openssl/crypto/rand/drbg_lib.c
Rich Salz bc5145e372 Instantiate when RAND_status() checks
Reviewed-by: Kurt Roeckx <kurt@roeckx.be>
(Merged from https://github.com/openssl/openssl/pull/4150)
2017-08-13 15:52:30 -04:00

429 lines
12 KiB
C

/*
* Copyright 2011-2017 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the OpenSSL license (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <string.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/rand.h>
#include "rand_lcl.h"
/*
* Support framework for NIST SP 800-90A DRBG, AES-CTR mode.
* The RAND_DRBG is OpenSSL's pointer to an instance of the DRBG.
*
* The OpenSSL model is to have new and free functions, and that new
* does all initialization. That is not the NIST model, which has
* instantiation and un-instantiate, and re-use within a new/free
* lifecycle. (No doubt this comes from the desire to support hardware
* DRBG, where allocation of resources on something like an HSM is
* a much bigger deal than just re-setting an allocated resource.)
*/
/*
* Set/initialize |drbg| to be of type |nid|, with optional |flags|.
* Return -2 if the type is not supported, 1 on success and -1 on
* failure.
*/
int RAND_DRBG_set(RAND_DRBG *drbg, int nid, unsigned int flags)
{
int ret = 1;
drbg->state = DRBG_UNINITIALISED;
drbg->flags = flags;
drbg->nid = nid;
switch (nid) {
default:
RANDerr(RAND_F_RAND_DRBG_SET, RAND_R_UNSUPPORTED_DRBG_TYPE);
return -2;
case 0:
/* Uninitialized; that's okay. */
return 1;
case NID_aes_128_ctr:
case NID_aes_192_ctr:
case NID_aes_256_ctr:
ret = ctr_init(drbg);
break;
}
if (ret < 0)
RANDerr(RAND_F_RAND_DRBG_SET, RAND_R_ERROR_INITIALISING_DRBG);
return ret;
}
/*
* Allocate memory and initialize a new DRBG. The |parent|, if not
* NULL, will be used to auto-seed this RAND_DRBG as needed.
*/
RAND_DRBG *RAND_DRBG_new(int type, unsigned int flags, RAND_DRBG *parent)
{
RAND_DRBG *drbg = OPENSSL_zalloc(sizeof(*drbg));
unsigned char *ucp = OPENSSL_zalloc(RANDOMNESS_NEEDED);
if (drbg == NULL || ucp == NULL) {
RANDerr(RAND_F_RAND_DRBG_NEW, ERR_R_MALLOC_FAILURE);
goto err;
}
drbg->size = RANDOMNESS_NEEDED;
drbg->randomness = ucp;
drbg->fork_count = rand_fork_count;
drbg->parent = parent;
if (RAND_DRBG_set(drbg, type, flags) < 0)
goto err;
if (parent != NULL) {
if (parent->state == DRBG_UNINITIALISED
&& RAND_DRBG_instantiate(parent, NULL, 0) == 0)
goto err;
if (!RAND_DRBG_set_callbacks(drbg, drbg_entropy_from_parent,
drbg_release_entropy,
NULL, NULL)
/*
* Add in our address. Note we are adding the pointer
* itself, not its contents!
*/
|| !RAND_DRBG_instantiate(drbg,
(unsigned char*)&drbg, sizeof(drbg)))
goto err;
}
return drbg;
err:
OPENSSL_free(ucp);
OPENSSL_free(drbg);
return NULL;
}
RAND_DRBG *RAND_DRBG_get0_global(void)
{
return &rand_drbg;
}
/*
* Uninstantiate |drbg| and free all memory.
