0
0
mirror of https://github.com/openssl/openssl.git synced 2024-12-23 08:54:02 +08:00
openssl/crypto/poly1305/poly1305_ieee754.c
Andy Polyakov c8d1c9b067 crypto/poly1305: add floating-point reference implementation.
Reviewed-by: Rich Salz <rsalz@openssl.org>
2016-02-13 21:59:02 +01:00

471 lines
13 KiB
C

/* ====================================================================
* Copyright (c) 2015 The OpenSSL Project. All rights reserved.
*
* Rights for redistribution and usage in source and binary
* forms are granted according to the OpenSSL license.
*/
/*
* This module is meant to be used as template for non-x87 floating-
* point assembly modules. The template itself is x86_64-specific
* though, as it was debugged on x86_64. So that implementor would
* have to recognize platform-specific parts, UxTOy and inline asm,
* and act accordingly.
*
* Huh? x86_64-specific code as template for non-x87? Note seven, which
* is not a typo, but reference to 80-bit precision. This module on the
* other hand relies on 64-bit precision operations, which are default
* for x86_64 code. And since we are at it, just for sense of it,
* large-block performance in cycles per processed byte for *this* code
* is:
* gcc-4.8 icc-15.0 clang-3.4(*)
*
* Westmere 4.96 5.09 4.37
* Sandy Bridge 4.95 4.90 4.17
* Haswell 4.92 4.87 3.78
* Bulldozer 4.67 4.49 4.68
* VIA Nano 7.07 7.05 5.98
* Silvermont 10.6 9.61 12.6
*
* (*) clang managed to discover parallelism and deployed SIMD;
*
* And for range of other platforms with unspecified gcc versions:
*
* Freescale e300 12.5
* PPC74x0 10.8
* POWER6 4.92
* POWER7 4.50
* POWER8 4.10
*
* z10 11.2
* z196+ 7.30
*
* UltraSPARC III 16.0
* SPARC T4 16.1
*/
#if !(defined(__GNUC__) && __GNUC__>=2)
# error "this is gcc-specific template"
#endif
#include <stdlib.h>
typedef unsigned char u8;
typedef unsigned int u32;
typedef unsigned long long u64;
typedef union { double d; u64 u; } elem64;
#define TWO(p) ((double)(1ULL<<(p)))
#define TWO0 TWO(0)
#define TWO32 TWO(32)
#define TWO64 (TWO32*TWO(32))
#define TWO96 (TWO64*TWO(32))
#define TWO130 (TWO96*TWO(34))
#define EXP(p) ((1023ULL+(p))<<52)
#if defined(__x86_64__) || (defined(__PPC__) && defined(__LITTLE_ENDIAN__))
# define U8TOU32(p) (*(const u32 *)(p))
# define U32TO8(p,v) (*(u32 *)(p) = (v))
#elif defined(__PPC__)
# define U8TOU32(p) ({u32 ret; asm ("lwbrx %0,0,%1":"=r"(ret):"b"(p)); ret; })
# define U32TO8(p,v) asm ("stwbrx %0,0,%1"::"r"(v),"b"(p):"memory")
#elif defined(__s390x__)
# define U8TOU32(p) ({u32 ret; asm ("lrv %0,%1":"=d"(ret):"m"(*(u32 *)(p))); ret; })
# define U32TO8(p,v) asm ("strv %1,%0":"=m"(*(u32 *)(p)):"d"(v))
#endif
#ifndef U8TOU32
# define U8TOU32(p) ((u32)(p)[0] | (u32)(p)[1]<<8 | \
(u32)(p)[2]<<16 | (u32)(p)[3]<<24 )
#endif
#ifndef U32TO8
# define U32TO8(p,v) ((p)[0] = (u8)(v), (p)[1] = (u8)((v)>>8), \
(p)[2] = (u8)((v)>>16), (p)[3] = (u8)((v)>>24) )
#endif
typedef struct {
elem64 h[4];
double r[8];
double s[6];
} poly1305_internal;
/* "round toward zero (truncate), mask all exceptions" */
