mirror of
https://github.com/openssl/openssl.git
synced 2024-11-26 03:24:02 +08:00
482 lines
11 KiB
C
482 lines
11 KiB
C
/* crypto/bn/bn_prime.c */
|
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <time.h>
|
|
#include "cryptlib.h"
|
|
#include "bn_lcl.h"
|
|
#include "rand.h"
|
|
|
|
/* The quick seive algorithm approach to weeding out primes is
|
|
* Philip Zimmermann's, as implemented in PGP. I have had a read of
|
|
* his comments and implemented my own version.
|
|
*/
|
|
#include "bn_prime.h"
|
|
|
|
#ifndef NOPROTO
|
|
static int witness(BIGNUM *a, BIGNUM *n, BN_CTX *ctx,BN_CTX *ctx2,
|
|
BN_MONT_CTX *mont);
|
|
static int probable_prime(BIGNUM *rnd, int bits);
|
|
static int probable_prime_dh(BIGNUM *rnd, int bits,
|
|
BIGNUM *add, BIGNUM *rem, BN_CTX *ctx);
|
|
static int probable_prime_dh_strong(BIGNUM *rnd, int bits,
|
|
BIGNUM *add, BIGNUM *rem, BN_CTX *ctx);
|
|
#else
|
|
static int witness();
|
|
static int probable_prime();
|
|
static int probable_prime_dh();
|
|
static int probable_prime_dh_strong();
|
|
#endif
|
|
|
|
BIGNUM *BN_generate_prime(ret,bits,strong,add,rem,callback,cb_arg)
|
|
BIGNUM *ret;
|
|
int bits;
|
|
int strong;
|
|
BIGNUM *add;
|
|
BIGNUM *rem;
|
|
void (*callback)(P_I_I_P);
|
|
char *cb_arg;
|
|
{
|
|
BIGNUM *rnd=NULL;
|
|
BIGNUM t;
|
|
int i,j,c1=0;
|
|
BN_CTX *ctx;
|
|
|
|
ctx=BN_CTX_new();
|
|
if (ctx == NULL) goto err;
|
|
if (ret == NULL)
|
|
{
|
|
if ((rnd=BN_new()) == NULL) goto err;
|
|
}
|
|
else
|
|
rnd=ret;
|
|
BN_init(&t);
|
|
loop:
|
|
/* make a random number and set the top and bottom bits */
|
|
if (add == NULL)
|
|
{
|
|
if (!probable_prime(rnd,bits)) goto err;
|
|
}
|
|
else
|
|
{
|
|
if (strong)
|
|
{
|
|
if (!probable_prime_dh_strong(rnd,bits,add,rem,ctx))
|
|
goto err;
|
|
}
|
|
else
|
|
{
|
|
if (!probable_prime_dh(rnd,bits,add,rem,ctx))
|
|
goto err;
|
|
}
|
|
}
|
|
/* if (BN_mod_word(rnd,(BN_ULONG)3) == 1) goto loop; */
|
|
if (callback != NULL) callback(0,c1++,cb_arg);
|
|
|
|
if (!strong)
|
|
{
|
|
i=BN_is_prime(rnd,BN_prime_checks,callback,ctx,cb_arg);
|
|
if (i == -1) goto err;
|
|
if (i == 0) goto loop;
|
|
}
|
|
else
|
|
{
|
|
/* for a strong prime generation,
|
|
* check that (p-1)/2 is prime.
