed >> 6) & 0x3f));
h2 = (u32) (((seed >> 48) & 0x3f) ^ ((seed >> 42) & 0x3f)
^ ((seed >> 24) & 0x3f) ^ ((seed >> 18) & 0x3f)
^ (seed & 0x3f));
h = (h1 << 6) | h2;
} else {
h = (seed >> 60)
^ ((((seed >> 48) & 0x3f) << 6) | ((seed >> 54) & 0x3f))
^ ((seed >> 36) & 0xfff) ^ ((seed >> 24) & 0xfff)
^ ((seed >> 12) & 0xfff) ^ (seed & 0xfff);
}
return h;
}
static inline int rtl839x_mac_force_mode_ctrl(int p)
{
return RTL839X_MAC_FORCE_MODE_CTRL + (p << 2);
@ -205,55 +244,131 @@ static void rtl839x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
}
}
static u64 rtl839x_read_l2_entry_using_hash(u32 hash, u32 position, struct rtl838x_l2_entry *e)
/*
* Fills the 3 SoC table registers r[] with the information of in the rtl838x_l2_entry
*/
static void rtl839x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e)
{
if (!e->valid) {
r[0] = r[1] = r[2] = 0;
return;
}
r[2] = e->is_ip_mc ? BIT(31) : 0;
r[2] |= e->is_ipv6_mc ? BIT(30) : 0;
if (!e->is_ip_mc && !e->is_ipv6_mc) {
r[0] = ((u32)e->mac[0]) << 12;
r[0] |= ((u32)e->mac[1]) << 4;
r[0] |= ((u32)e->mac[2]) >> 4;
r[1] = ((u32)e->mac[2]) << 28;
r[1] |= ((u32)e->mac[3]) << 20;
r[1] |= ((u32)e->mac[4]) << 12;
r[1] |= ((u32)e->mac[5]) << 4;
if (!(e->mac[0] & 1)) { // Not multicast
r[2] |= e->is_static ? BIT(18) : 0;
r[2] |= e->vid << 4;
r[0] |= ((u32)e->rvid) << 20;
r[2] |= e->port << 24;
r[2] |= e->block_da ? BIT(19) : 0;
r[2] |= e->block_sa ? BIT(20) : 0;
r[2] |= e->suspended ? BIT(17) : 0;
if (e->next_hop) {
r[2] |= BIT(16);
r[2] |= e->nh_vlan_target ? BIT(15) : 0;
r[2] |= (e->nh_route_id & 0x7ff) << 4;
}
r[2] |= ((u32)e->age) << 21;
} else { // L2 Multicast
r[0] |= ((u32)e->rvid) << 20;
r[2] |= ((u32)e->mc_portmask_index) << 6;
pr_debug("Write L2 MC entry: %08x %08x %08x\n", r[0], r[1], r[2]);
}
} else { // IPv4 or IPv6 MC entry
r[0] = ((u32)e->rvid) << 20;
r[2] |= ((u32)e->mc_portmask_index) << 6;
r[1] = e->mc_gip;
}
}
/*
* Read an L2 UC or MC entry out of a hash bucket of the L2 forwarding table
* hash is the id of the bucket and pos is the position of the entry in that bucket
* The data read from the SoC is filled into rtl838x_l2_entry
*/
static u64 rtl839x_read_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
{
u64 entry;
u32 r[3];
struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 0);
u32 idx = (0 << 14) | (hash << 2) | pos; // Search SRAM, with hash and at pos in bucket
int i;
/* Search in SRAM, with hash and at position in hash bucket (0-3) */
u32 idx = (0 << 14) | (hash << 2) | position;
rtl_table_read(q, idx);
for (i= 0; i < 3; i++)
r[i] = sw_r32(rtl_table_data(q, i));
u32 cmd = 1 << 17 /* Execute cmd */
| 0 << 16 /* Read */
| 0 << 14 /* Table type 0b00 */
| (idx & 0x3fff);
sw_w32(cmd, RTL839X_TBL_ACCESS_L2_CTRL);
do { } while (sw_r32(RTL839X_TBL_ACCESS_L2_CTRL) & (1 << 17));
r[0] = sw_r32(RTL839X_TBL_ACCESS_L2_DATA(0));
r[1] = sw_r32(RTL839X_TBL_ACCESS_L2_DATA(1));