#if defined(__x86_64__)
static const u32 mxcsr = 0x7f80;
#elif defined(__PPC__)
static const u64 one = 1;
#elif defined(__s390x__)
static const u32 fpc = 1;
#elif defined(__sparc__)
static const u64 fsr = 1ULL<<30;
#else
#error "unrecognized platform"
#endif
int poly1305_init(void *ctx, const unsigned char key[16])
{
poly1305_internal *st = (poly1305_internal *) ctx;
elem64 r0, r1, r2, r3;
/* h = 0, biased */
#if 0
st->h[0].d = TWO(52)*TWO0;
st->h[1].d = TWO(52)*TWO32;
st->h[2].d = TWO(52)*TWO64;
st->h[3].d = TWO(52)*TWO96;
#else
st->h[0].u = EXP(52+0);
st->h[1].u = EXP(52+32);
st->h[2].u = EXP(52+64);
st->h[3].u = EXP(52+96);
#endif
if (key) {
/*
* set "truncate" rounding mode
*/
#if defined(__x86_64__)
u32 mxcsr_orig;
asm volatile ("stmxcsr %0":"=m"(mxcsr_orig));
asm volatile ("ldmxcsr %0"::"m"(mxcsr));
#elif defined(__PPC__)
double fpscr_orig, fpscr = *(double *)&one;
asm volatile ("mffs %0":"=f"(fpscr_orig));
asm volatile ("mtfsf 255,%0"::"f"(fpscr));
#elif defined(__s390x__)
u32 fpc_orig;
asm volatile ("stfpc %0":"=m"(fpc_orig));
asm volatile ("lfpc %0"::"m"(fpc));
#elif defined(__sparc__)
u64 fsr_orig;
asm volatile ("stx %%fsr,%0":"=m"(fsr_orig));
asm volatile ("ldx %0,%%fsr"::"m"(fsr));
#endif
/* r &= 0xffffffc0ffffffc0ffffffc0fffffff */
r0.u = EXP(52+0) | (U8TOU32(&key[0]) & 0x0fffffff);
r1.u = EXP(52+32) | (U8TOU32(&key[4]) & 0x0ffffffc);
r2.u = EXP(52+64) | (U8TOU32(&key[8]) & 0x0ffffffc);
r3.u = EXP(52+96) | (U8TOU32(&key[12]) & 0x0ffffffc);
st->r[0] = r0.d - TWO(52)*TWO0;
st->r[2] = r1.d - TWO(52)*TWO32;
st->r[4] = r2.d - TWO(52)*TWO64;
st->r[6] = r3.d - TWO(52)*TWO96;
st->s[0] = st->r[2] * (5.0/TWO130);
st->s[2] = st->r[4] * (5.0/TWO130);
st->s[4] = st->r[6] * (5.0/TWO130);
/*
* base 2^32 -> base 2^16
*/
st->r[1] = (st->r[0] + TWO(52)*TWO(16)*TWO0) -
TWO(52)*TWO(16)*TWO0;
st->r[0] -= st->r[1];
st->r[3] = (st->r[2] + TWO(52)*TWO(16)*TWO32) -
TWO(52)*TWO(16)*TWO32;
st->r[2] -= st->r[3];
st->r[5] = (st->r[4] + TWO(52)*TWO(16)*TWO64) -
TWO(52)*TWO(16)*TWO64;
st->r[4] -= st->r[5];
st->r[7] = (st->r[6] + TWO(52)*TWO(16)*TWO96) -
TWO(52)*TWO(16)*TWO96;
st->r[6] -= st->r[7];
st->s[1] = (st->s[0] + TWO(52)*TWO(16)*TWO0/TWO96) -
TWO(52)*TWO(16)*TWO0/TWO96;
st->s[0] -= st->s[1];
st->s[3] = (st->s[2] + TWO(52)*TWO(16)*TWO32/TWO96) -
TWO(52)*TWO(16)*TWO32/TWO96;
st->s[2] -= st->s[3];
st->s[5] = (st->s[4] + TWO(52)*TWO(16)*TWO64/TWO96) -
TWO(52)*TWO(16)*TWO64/TWO96;
st->s[4] -= st->s[5];
/*
* restore original FPU control register
*/
#if defined(__x86_64__)
asm volatile ("ldmxcsr %0"::"m"(mxcsr_orig));
#elif defined(__PPC__)
asm volatile ("mtfsf 255,%0"::"f"(fpscr_orig));
#elif defined(__s390x__)
asm volatile ("lfpc %0"::"m"(fpc_orig));
#elif defined(__sparc__)
asm volatile ("ldx %0,%%fsr"::"m"(fsr_orig));
#endif
}
return 0;
}
void poly1305_blocks(void *ctx, const unsigned char *inp, size_t len,
int padbit)
{
poly1305_internal *st = (poly1305_internal *)ctx;
elem64 in0, in1, in2, in3;
u64 pad = (u64)padbit<<32;