|
|
* Since a prime is odd, We just
|
|
* need to divide by 2 */
|
|
if (!BN_rshift1(&t,rnd)) goto err;
|
|
|
|
for (i=0; i<BN_prime_checks; i++)
|
|
{
|
|
j=BN_is_prime(rnd,1,callback,ctx,cb_arg);
|
|
if (j == -1) goto err;
|
|
if (j == 0) goto loop;
|
|
|
|
j=BN_is_prime(&t,1,callback,ctx,cb_arg);
|
|
if (j == -1) goto err;
|
|
if (j == 0) goto loop;
|
|
|
|
if (callback != NULL) callback(2,c1-1,cb_arg);
|
|
/* We have a strong prime test pass */
|
|
}
|
|
}
|
|
/* we have a prime :-) */
|
|
ret=rnd;
|
|
err:
|
|
if ((ret == NULL) && (rnd != NULL)) BN_free(rnd);
|
|
BN_free(&t);
|
|
if (ctx != NULL) BN_CTX_free(ctx);
|
|
return(ret);
|
|
}
|
|
|
|
int BN_is_prime(a,checks,callback,ctx_passed,cb_arg)
|
|
BIGNUM *a;
|
|
int checks;
|
|
void (*callback)(P_I_I_P);
|
|
BN_CTX *ctx_passed;
|
|
char *cb_arg;
|
|
{
|
|
int i,j,c2=0,ret= -1;
|
|
BIGNUM *check;
|
|
BN_CTX *ctx=NULL,*ctx2=NULL;
|
|
BN_MONT_CTX *mont=NULL;
|
|
|
|
if (!BN_is_odd(a))
|
|
return(0);
|
|
if (ctx_passed != NULL)
|
|
ctx=ctx_passed;
|
|
else
|
|
if ((ctx=BN_CTX_new()) == NULL) goto err;
|
|
|
|
if ((ctx2=BN_CTX_new()) == NULL) goto err;
|
|
if ((mont=BN_MONT_CTX_new()) == NULL) goto err;
|
|
|
|
check= &(ctx->bn[ctx->tos++]);
|
|
|
|
/* Setup the montgomery structure */
|
|
if (!BN_MONT_CTX_set(mont,a,ctx2)) goto err;
|
|
|
|
for (i=0; i<checks; i++)
|
|
{
|
|
if (!BN_rand(check,BN_num_bits(a)-1,0,0)) goto err;
|
|
j=witness(check,a,ctx,ctx2,mont);
|
|
if (j == -1) goto err;
|
|
if (j)
|
|
{
|
|
ret=0;
|
|
goto err;
|
|
}
|
|
if (callback != NULL) callback(1,c2++,cb_arg);
|
|
}
|
|
ret=1;
|
|
err:
|
|
ctx->tos--;
|
|
if ((ctx_passed == NULL) && (ctx != NULL))
|
|
BN_CTX_free(ctx);
|
|
if (ctx2 != NULL)
|
|
BN_CTX_free(ctx2);
|
|
if (mont != NULL) BN_MONT_CTX_free(mont);
|
|
|
|
return(ret);
|
|
}
|
|
|
|
#define RECP_MUL_MOD
|
|
|
|
static int witness(a,n,ctx,ctx2,mont)
|
|
BIGNUM *a;
|
|
BIGNUM *n;
|
|
BN_CTX *ctx,*ctx2;
|
|
BN_MONT_CTX *mont;
|
|
{
|
|
int k,i,ret= -1,good;
|
|
BIGNUM *d,*dd,*tmp,*d1,*d2,*n1;
|
|
BIGNUM *mont_one,*mont_n1,*mont_a;
|
|
|
|
d1= &(ctx->bn[ctx->tos]);
|
|
d2= &(ctx->bn[ctx->tos+1]);
|
|
n1= &(ctx->bn[ctx->tos+2]);
|
|
ctx->tos+=3;
|
|
|
|
mont_one= &(ctx2->bn[ctx2->tos]);
|
|
mont_n1= &(ctx2->bn[ctx2->tos+1]);
|
|
mont_a= &(ctx2->bn[ctx2->tos+2]);
|
|
ctx2->tos+=3;
|
|
|
|
d=d1;
|
|
dd=d2;
|
|
if (!BN_one(d)) goto err;
|
|
if (!BN_sub(n1,n,d)) goto err; /* n1=n-1; */
|
|
k=BN_num_bits(n1);
|
|
|
|
if (!BN_to_montgomery(mont_one,BN_value_one(),mont,ctx2)) goto err;