r[2] = sw_r32(RTL839X_TBL_ACCESS_L2_DATA(2));
rtl_table_release(q);
rtl839x_fill_l2_entry(r, e);
if (!e->valid)
return 0;
entry = (((u64) r[0]) << 12) | ((r[1] & 0xfffffff0) << 12) | ((r[2] >> 4) & 0xfff);
return entry;
return rtl839x_l2_hash_seed(ether_addr_to_u64(&e->mac[0]), e->rvid);
}
static void rtl839x_write_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
{
u32 r[3];
struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 0);
int i;
u32 idx = (0 << 14) | (hash << 2) | pos; // Access SRAM, with hash and at pos in bucket
rtl839x_fill_l2_row(r, e);
for (i= 0; i < 3; i++)
sw_w32(r[i], rtl_table_data(q, i));
rtl_table_write(q, idx);
rtl_table_release(q);
}
static u64 rtl839x_read_cam(int idx, struct rtl838x_l2_entry *e)
{
u64 entry;
u32 r[3];
struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 1); // Access L2 Table 1
int i;
u32 cmd = 1 << 17 /* Execute cmd */
| 0 << 16 /* Read */
| 1 << 14 /* Table type 0b01 */
| (idx & 0x3f);
sw_w32(cmd, RTL839X_TBL_ACCESS_L2_CTRL);
do { } while (sw_r32(RTL839X_TBL_ACCESS_L2_CTRL) & (1 << 17));
r[0] = sw_r32(RTL839X_TBL_ACCESS_L2_DATA(0));
r[1] = sw_r32(RTL839X_TBL_ACCESS_L2_DATA(1));
r[2] = sw_r32(RTL839X_TBL_ACCESS_L2_DATA(2));
rtl_table_read(q, idx);
for (i= 0; i < 3; i++)
r[i] = sw_r32(rtl_table_data(q, i));
rtl_table_release(q);
rtl839x_fill_l2_entry(r, e);
if (e->valid)
pr_info("Found in CAM: R1 %x R2 %x R3 %x\n", r[0], r[1], r[2]);
else
if (!e->valid)
return 0;
entry = (((u64) r[0]) << 12) | ((r[1] & 0xfffffff0) << 12) | ((r[2] >> 4) & 0xfff);
return entry;
pr_debug("Found in CAM: R1 %x R2 %x R3 %x\n", r[0], r[1], r[2]);
// Return MAC with concatenated VID ac concatenated ID
return rtl839x_l2_hash_seed(ether_addr_to_u64(&e->mac[0]), e->rvid);
}
static void rtl839x_write_cam(int idx, struct rtl838x_l2_entry *e)
{
u32 r[3];
struct table_reg *q = rtl_table_get(RTL8390_TBL_L2, 1); // Access L2 Table 1
int i;
rtl839x_fill_l2_row(r, e);
for (i= 0; i < 3; i++)
sw_w32(r[i], rtl_table_data(q, i));
rtl_table_write(q, idx);
rtl_table_release(q);
}
static u64 rtl839x_read_mcast_pmask(int idx)
@ -326,7 +441,7 @@ void rtl839x_traffic_enable(int source, int dest)
void rtl839x_traffic_disable(int source, int dest)
{
rtl839x_mask_port_reg_be(BIT(dest), 0, rtl839x_port_iso_ctrl(source));
rtl839x_mask_port_reg_be(BIT_ULL(dest), 0, rtl839x_port_iso_ctrl(source));
}
irqreturn_t rtl839x_switch_irq(int irq, void *dev_id)
@ -341,10 +456,10 @@ irqreturn_t rtl839x_switch_irq(int irq, void *dev_id)
rtl839x_set_port_reg_le(ports, RTL839X_ISR_PORT_LINK_STS_CHG);
pr_debug("RTL8390 Link change: status: %x, ports %llx\n", status, ports);
for (i = 0; i < 52; i++) {
if (ports & (1ULL << i)) {
for (i = 0; i < RTL839X_CPU_PORT; i++) {
if (ports & BIT_ULL(i)) {
link = rtl839x_get_port_reg_le(RTL839X_MAC_LINK_STS);
if (link & (1ULL << i))
if (link & BIT_ULL(i))
dsa_port_phylink_mac_change(ds, i, true);
else
