mirror of
https://github.com/openssl/openssl.git
synced 2024-12-18 22:43:41 +08:00
6c67017424
Reviewed-by: Rich Salz <rsalz@openssl.org>
399 lines
13 KiB
C
399 lines
13 KiB
C
/*
|
|
* Copyright 2016 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include "ssl_locl.h"
|
|
#include <openssl/evp.h>
|
|
#include <openssl/kdf.h>
|
|
|
|
#define TLS13_MAX_LABEL_LEN 246
|
|
|
|
/* Always filled with zeros */
|
|
static const unsigned char default_zeros[EVP_MAX_MD_SIZE];
|
|
|
|
/*
|
|
* Given a |secret|; a |label| of length |labellen|; and a |hash| of the
|
|
* handshake messages, derive a new secret |outlen| bytes long and store it in
|
|
* the location pointed to be |out|. The |hash| value may be NULL. Returns 1 on
|
|
* success 0 on failure.
|
|
*/
|
|
static int tls13_hkdf_expand(SSL *s, const unsigned char *secret,
|
|
const unsigned char *label, size_t labellen,
|
|
const unsigned char *hash,
|
|
unsigned char *out, size_t outlen)
|
|
{
|
|
const unsigned char label_prefix[] = "TLS 1.3, ";
|
|
const EVP_MD *md = ssl_handshake_md(s);
|
|
EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL);
|
|
int ret;
|
|
size_t hkdflabellen;
|
|
size_t hashlen;
|
|
/*
|
|
* 2 bytes for length of whole HkdfLabel + 1 byte for length of combined
|
|
* prefix and label + bytes for the label itself + bytes for the hash
|
|
*/
|
|
unsigned char hkdflabel[sizeof(uint16_t) + sizeof(uint8_t) +
|
|
+ sizeof(label_prefix) + TLS13_MAX_LABEL_LEN
|
|
+ EVP_MAX_MD_SIZE];
|
|
WPACKET pkt;
|
|
|
|
if (pctx == NULL)
|
|
return 0;
|
|
|
|
hashlen = EVP_MD_size(md);
|
|
|
|
if (!WPACKET_init_static_len(&pkt, hkdflabel, sizeof(hkdflabel), 0)
|
|
|| !WPACKET_put_bytes_u16(&pkt, outlen)
|
|
|| !WPACKET_start_sub_packet_u8(&pkt)
|
|
|| !WPACKET_memcpy(&pkt, label_prefix, sizeof(label_prefix) - 1)
|
|
|| !WPACKET_memcpy(&pkt, label, labellen)
|
|
|| !WPACKET_close(&pkt)
|
|
|| !WPACKET_sub_memcpy_u8(&pkt, hash, (hash == NULL) ? 0 : hashlen)
|
|
|| !WPACKET_get_total_written(&pkt, &hkdflabellen)
|
|
|| !WPACKET_finish(&pkt)) {
|
|
WPACKET_cleanup(&pkt);
|
|
return 0;
|
|
}
|
|
|
|
ret = EVP_PKEY_derive_init(pctx) <= 0
|
|
|| EVP_PKEY_CTX_hkdf_mode(pctx, EVP_PKEY_HKDEF_MODE_EXPAND_ONLY)
|
|
<= 0
|
|
|| EVP_PKEY_CTX_set_hkdf_md(pctx, md) <= 0
|
|
|| EVP_PKEY_CTX_set1_hkdf_key(pctx, secret, hashlen) <= 0
|
|
|| EVP_PKEY_CTX_add1_hkdf_info(pctx, hkdflabel, hkdflabellen) <= 0
|
|
|| EVP_PKEY_derive(pctx, out, &outlen) <= 0;
|
|
|
|
EVP_PKEY_CTX_free(pctx);
|
|
|
|
return ret == 0;
|
|
}
|
|
|
|
/*
|
|
* Given a input secret |insecret| and a |label| of length |labellen|, derive a
|
|
* new |secret|. This will be the length of the current hash output size and
|
|
* will be based on the current state of the handshake hashes. Returns 1 on
|
|
* success 0 on failure.
|
|
*/
|
|
int tls13_derive_secret(SSL *s, const unsigned char *insecret,
|
|
const unsigned char *label, size_t labellen,
|
|
unsigned char *secret)
|
|
{
|
|
unsigned char hash[EVP_MAX_MD_SIZE];
|
|
size_t hashlen;
|
|
|
|
if (!ssl3_digest_cached_records(s, 1))
|
|
return 0;
|
|
|
|
if (!ssl_handshake_hash(s, hash, sizeof(hash), &hashlen))
|
|
return 0;
|
|
|
|
return tls13_hkdf_expand(s, insecret, label, labellen, hash, secret,
|
|
hashlen);
|
|
}
|
|
|
|
/*
|
|
* Given a |secret| generate a |key| of length |keylen| bytes. Returns 1 on
|
|
* success 0 on failure.