|
|
if (!BN_to_montgomery(mont_n1,n1,mont,ctx2)) goto err;
|
|
if (!BN_to_montgomery(mont_a,a,mont,ctx2)) goto err;
|
|
|
|
BN_copy(d,mont_one);
|
|
for (i=k-1; i>=0; i--)
|
|
{
|
|
if ( (BN_cmp(d,mont_one) != 0) &&
|
|
(BN_cmp(d,mont_n1) != 0))
|
|
good=1;
|
|
else
|
|
good=0;
|
|
|
|
BN_mod_mul_montgomery(dd,d,d,mont,ctx2);
|
|
|
|
if (good && (BN_cmp(dd,mont_one) == 0))
|
|
{
|
|
ret=1;
|
|
goto err;
|
|
}
|
|
if (BN_is_bit_set(n1,i))
|
|
{
|
|
BN_mod_mul_montgomery(d,dd,mont_a,mont,ctx2);
|
|
}
|
|
else
|
|
{
|
|
tmp=d;
|
|
d=dd;
|
|
dd=tmp;
|
|
}
|
|
}
|
|
if (BN_cmp(d,mont_one) == 0)
|
|
i=0;
|
|
else i=1;
|
|
ret=i;
|
|
err:
|
|
ctx->tos-=3;
|
|
ctx2->tos-=3;
|
|
return(ret);
|
|
}
|
|
|
|
static int probable_prime(rnd, bits)
|
|
BIGNUM *rnd;
|
|
int bits;
|
|
{
|
|
int i;
|
|
MS_STATIC BN_ULONG mods[NUMPRIMES];
|
|
BN_ULONG delta,d;
|
|
|
|
again:
|
|
if (!BN_rand(rnd,bits,1,1)) return(0);
|
|
/* we now have a random number 'rand' to test. */
|
|
for (i=1; i<NUMPRIMES; i++)
|
|
mods[i]=BN_mod_word(rnd,(BN_ULONG)primes[i]);
|
|
delta=0;
|
|
loop: for (i=1; i<NUMPRIMES; i++)
|
|
{
|
|
/* check that rnd is not a prime and also
|
|
* that gcd(rnd-1,primes) == 1 (except for 2) */
|
|
if (((mods[i]+delta)%primes[i]) <= 1)
|
|
{
|
|
d=delta;
|
|
delta+=2;
|
|
/* perhaps need to check for overflow of
|
|
* delta (but delta can be upto 2^32)
|
|
* 21-May-98 eay - added overflow check */
|
|
if (delta < d) goto again;
|
|
goto loop;
|
|
}
|
|
}
|
|
if (!BN_add_word(rnd,delta)) return(0);
|
|
return(1);
|
|
}
|
|
|
|
static int probable_prime_dh(rnd, bits, add, rem,ctx)
|
|
BIGNUM *rnd;
|
|
int bits;
|
|
BIGNUM *add;
|
|
BIGNUM *rem;
|
|
BN_CTX *ctx;
|
|
{
|
|
int i,ret=0;
|
|
BIGNUM *t1;
|
|
|
|
t1= &(ctx->bn[ctx->tos++]);
|
|
|
|
if (!BN_rand(rnd,bits,0,1)) goto err;
|
|
|
|
/* we need ((rnd-rem) % add) == 0 */
|
|
|
|
if (!BN_mod(t1,rnd,add,ctx)) goto err;
|
|
if (!BN_sub(rnd,rnd,t1)) goto err;
|
|
if (rem == NULL)
|
|
{ if (!BN_add_word(rnd,1)) goto err; }
|
|
else
|
|
{ if (!BN_add(rnd,rnd,rem)) goto err; }
|
|
|
|
/* we now have a random number 'rand' to test. */
|
|
|
|
loop: for (i=1; i<NUMPRIMES; i++)
|
|
{
|
|
/* check that rnd is a prime */
|
|
if (BN_mod_word(rnd,(BN_LONG)primes[i]) <= 1)
|
|
{
|
|
if (!BN_add(rnd,rnd,add)) goto err;
|
|
goto loop;
|
|
}
|
|
}
|
|
ret=1;
|
|
err:
|
|
ctx->tos--;
|
|
return(ret);
|
|
}
|
|
|
|
static int probable_prime_dh_strong(p, bits, padd, rem,ctx)
|
|
BIGNUM *p;
|
|
int bits;
|
|