dsa_port_phylink_mac_change(ds, i, false);
@ -372,7 +487,6 @@ int rtl8390_sds_power(int mac, int val)
return 0;
}
int rtl839x_read_phy(u32 port, u32 page, u32 reg, u32 *val)
{
u32 v;
@ -506,28 +620,6 @@ void rtl8390_get_version(struct rtl838x_switch_priv *priv)
priv->version = RTL8390_VERSION_A;
}
u32 rtl839x_hash(struct rtl838x_switch_priv *priv, u64 seed)
{
u32 h1, h2, h;
if (sw_r32(priv->r->l2_ctrl_0) & 1) {
h1 = (u32) (((seed >> 60) & 0x3f) ^ ((seed >> 54) & 0x3f)
^ ((seed >> 36) & 0x3f) ^ ((seed >> 30) & 0x3f)
^ ((seed >> 12) & 0x3f) ^ ((seed >> 6) & 0x3f));
h2 = (u32) (((seed >> 48) & 0x3f) ^ ((seed >> 42) & 0x3f)
^ ((seed >> 24) & 0x3f) ^ ((seed >> 18) & 0x3f)
^ (seed & 0x3f));
h = (h1 << 6) | h2;
} else {
h = (seed >> 60)
^ ((((seed >> 48) & 0x3f) << 6) | ((seed >> 54) & 0x3f))
^ ((seed >> 36) & 0xfff) ^ ((seed >> 24) & 0xfff)
^ ((seed >> 12) & 0xfff) ^ (seed & 0xfff);
}
return h;
}
void rtl839x_vlan_profile_dump(int profile)
{
u32 p[2];
@ -695,7 +787,9 @@ const struct rtl838x_reg rtl839x_reg = {
.mac_rx_pause_sts = RTL839X_MAC_RX_PAUSE_STS,
.mac_tx_pause_sts = RTL839X_MAC_TX_PAUSE_STS,
.read_l2_entry_using_hash = rtl839x_read_l2_entry_using_hash,
.write_l2_entry_using_hash = rtl839x_write_l2_entry_using_hash,
.read_cam = rtl839x_read_cam,
.write_cam = rtl839x_write_cam,
.vlan_port_egr_filter = RTL839X_VLAN_PORT_EGR_FLTR(0),
.vlan_port_igr_filter = RTL839X_VLAN_PORT_IGR_FLTR(0),
.vlan_port_pb = RTL839X_VLAN_PORT_PB_VLAN,
@ -706,6 +800,8 @@ const struct rtl838x_reg rtl839x_reg = {
.init_eee = rtl839x_init_eee,
.port_eee_set = rtl839x_port_eee_set,
.eee_port_ability = rtl839x_eee_port_ability,
.l2_hash_seed = rtl839x_l2_hash_seed,
.l2_hash_key = rtl839x_l2_hash_key,
.read_mcast_pmask = rtl839x_read_mcast_pmask,
.write_mcast_pmask = rtl839x_write_mcast_pmask,
};

View File

@ -207,12 +207,74 @@ static inline int rtl930x_mac_link_spd_sts(int p)
return RTL930X_MAC_LINK_SPD_STS(p);
}
static u64 rtl930x_l2_hash_seed(u64 mac, u32 vid)
{
u64 v = vid;
v <<= 48;
v |= mac;
return v;
}
/*
* Calculate both the block 0 and the block 1 hash by applyingthe same hash
* algorithm as the one used currently by the ASIC to the seed, and return
* both hashes in the lower and higher word of the return value since only 12 bit of
* the hash are significant
*/
static u32 rtl930x_l2_hash_key(struct rtl838x_switch_priv *priv, u64 seed)
{
u32 k0, k1, h1, h2, h;
k0 = (u32) (((seed >> 55) & 0x1f) ^ ((seed >> 44) & 0x7ff)
^ ((seed >> 33) & 0x7ff) ^ ((seed >> 22) & 0x7ff)
^ ((seed >> 11) & 0x7ff) ^ (seed & 0x7ff));
h1 = (seed >> 11) & 0x7ff;
h1 = ((h1 & 0x1f) << 6) | ((h1 >> 5) & 0x3f);
h2 = (seed >> 33) & 0x7ff;
h2 = ((h2 & 0x3f) << 5)| ((h2 >> 6) & 0x3f);
k1 = (u32) (((seed << 55) & 0x1f) ^ ((seed >> 44) & 0x7ff) ^ h2
^ ((seed >> 22) & 0x7ff) ^ h1
^ (seed & 0x7ff));
// Algorithm choice for block 0
if (sw_r32(RTL930X_L2_CTRL) & BIT(0))
h = k1;
else
h = k0;