|
|
*/
|
|
int tls13_derive_key(SSL *s, const unsigned char *secret, unsigned char *key,
|
|
size_t keylen)
|
|
{
|
|
static const unsigned char keylabel[] = "key";
|
|
|
|
return tls13_hkdf_expand(s, secret, keylabel, sizeof(keylabel) - 1, NULL,
|
|
key, keylen);
|
|
}
|
|
|
|
/*
|
|
* Given a |secret| generate an |iv| of length |ivlen| bytes. Returns 1 on
|
|
* success 0 on failure.
|
|
*/
|
|
int tls13_derive_iv(SSL *s, const unsigned char *secret, unsigned char *iv,
|
|
size_t ivlen)
|
|
{
|
|
static const unsigned char ivlabel[] = "iv";
|
|
|
|
return tls13_hkdf_expand(s, secret, ivlabel, sizeof(ivlabel) - 1, NULL,
|
|
iv, ivlen);
|
|
}
|
|
|
|
static int tls13_derive_finishedkey(SSL *s, const unsigned char *secret,
|
|
unsigned char *fin, size_t finlen)
|
|
{
|
|
static const unsigned char finishedlabel[] = "finished";
|
|
|
|
return tls13_hkdf_expand(s, secret, finishedlabel,
|
|
sizeof(finishedlabel) - 1, NULL, fin, finlen);
|
|
}
|
|
|
|
/*
|
|
* Given the previous secret |prevsecret| and a new input secret |insecret| of
|
|
* length |insecretlen|, generate a new secret and store it in the location
|
|
* pointed to by |outsecret|. Returns 1 on success 0 on failure.
|
|
*/
|
|
static int tls13_generate_secret(SSL *s, const unsigned char *prevsecret,
|
|
const unsigned char *insecret,
|
|
size_t insecretlen,
|
|
unsigned char *outsecret)
|
|
{
|
|
const EVP_MD *md = ssl_handshake_md(s);
|
|
size_t mdlen, prevsecretlen;
|
|
int ret;
|
|
EVP_PKEY_CTX *pctx = EVP_PKEY_CTX_new_id(EVP_PKEY_HKDF, NULL);
|
|
|
|
if (pctx == NULL)
|
|
return 0;
|
|
|
|
mdlen = EVP_MD_size(md);
|
|
|
|
if (insecret == NULL) {
|
|
insecret = default_zeros;
|
|
insecretlen = mdlen;
|
|
}
|
|
if (prevsecret == NULL) {
|
|
prevsecret = default_zeros;
|
|
prevsecretlen = 0;
|
|
} else {
|
|
prevsecretlen = mdlen;
|
|
}
|
|
|
|
ret = EVP_PKEY_derive_init(pctx) <= 0
|
|
|| EVP_PKEY_CTX_hkdf_mode(pctx, EVP_PKEY_HKDEF_MODE_EXTRACT_ONLY)
|
|
<= 0
|
|
|| EVP_PKEY_CTX_set_hkdf_md(pctx, md) <= 0
|
|
|| EVP_PKEY_CTX_set1_hkdf_key(pctx, insecret, insecretlen) <= 0
|
|
|| EVP_PKEY_CTX_set1_hkdf_salt(pctx, prevsecret, prevsecretlen)
|
|
<= 0
|
|
|| EVP_PKEY_derive(pctx, outsecret, &mdlen)
|
|
<= 0;
|
|
|
|
EVP_PKEY_CTX_free(pctx);
|
|
return ret == 0;
|
|
}
|
|
|
|
/*
|
|
* Given an input secret |insecret| of length |insecretlen| generate the early
|
|
* secret. Returns 1 on success 0 on failure.
|
|
*/
|
|
int tls13_generate_early_secret(SSL *s, const unsigned char *insecret,
|
|
size_t insecretlen)
|
|
{
|
|
return tls13_generate_secret(s, NULL, insecret, insecretlen,
|
|
(unsigned char *)&s->early_secret);
|
|
}
|
|
|
|
/*
|
|
* Given an input secret |insecret| of length |insecretlen| generate the
|
|
* handshake secret. This requires the early secret to already have been
|
|
* generated. Returns 1 on success 0 on failure.