double x0, x1, x2, x3;
double h0lo, h0hi, h1lo, h1hi, h2lo, h2hi, h3lo, h3hi;
double c0lo, c0hi, c1lo, c1hi, c2lo, c2hi, c3lo, c3hi;
const double r0lo = st->r[0];
const double r0hi = st->r[1];
const double r1lo = st->r[2];
const double r1hi = st->r[3];
const double r2lo = st->r[4];
const double r2hi = st->r[5];
const double r3lo = st->r[6];
const double r3hi = st->r[7];
const double s1lo = st->s[0];
const double s1hi = st->s[1];
const double s2lo = st->s[2];
const double s2hi = st->s[3];
const double s3lo = st->s[4];
const double s3hi = st->s[5];
/*
* set "truncate" rounding mode
*/
#if defined(__x86_64__)
u32 mxcsr_orig;
asm volatile ("stmxcsr %0":"=m"(mxcsr_orig));
asm volatile ("ldmxcsr %0"::"m"(mxcsr));
#elif defined(__PPC__)
double fpscr_orig, fpscr = *(double *)&one;
asm volatile ("mffs %0":"=f"(fpscr_orig));
asm volatile ("mtfsf 255,%0"::"f"(fpscr));
#elif defined(__s390x__)
u32 fpc_orig;
asm volatile ("stfpc %0":"=m"(fpc_orig));
asm volatile ("lfpc %0"::"m"(fpc));
#elif defined(__sparc__)
u64 fsr_orig;
asm volatile ("stx %%fsr,%0":"=m"(fsr_orig));
asm volatile ("ldx %0,%%fsr"::"m"(fsr));
#endif
/*
* load base 2^32 and de-bias
*/
h0lo = st->h[0].d - TWO(52)*TWO0;
h1lo = st->h[1].d - TWO(52)*TWO32;
h2lo = st->h[2].d - TWO(52)*TWO64;
h3lo = st->h[3].d - TWO(52)*TWO96;
#ifdef __clang__
h0hi = 0;
h1hi = 0;
h2hi = 0;
h3hi = 0;
#else
in0.u = EXP(52+0) | U8TOU32(&inp[0]);
in1.u = EXP(52+32) | U8TOU32(&inp[4]);
in2.u = EXP(52+64) | U8TOU32(&inp[8]);
in3.u = EXP(52+96) | U8TOU32(&inp[12]) | pad;
x0 = in0.d - TWO(52)*TWO0;
x1 = in1.d - TWO(52)*TWO32;
x2 = in2.d - TWO(52)*TWO64;
x3 = in3.d - TWO(52)*TWO96;
x0 += h0lo;
x1 += h1lo;
x2 += h2lo;
x3 += h3lo;
goto fast_entry;
#endif
do {
in0.u = EXP(52+0) | U8TOU32(&inp[0]);
in1.u = EXP(52+32) | U8TOU32(&inp[4]);
in2.u = EXP(52+64) | U8TOU32(&inp[8]);
in3.u = EXP(52+96) | U8TOU32(&inp[12]) | pad;
x0 = in0.d - TWO(52)*TWO0;
x1 = in1.d - TWO(52)*TWO32;
x2 = in2.d - TWO(52)*TWO64;
x3 = in3.d - TWO(52)*TWO96;
/*
* note that there are multiple ways to accumulate input, e.g.
* one can as well accumulate to h0lo-h1lo-h1hi-h2hi...
*/
h0lo += x0;
h0hi += x1;
h2lo += x2;
h2hi += x3;
/*
* carries that cross 32n-bit (and 130-bit) boundaries
*/
c0lo = (h0lo + TWO(52)*TWO32) - TWO(52)*TWO32;
c1lo = (h1lo + TWO(52)*TWO64) - TWO(52)*TWO64;
c2lo = (h2lo + TWO(52)*TWO96) - TWO(52)*TWO96;
c3lo = (h3lo + TWO(52)*TWO130) - TWO(52)*TWO130;
c0hi = (h0hi + TWO(52)*TWO32) - TWO(52)*TWO32;
c1hi = (h1hi + TWO(52)*TWO64) - TWO(52)*TWO64;
c2hi = (h2hi + TWO(52)*TWO96) - TWO(52)*TWO96;
c3hi = (h3hi + TWO(52)*TWO130) - TWO(52)*TWO130;
/*
* base 2^48 -> base 2^32 with last reduction step
*/
x1 = (h1lo - c1lo) + c0lo;
x2 = (h2lo - c2lo) + c1lo;
x3 = (h3lo - c3lo) + c2lo;
x0 = (h0lo - c0lo) + c3lo * (5.0/TWO130);
x1 += (h1hi - c1hi) + c0hi;
x2 += (h2hi - c2hi) + c1hi;
x3 += (h3hi - c3hi) + c2hi;
x0 += (h0hi - c0hi) + c3hi * (5.0/TWO130);
#ifndef __clang__
fast_entry:
#endif
/*
* base 2^32 * base 2^16 = base 2^48
*/
h0lo = s3lo * x1 + s2lo * x2 + s1lo * x3 + r0lo * x0;