/* Algorithm choice for block 1
* Since k0 and k1 are < 2048, adding 2048 will offset the hash into the second
* half of hash-space
* 2048 is in fact the hash-table size 16384 divided by 4 hashes per bucket
* divided by 2 to divide the hash space in 2
*/
if (sw_r32(RTL930X_L2_CTRL) & BIT(1))
h |= (k1 + 2048) << 16;
else
h |= (k0 + 2048) << 16;
return h;
}
/*
* Fills an L2 entry structure from the SoC registers
*/
static void rtl930x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
{
pr_debug("In %s valid?\n", __func__);
e->valid = !!(r[2] & BIT(31));
if (!e->valid)
return;
pr_debug("In %s is valid\n", __func__);
e->is_ip_mc = false;
e->is_ipv6_mc = false;
// TODO: Is there not a function to copy directly MAC memory?
e->mac[0] = (r[0] >> 24);
e->mac[1] = (r[0] >> 16);
@ -221,61 +283,164 @@ static void rtl930x_fill_l2_entry(u32 r[], struct rtl838x_l2_entry *e)
e->mac[4] = (r[1] >> 24);
e->mac[5] = (r[1] >> 16);
e->next_hop = !!(r[2] & BIT(12));
e->rvid = r[1] & 0xfff;
/* Is it a unicast entry? check multicast bit */
if (!(e->mac[0] & 1)) {
e->type = L2_UNICAST;
e->is_static = !!(r[2] & BIT(14));
e->vid = r[2] & 0xfff;
e->rvid = r[1] & 0xfff;
e->port = (r[2] >> 20) & 0x3ff;
// Check for trunk port
if (r[2] & BIT(30)) {
e->stackDev = (e->port >> 9) & 1;
e->is_trunk = true;
e->stack_dev = (e->port >> 9) & 1;
e->trunk = e->port & 0x3f;
} else {
e->stackDev = (e->port >> 6) & 0xf;
e->is_trunk = false;
e->stack_dev = (e->port >> 6) & 0xf;
e->port = e->port & 0x3f;
}
e->block_da = !!(r[2] & BIT(15));
e->block_sa = !!(r[2] & BIT(16));
e->suspended = !!(r[2] & BIT(13));
e->next_hop = !!(r[2] & BIT(12));
e->age = (r[2] >> 17) & 3;
e->valid = true;
// the UC_VID field in hardware is used for the VID or for the route id
if (e->next_hop) {
e->nh_route_id = r[2] & 0xfff;
e->vid = 0;
} else {
e->vid = r[2] & 0xfff;
e->nh_route_id = 0;
}
} else {
e->valid = true;
e->type = L2_MULTICAST;
e->mc_portmask_index = (r[2]>>6) & 0xfff;
e->mc_portmask_index = (r[2] >> 16) & 0x3ff;
}
}
static u64 rtl930x_read_l2_entry_using_hash(u32 hash, u32 position, struct rtl838x_l2_entry *e)
/*
* Fills the 3 SoC table registers r[] with the information of in the rtl838x_l2_entry
*/
static void rtl930x_fill_l2_row(u32 r[], struct rtl838x_l2_entry *e)
{
u32 port;
if (!e->valid) {
r[0] = r[1] = r[2] = 0;
return;
}
r[2] = BIT(31); // Set valid bit
r[0] = ((u32)e->mac[0]) << 24 | ((u32)e->mac[1]) << 16
| ((u32)e->mac[2]) << 8 | ((u32)e->mac[3]);
r[1] = ((u32)e->mac[4]) << 24 | ((u32)e->mac[5]) << 16;
r[2] |= e->next_hop ? BIT(12) : 0;
if (e->type == L2_UNICAST) {
r[2] |= e->is_static ? BIT(14) : 0;
r[1] |= e->rvid & 0xfff;
r[2] |= (e->port & 0x3ff) << 20;
if (e->is_trunk) {
r[2] |= BIT(30);
port = e->stack_dev << 9 | (e->port & 0x3f);
} else {
port = (e->stack_dev & 0xf) << 6;
port |= e->port & 0x3f;
}
r[2] |= port << 20;
r[2] |= e->block_da ? BIT(15) : 0;
r[2] |= e->block_sa ? BIT(17) : 0;