|
|
*/
|
|
int tls13_generate_handshake_secret(SSL *s, const unsigned char *insecret,
|
|
size_t insecretlen)
|
|
{
|
|
return tls13_generate_secret(s, s->early_secret, insecret, insecretlen,
|
|
(unsigned char *)&s->handshake_secret);
|
|
}
|
|
|
|
/*
|
|
* Given the handshake secret |prev| of length |prevlen| generate the master
|
|
* secret and store its length in |*secret_size|. Returns 1 on success 0 on
|
|
* failure.
|
|
*/
|
|
int tls13_generate_master_secret(SSL *s, unsigned char *out,
|
|
unsigned char *prev, size_t prevlen,
|
|
size_t *secret_size)
|
|
{
|
|
*secret_size = EVP_MD_size(ssl_handshake_md(s));
|
|
return tls13_generate_secret(s, prev, NULL, 0, out);
|
|
}
|
|
|
|
/*
|
|
* Generates the mac for the Finished message. Returns the length of the MAC or
|
|
* 0 on error.
|
|
*/
|
|
size_t tls13_final_finish_mac(SSL *s, const char *str, size_t slen,
|
|
unsigned char *out)
|
|
{
|
|
const EVP_MD *md = ssl_handshake_md(s);
|
|
unsigned char hash[EVP_MAX_MD_SIZE];
|
|
size_t hashlen, ret = 0;
|
|
EVP_PKEY *key = NULL;
|
|
EVP_MD_CTX *ctx = EVP_MD_CTX_new();
|
|
|
|
if (!ssl_handshake_hash(s, hash, sizeof(hash), &hashlen))
|
|
goto err;
|
|
|
|
if (str == s->method->ssl3_enc->server_finished_label)
|
|
key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL,
|
|
s->server_finished_secret, hashlen);
|
|
else
|
|
key = EVP_PKEY_new_mac_key(EVP_PKEY_HMAC, NULL,
|
|
s->client_finished_secret, hashlen);
|
|
|
|
if (key == NULL
|
|
|| ctx == NULL
|
|
|| EVP_DigestSignInit(ctx, NULL, md, NULL, key) <= 0
|
|
|| EVP_DigestSignUpdate(ctx, hash, hashlen) <= 0
|
|
|| EVP_DigestSignFinal(ctx, out, &hashlen) <= 0)
|
|
goto err;
|
|
|
|
ret = hashlen;
|
|
err:
|
|
EVP_PKEY_free(key);
|
|
EVP_MD_CTX_free(ctx);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* There isn't really a key block in TLSv1.3, but we still need this function
|
|
* for initialising the cipher and hash. Returns 1 on success or 0 on failure.
|
|
*/
|
|
int tls13_setup_key_block(SSL *s)
|
|
{
|
|
const EVP_CIPHER *c;
|
|
const EVP_MD *hash;
|
|
int mac_type = NID_undef;
|
|
|
|
s->session->cipher = s->s3->tmp.new_cipher;
|
|
if (!ssl_cipher_get_evp
|
|
(s->session, &c, &hash, &mac_type, NULL, NULL, 0)) {
|
|
SSLerr(SSL_F_TLS13_SETUP_KEY_BLOCK, SSL_R_CIPHER_OR_HASH_UNAVAILABLE);
|
|
return 0;
|
|
}
|
|
|
|
s->s3->tmp.new_sym_enc = c;
|
|
s->s3->tmp.new_hash = hash;
|
|
|
|
return 1;
|
|
}
|
|
|
|
int tls13_change_cipher_state(SSL *s, int which)
|
|
{
|
|
static const unsigned char client_handshake_traffic[] =
|
|
"client handshake traffic secret";
|
|
static const unsigned char client_application_traffic[] =
|
|
"client application traffic secret";
|
|
static const unsigned char server_handshake_traffic[] =
|
|
"server handshake traffic secret";
|
|
static const unsigned char server_application_traffic[] =
|
|
"server application traffic secret";
|
|
unsigned char key[EVP_MAX_KEY_LENGTH];
|
|
unsigned char *iv;
|
|
unsigned char secret[EVP_MAX_MD_SIZE];
|
|
unsigned char *insecret;
|
|
unsigned char *finsecret = NULL;
|
|
EVP_CIPHER_CTX *ciph_ctx;
|
|
const EVP_CIPHER *ciph = s->s3->tmp.new_sym_enc;