BIGNUM *padd;
|
|
BIGNUM *rem;
|
|
BN_CTX *ctx;
|
|
{
|
|
int i,ret=0;
|
|
BIGNUM *t1,*qadd=NULL,*q=NULL;
|
|
|
|
bits--;
|
|
t1= &(ctx->bn[ctx->tos++]);
|
|
q= &(ctx->bn[ctx->tos++]);
|
|
qadd= &(ctx->bn[ctx->tos++]);
|
|
|
|
if (!BN_rshift1(qadd,padd)) goto err;
|
|
|
|
if (!BN_rand(q,bits,0,1)) goto err;
|
|
|
|
/* we need ((rnd-rem) % add) == 0 */
|
|
if (!BN_mod(t1,q,qadd,ctx)) goto err;
|
|
if (!BN_sub(q,q,t1)) goto err;
|
|
if (rem == NULL)
|
|
{ if (!BN_add_word(q,1)) goto err; }
|
|
else
|
|
{
|
|
if (!BN_rshift1(t1,rem)) goto err;
|
|
if (!BN_add(q,q,t1)) goto err;
|
|
}
|
|
|
|
/* we now have a random number 'rand' to test. */
|
|
if (!BN_lshift1(p,q)) goto err;
|
|
if (!BN_add_word(p,1)) goto err;
|
|
|
|
loop: for (i=1; i<NUMPRIMES; i++)
|
|
{
|
|
/* check that p and q are prime */
|
|
/* check that for p and q
|
|
* gcd(p-1,primes) == 1 (except for 2) */
|
|
if ( (BN_mod_word(p,(BN_LONG)primes[i]) == 0) ||
|
|
(BN_mod_word(q,(BN_LONG)primes[i]) == 0))
|
|
{
|
|
if (!BN_add(p,p,padd)) goto err;
|
|
if (!BN_add(q,q,qadd)) goto err;
|
|
goto loop;
|
|
}
|
|
}
|
|
ret=1;
|
|
err:
|
|
ctx->tos-=3;
|
|
return(ret);
|
|
}
|
|
|
|
#if 0
|
|
static int witness(a, n,ctx)
|
|
BIGNUM *a;
|
|
BIGNUM *n;
|
|
BN_CTX *ctx;
|
|
{
|
|
int k,i,nb,ret= -1;
|
|
BIGNUM *d,*dd,*tmp;
|
|
BIGNUM *d1,*d2,*x,*n1,*inv;
|
|
|
|
d1= &(ctx->bn[ctx->tos]);
|
|
d2= &(ctx->bn[ctx->tos+1]);
|
|
x= &(ctx->bn[ctx->tos+2]);
|
|
n1= &(ctx->bn[ctx->tos+3]);
|
|
inv=&(ctx->bn[ctx->tos+4]);
|
|
ctx->tos+=5;
|
|
|
|
d=d1;
|
|
dd=d2;
|
|
if (!BN_one(d)) goto err;
|
|
if (!BN_sub(n1,n,d)) goto err; /* n1=n-1; */
|
|
k=BN_num_bits(n1);
|
|
|
|
/* i=BN_num_bits(n); */
|
|
#ifdef RECP_MUL_MOD
|
|
nb=BN_reciprocal(inv,n,ctx); /**/
|
|
if (nb == -1) goto err;
|
|
#endif
|
|
|
|
for (i=k-1; i>=0; i--)
|
|
{
|
|
if (BN_copy(x,d) == NULL) goto err;
|
|
#ifndef RECP_MUL_MOD
|
|
if (!BN_mod_mul(dd,d,d,n,ctx)) goto err;
|
|
#else
|
|
if (!BN_mod_mul_reciprocal(dd,d,d,n,inv,nb,ctx)) goto err;
|
|
#endif
|
|
if ( BN_is_one(dd) &&
|
|
!BN_is_one(x) &&
|
|
(BN_cmp(x,n1) != 0))
|
|
{
|
|
ret=1;
|
|
goto err;
|
|
}
|
|
if (BN_is_bit_set(n1,i))
|
|
{
|
|
#ifndef RECP_MUL_MOD
|
|
if (!BN_mod_mul(d,dd,a,n,ctx)) goto err;
|
|
#else
|
|
if (!BN_mod_mul_reciprocal(d,dd,a,n,inv,nb,ctx)) goto err;
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
tmp=d;
|
|
d=dd;
|
|
dd=tmp;
|
|
}
|
|
}
|
|
if (BN_is_one(d))
|
|
i=0;
|
|
else i=1;
|
|
ret=i;
|
|
err:
|
|
ctx->tos-=5;
|
|
return(ret);
|
|
}
|
|
#endif
|