r[2] |= e->suspended ? BIT(13) : 0;
r[2] |= (e->age & 0x3) << 17;
// the UC_VID field in hardware is used for the VID or for the route id
if (e->next_hop)
r[2] |= e->nh_route_id & 0xfff;
else
r[2] |= e->vid & 0xfff;
} else { // L2_MULTICAST
r[2] |= (e->mc_portmask_index & 0x3ff) << 16;
r[2] |= e->mc_mac_index & 0x7ff;
}
}
/*
* Read an L2 UC or MC entry out of a hash bucket of the L2 forwarding table
* hash is the id of the bucket and pos is the position of the entry in that bucket
* The data read from the SoC is filled into rtl838x_l2_entry
*/
static u64 rtl930x_read_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
{
u64 entry;
u32 r[3];
struct table_reg *q = rtl_table_get(RTL9300_TBL_L2, 0);
u32 idx = (0 << 14) | (hash << 2) | position;
u32 idx;
int i;
u64 mac;
u64 seed;
pr_debug("%s: hash %08x, pos: %d\n", __func__, hash, pos);
/* On the RTL93xx, 2 different hash algorithms are used making it a total of
* 8 buckets that need to be searched, 4 for each hash-half
* Use second hash space when bucket is between 4 and 8 */
if (pos >= 4) {
pos -= 4;
hash >>= 16;
} else {
hash &= 0xffff;
}
idx = (0 << 14) | (hash << 2) | pos; // Search SRAM, with hash and at pos in bucket
pr_debug("%s: NOW hash %08x, pos: %d\n", __func__, hash, pos);
rtl_table_read(q, idx);
for (i= 0; i < 3; i++)
for (i = 0; i < 3; i++)
r[i] = sw_r32(rtl_table_data(q, i));
rtl_table_release(q);
rtl930x_fill_l2_entry(r, e);
pr_debug("%s: valid: %d, nh: %d\n", __func__, e->valid, e->next_hop);
if (!e->valid)
return 0;
entry = ((u64)r[0] << 32) | (r[1] & 0xffff0000) | e->vid;
return entry;
mac = ((u64)e->mac[0]) << 40 | ((u64)e->mac[1]) << 32 | ((u64)e->mac[2]) << 24
| ((u64)e->mac[3]) << 16 | ((u64)e->mac[4]) << 8 | ((u64)e->mac[5]);
seed = rtl930x_l2_hash_seed(mac, e->rvid);
pr_debug("%s: mac %016llx, seed %016llx\n", __func__, mac, seed);
// return vid with concatenated mac as unique id
return seed;
}
static void rtl930x_write_l2_entry_using_hash(u32 hash, u32 pos, struct rtl838x_l2_entry *e)
{
u32 r[3];
struct table_reg *q = rtl_table_get(RTL9300_TBL_L2, 0);
u32 idx = (0 << 14) | (hash << 2) | pos; // Access SRAM, with hash and at pos in bucket
int i;
pr_info("%s: hash %d, pos %d\n", __func__, hash, pos);
pr_info("%s: index %d -> mac %02x:%02x:%02x:%02x:%02x:%02x\n", __func__, idx,
e->mac[0], e->mac[1], e->mac[2], e->mac[3],e->mac[4],e->mac[5]);
rtl930x_fill_l2_row(r, e);
for (i= 0; i < 3; i++)
sw_w32(r[i], rtl_table_data(q, i));
rtl_table_write(q, idx);
rtl_table_release(q);
}
static u64 rtl930x_read_cam(int idx, struct rtl838x_l2_entry *e)
{
u64 entry;
u32 r[3];
struct table_reg *q = rtl_table_get(RTL9300_TBL_L2, 1);
int i;
@ -290,9 +455,113 @@ static u64 rtl930x_read_cam(int idx, struct rtl838x_l2_entry *e)
if (!e->valid)
return 0;
entry = ((u64)r[0] << 32) | (r[1] & 0xffff0000) | e->vid;
// return mac with concatenated vid as unique id