|
|
size_t ivlen, keylen, finsecretlen = 0;
|
|
const unsigned char *label;
|
|
size_t labellen;
|
|
int ret = 0;
|
|
|
|
if (which & SSL3_CC_READ) {
|
|
if (s->enc_read_ctx != NULL) {
|
|
EVP_CIPHER_CTX_reset(s->enc_read_ctx);
|
|
} else {
|
|
s->enc_read_ctx = EVP_CIPHER_CTX_new();
|
|
if (s->enc_read_ctx == NULL) {
|
|
SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
}
|
|
ciph_ctx = s->enc_read_ctx;
|
|
iv = s->read_iv;
|
|
|
|
RECORD_LAYER_reset_read_sequence(&s->rlayer);
|
|
} else {
|
|
if (s->enc_write_ctx != NULL) {
|
|
EVP_CIPHER_CTX_reset(s->enc_write_ctx);
|
|
} else {
|
|
s->enc_write_ctx = EVP_CIPHER_CTX_new();
|
|
if (s->enc_write_ctx == NULL) {
|
|
SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
}
|
|
ciph_ctx = s->enc_write_ctx;
|
|
iv = s->write_iv;
|
|
|
|
RECORD_LAYER_reset_write_sequence(&s->rlayer);
|
|
}
|
|
|
|
if (((which & SSL3_CC_CLIENT) && (which & SSL3_CC_WRITE))
|
|
|| ((which & SSL3_CC_SERVER) && (which & SSL3_CC_READ))) {
|
|
if (which & SSL3_CC_HANDSHAKE) {
|
|
insecret = s->handshake_secret;
|
|
finsecret = s->client_finished_secret;
|
|
finsecretlen = sizeof(s->client_finished_secret);
|
|
label = client_handshake_traffic;
|
|
labellen = sizeof(client_handshake_traffic) - 1;
|
|
} else {
|
|
insecret = s->session->master_key;
|
|
label = client_application_traffic;
|
|
labellen = sizeof(client_application_traffic) - 1;
|
|
}
|
|
} else {
|
|
if (which & SSL3_CC_HANDSHAKE) {
|
|
insecret = s->handshake_secret;
|
|
finsecret = s->server_finished_secret;
|
|
finsecretlen = sizeof(s->server_finished_secret);
|
|
label = server_handshake_traffic;
|
|
labellen = sizeof(server_handshake_traffic) - 1;
|
|
} else {
|
|
insecret = s->session->master_key;
|
|
label = server_application_traffic;
|
|
labellen = sizeof(server_application_traffic) - 1;
|
|
}
|
|
}
|
|
|
|
if (!tls13_derive_secret(s, insecret, label, labellen, secret)) {
|
|
SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
/* TODO(size_t): convert me */
|
|
keylen = EVP_CIPHER_key_length(ciph);
|
|
ivlen = EVP_CIPHER_iv_length(ciph);
|
|
|
|
if (!tls13_derive_key(s, secret, key, keylen)
|
|
|| !tls13_derive_iv(s, secret, iv, ivlen)
|
|
|| (finsecret != NULL && !tls13_derive_finishedkey(s, secret,
|
|
finsecret,
|
|
finsecretlen))) {
|
|
SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_INTERNAL_ERROR);
|
|
goto err;
|
|
}
|
|
|
|
if (EVP_CipherInit_ex(ciph_ctx, ciph, NULL, key, NULL,
|
|
(which & SSL3_CC_WRITE)) <= 0) {
|
|
SSLerr(SSL_F_TLS13_CHANGE_CIPHER_STATE, ERR_R_EVP_LIB);
|
|
goto err;
|
|
}
|
|
|
|
#ifdef OPENSSL_SSL_TRACE_CRYPTO
|
|
if (s->msg_callback) {
|
|
int wh = which & SSL3_CC_WRITE ? TLS1_RT_CRYPTO_WRITE : 0;
|
|
|
|
if (ciph->key_len)
|
|
s->msg_callback(2, s->version, wh | TLS1_RT_CRYPTO_KEY,
|
|
key, ciph->key_len, s, s->msg_callback_arg);
|
|
|
|
wh |= TLS1_RT_CRYPTO_IV;
|
|
s->msg_callback(2, s->version, wh, iv, ivlen, s,
|
|
s->msg_callback_arg);
|
|
}
|
|
#endif
|
|
|
|
ret = 1;
|
|
err:
|
|
OPENSSL_cleanse(secret, sizeof(secret));
|
|
OPENSSL_cleanse(key, sizeof(key));
|
|
return ret;
|
|
}
|