h1lo = r0lo * x1 + s3lo * x2 + s2lo * x3 + r1lo * x0;
h2lo = r1lo * x1 + r0lo * x2 + s3lo * x3 + r2lo * x0;
h3lo = r2lo * x1 + r1lo * x2 + r0lo * x3 + r3lo * x0;
h0hi = s3hi * x1 + s2hi * x2 + s1hi * x3 + r0hi * x0;
h1hi = r0hi * x1 + s3hi * x2 + s2hi * x3 + r1hi * x0;
h2hi = r1hi * x1 + r0hi * x2 + s3hi * x3 + r2hi * x0;
h3hi = r2hi * x1 + r1hi * x2 + r0hi * x3 + r3hi * x0;
inp += 16;
len -= 16;
} while (len >= 16);
/*
* carries that cross 32n-bit (and 130-bit) boundaries
*/
c0lo = (h0lo + TWO(52)*TWO32) - TWO(52)*TWO32;
c1lo = (h1lo + TWO(52)*TWO64) - TWO(52)*TWO64;
c2lo = (h2lo + TWO(52)*TWO96) - TWO(52)*TWO96;
c3lo = (h3lo + TWO(52)*TWO130) - TWO(52)*TWO130;
c0hi = (h0hi + TWO(52)*TWO32) - TWO(52)*TWO32;
c1hi = (h1hi + TWO(52)*TWO64) - TWO(52)*TWO64;
c2hi = (h2hi + TWO(52)*TWO96) - TWO(52)*TWO96;
c3hi = (h3hi + TWO(52)*TWO130) - TWO(52)*TWO130;
/*
* base 2^48 -> base 2^32 with last reduction step
*/
x1 = (h1lo - c1lo) + c0lo;
x2 = (h2lo - c2lo) + c1lo;
x3 = (h3lo - c3lo) + c2lo;
x0 = (h0lo - c0lo) + c3lo * (5.0/TWO130);
x1 += (h1hi - c1hi) + c0hi;
x2 += (h2hi - c2hi) + c1hi;
x3 += (h3hi - c3hi) + c2hi;
x0 += (h0hi - c0hi) + c3hi * (5.0/TWO130);
/*
* store base 2^32, with bias
*/
st->h[1].d = x1 + TWO(52)*TWO32;
st->h[2].d = x2 + TWO(52)*TWO64;
st->h[3].d = x3 + TWO(52)*TWO96;
st->h[0].d = x0 + TWO(52)*TWO0;
/*
* restore original FPU control register
*/
#if defined(__x86_64__)
asm volatile ("ldmxcsr %0"::"m"(mxcsr_orig));
#elif defined(__PPC__)
asm volatile ("mtfsf 255,%0"::"f"(fpscr_orig));
#elif defined(__s390x__)
asm volatile ("lfpc %0"::"m"(fpc_orig));
#elif defined(__sparc__)
asm volatile ("ldx %0,%%fsr"::"m"(fsr_orig));
#endif
}
void poly1305_emit(void *ctx, unsigned char mac[16], const u32 nonce[4])
{
poly1305_internal *st = (poly1305_internal *) ctx;
u64 h0, h1, h2, h3, h4;
u32 g0, g1, g2, g3, g4;
u64 t;
u32 mask;
/*
* thanks to bias masking exponent gives integer result
*/
h0 = st->h[0].u & 0x000fffffffffffffULL;
h1 = st->h[1].u & 0x000fffffffffffffULL;
h2 = st->h[2].u & 0x000fffffffffffffULL;
h3 = st->h[3].u & 0x000fffffffffffffULL;
/*
* can be partially reduced, so reduce...
*/
h4 = h3>>32; h3 &= 0xffffffffU;
g4 = h4&-4;
h4 &= 3;
g4 += g4>>2;
h0 += g4;
h1 += h0>>32; h0 &= 0xffffffffU;
h2 += h1>>32; h1 &= 0xffffffffU;
h3 += h2>>32; h2 &= 0xffffffffU;
/* compute h + -p */
g0 = (u32)(t = h0 + 5);
g1 = (u32)(t = h1 + (t >> 32));
g2 = (u32)(t = h2 + (t >> 32));
g3 = (u32)(t = h3 + (t >> 32));
g4 = h4 + (u32)(t >> 32);
/* if there was carry, select g0-g3 */
mask = 0 - (g4 >> 2);
g0 &= mask;
g1 &= mask;
g2 &= mask;
g3 &= mask;
mask = ~mask;
g0 |= (h0 & mask);
g1 |= (h1 & mask);
g2 |= (h2 & mask);
g3 |= (h3 & mask);
/* mac = (h + nonce) % (2^128) */
g0 = (u32)(t = (u64)g0 + nonce[0]);
g1 = (u32)(t = (u64)g1 + (t >> 32) + nonce[1]);
g2 = (u32)(t = (u64)g2 + (t >> 32) + nonce[2]);
g3 = (u32)(t = (u64)g3 + (t >> 32) + nonce[3]);
U32TO8(mac + 0, g0);
U32TO8(mac + 4, g1);
U32TO8(mac + 8, g2);
U32TO8(mac + 12, g3);
}