return ((u64)r[0] << 28) | ((r[1] & 0xffff0000) >> 4) | e->vid;
}
return entry;
static void rtl930x_write_cam(int idx, struct rtl838x_l2_entry *e)
{
u32 r[3];
struct table_reg *q = rtl_table_get(RTL9300_TBL_L2, 1); // Access L2 Table 1
int i;
rtl930x_fill_l2_row(r, e);
for (i= 0; i < 3; i++)
sw_w32(r[i], rtl_table_data(q, i));
rtl_table_write(q, idx);
rtl_table_release(q);
}
static void dump_l2_entry(struct rtl838x_l2_entry *e)
{
pr_info("MAC: %02x:%02x:%02x:%02x:%02x:%02x vid: %d, rvid: %d, port: %d, valid: %d\n",
e->mac[0], e->mac[1], e->mac[2], e->mac[3], e->mac[4], e->mac[5],
e->vid, e->rvid, e->port, e->valid);
pr_info("Type: %d, is_static: %d, is_ip_mc: %d, is_ipv6_mc: %d, block_da: %d\n",
e->type, e->is_static, e->is_ip_mc, e->is_ipv6_mc, e->block_da);
pr_info(" block_sa: %d, suspended: %d, next_hop: %d, age: %d, is_trunk: %d, trunk: %d\n",
e->block_sa, e->suspended, e->next_hop, e->age, e->is_trunk, e->trunk);
if (e->is_ip_mc || e->is_ipv6_mc)
pr_info(" mc_portmask_index: %d, mc_gip: %d, mc_sip: %d\n",
e->mc_portmask_index, e->mc_gip, e->mc_sip);
pr_info(" stac_dev: %d, nh_route_id: %d, port: %d, dev_id\n",
e->stack_dev, e->nh_route_id, e->port);
}
/*
* Add an L2 nexthop entry for the L3 routing system in the SoC
* Use VID and MAC in rtl838x_l2_entry to identify either a free slot in the L2 hash table
* or mark an existing entry as a nexthop by setting it's nexthop bit
* Called from the L3 layer
* The index in the L2 hash table is filled into nh->l2_id;
*/
static int rtl930x_l2_nexthop_add(struct rtl838x_switch_priv *priv, struct rtl838x_nexthop *nh)
{
struct rtl838x_l2_entry e;
u64 seed = rtl930x_l2_hash_seed(nh->mac, nh->vid);
u32 key = rtl930x_l2_hash_key(priv, seed);
int i, idx = -1;
u64 entry;
pr_info("%s searching for %08llx vid %d with key %d, seed: %016llx\n",
__func__, nh->mac, nh->vid, key, seed);
e.type = L2_UNICAST;
e.rvid = nh->fid; // Verify its the forwarding ID!!! l2_entry.un.unicast.fid
u64_to_ether_addr(nh->mac, &e.mac[0]);
e.port = RTL930X_PORT_IGNORE;
// Loop over all entries in the hash-bucket and over the second block on 93xx SoCs
for (i = 0; i < priv->l2_bucket_size; i++) {
entry = rtl930x_read_l2_entry_using_hash(key, i, &e);
pr_info("%s i: %d, entry %016llx, seed %016llx\n", __func__, i, entry, seed);
if (e.valid && e.next_hop)
continue;
if (!e.valid || ((entry & 0x0fffffffffffffffULL) == seed)) {
idx = i > 3 ? ((key >> 14) & 0xffff) | i >> 1
: ((key << 2) | i) & 0xffff;
break;
}
}
pr_info("%s: found idx %d and i %d\n", __func__, idx, i);
if (idx < 0) {
pr_err("%s: No more L2 forwarding entries available\n", __func__);
return -1;
}
// Found an existing or empty entry, make it a nexthop entry
pr_info("%s BEFORE -> key %d, pos: %d, index: %d\n", __func__, key, i, idx);
dump_l2_entry(&e);
nh->l2_id = idx;
// Found an existing (e->valid is true) or empty entry, make it a nexthop entry
if (e.valid) {
nh->port = e.port;
nh->fid = e.rvid;
nh->vid = e.vid;
nh->dev_id = e.stack_dev;
} else {
e.valid = true;
e.is_static = false;
e.vid = nh->vid;
e.rvid = nh->fid;
e.port = RTL930X_PORT_IGNORE;
u64_to_ether_addr(nh->mac, &e.mac[0]);
}
e.next_hop = true;
// For nexthop entries, the vid field in the table is used to denote the dest mac_id
e.nh_route_id = nh->mac_id;
pr_info("%s AFTER\n", __func__);
dump_l2_entry(&e);
rtl930x_write_l2_entry_using_hash(idx >> 2, idx & 0x3, &e);
// _dal_longan_l2_nexthop_add
return 0;
}
static u64 rtl930x_read_mcast_pmask(int idx)
@ -485,7 +754,6 @@ int rtl930x_read_phy(u32 port, u32 page, u32 reg, u32 *val)
u32 v;
int err = 0;
// pr_info("In %s\n", __func__);
if (port > 63 || page > 4095 || reg > 31)
return -ENOTSUPP;
@ -531,12 +799,12 @@ int rtl930x_write_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 val)
// Set MMD device number and register to write to
sw_w32(devnum << 16 | (regnum & 0xffff), RTL930X_SMI_ACCESS_PHY_CTRL_3);
v = BIT(2)| BIT(1)| BIT(0); // WRITE | MMD-access | EXEC
v = BIT(2) | BIT(1) | BIT(0); // WRITE | MMD-access | EXEC
sw_w32(v, RTL930X_SMI_ACCESS_PHY_CTRL_1);
do {
v = sw_r32(RTL930X_SMI_ACCESS_PHY_CTRL_1);
} while ( v & BIT(0));
} while (v & BIT(0));
pr_debug("%s: port %d, regnum: %x, val: %x (err %d)\n", __func__, port, regnum, val, err);
mutex_unlock(&smi_lock);
@ -559,12 +827,12 @@ int rtl930x_read_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 *val)
// Set MMD device number and register to write to
sw_w32(devnum << 16 | (regnum & 0xffff), RTL930X_SMI_ACCESS_PHY_CTRL_3);
v = BIT(1)| BIT(0); // MMD-access | EXEC
v = BIT(1) | BIT(0); // MMD-access | EXEC
sw_w32(v, RTL930X_SMI_ACCESS_PHY_CTRL_1);
do {
v = sw_r32(RTL930X_SMI_ACCESS_PHY_CTRL_1);
} while ( v & 0x1);
} while (v & BIT(0));
// There is no error-checking via BIT 25 of v, as it does not seem to be set correctly
*val = (sw_r32(RTL930X_SMI_ACCESS_PHY_CTRL_2) & 0xffff);
pr_debug("%s: port %d, regnum: %x, val: %x (err %d)\n", __func__, port, regnum, *val, err);
@ -574,7 +842,6 @@ int rtl930x_read_mmd_phy(u32 port, u32 devnum, u32 regnum, u32 *val)
return err;
}
/*
* Calculate both the block 0 and the block 1 hash, and return in
* lower and higher word of the return value since only 12 bit of
@ -617,6 +884,7 @@ u32 rtl930x_hash(struct rtl838x_switch_priv *priv, u64 seed)
return h;
}
/*
* Enables or disables the EEE/EEEP capability of a port
*/
@ -754,7 +1022,9 @@ const struct rtl838x_reg rtl930x_reg = {
.mac_rx_pause_sts = RTL930X_MAC_RX_PAUSE_STS,
.mac_tx_pause_sts = RTL930X_MAC_TX_PAUSE_STS,
.read_l2_entry_using_hash = rtl930x_read_l2_entry_using_hash,
.write_l2_entry_using_hash = rtl930x_write_l2_entry_using_hash,
.read_cam = rtl930x_read_cam,
.write_cam = rtl930x_write_cam,
.vlan_port_egr_filter = RTL930X_VLAN_PORT_EGR_FLTR,
.vlan_port_igr_filter = RTL930X_VLAN_PORT_IGR_FLTR(0),
.vlan_port_pb = RTL930X_VLAN_PORT_PB_VLAN,