*/
void RAND_DRBG_free(RAND_DRBG *drbg)
{
/* The global DRBG is free'd by rand_cleanup_int() */
if (drbg == NULL || drbg == &rand_drbg)
return;
ctr_uninstantiate(drbg);
OPENSSL_cleanse(drbg->randomness, drbg->size);
OPENSSL_free(drbg->randomness);
CRYPTO_free_ex_data(CRYPTO_EX_INDEX_DRBG, drbg, &drbg->ex_data);
OPENSSL_clear_free(drbg, sizeof(*drbg));
}
/*
* Instantiate |drbg|, after it has been initialized. Use |pers| and
* |perslen| as prediction-resistance input.
*/
int RAND_DRBG_instantiate(RAND_DRBG *drbg,
const unsigned char *pers, size_t perslen)
{
unsigned char *nonce = NULL, *entropy = NULL;
size_t noncelen = 0, entlen = 0;
if (perslen > drbg->max_pers) {
RANDerr(RAND_F_RAND_DRBG_INSTANTIATE,
RAND_R_PERSONALISATION_STRING_TOO_LONG);
goto end;
}
if (drbg->state != DRBG_UNINITIALISED) {
RANDerr(RAND_F_RAND_DRBG_INSTANTIATE,
drbg->state == DRBG_ERROR ? RAND_R_IN_ERROR_STATE
: RAND_R_ALREADY_INSTANTIATED);
goto end;
}
drbg->state = DRBG_ERROR;
if (drbg->get_entropy != NULL)
entlen = drbg->get_entropy(drbg, &entropy, drbg->strength,
drbg->min_entropy, drbg->max_entropy);
if (entlen < drbg->min_entropy || entlen > drbg->max_entropy) {
RANDerr(RAND_F_RAND_DRBG_INSTANTIATE, RAND_R_ERROR_RETRIEVING_ENTROPY);
goto end;
}
if (drbg->max_nonce > 0 && drbg->get_nonce != NULL) {
noncelen = drbg->get_nonce(drbg, &nonce, drbg->strength / 2,
drbg->min_nonce, drbg->max_nonce);
if (noncelen < drbg->min_nonce || noncelen > drbg->max_nonce) {
RANDerr(RAND_F_RAND_DRBG_INSTANTIATE, RAND_R_ERROR_RETRIEVING_NONCE);
goto end;
}
}
if (!ctr_instantiate(drbg, entropy, entlen,
nonce, noncelen, pers, perslen)) {
RANDerr(RAND_F_RAND_DRBG_INSTANTIATE, RAND_R_ERROR_INSTANTIATING_DRBG);
goto end;
}
drbg->state = DRBG_READY;
drbg->reseed_counter = 1;
end:
if (entropy != NULL && drbg->cleanup_entropy != NULL)
drbg->cleanup_entropy(drbg, entropy);
if (nonce != NULL && drbg->cleanup_nonce!= NULL )
drbg->cleanup_nonce(drbg, nonce);
if (drbg->state == DRBG_READY)
return 1;
return 0;
}
/*
* Uninstantiate |drbg|. Must be instantiated before it can be used.
*/
int RAND_DRBG_uninstantiate(RAND_DRBG *drbg)
{
int ret = ctr_uninstantiate(drbg);
OPENSSL_cleanse(&drbg->ctr, sizeof(drbg->ctr));
drbg->state = DRBG_UNINITIALISED;
return ret;
}
/*
* Mix in the specified data to reseed |drbg|.
*/
int RAND_DRBG_reseed(RAND_DRBG *drbg,
const unsigned char *adin, size_t adinlen)
{
unsigned char *entropy = NULL;
size_t entlen = 0;
if (drbg->state == DRBG_ERROR) {
RANDerr(RAND_F_RAND_DRBG_RESEED, RAND_R_IN_ERROR_STATE);
return 0;
}
if (drbg->state == DRBG_UNINITIALISED) {
RANDerr(RAND_F_RAND_DRBG_RESEED, RAND_R_NOT_INSTANTIATED);
return 0;
}
if (adin == NULL)
adinlen = 0;
else if (adinlen > drbg->max_adin) {
RANDerr(RAND_F_RAND_DRBG_RESEED, RAND_R_ADDITIONAL_INPUT_TOO_LONG);
return 0;
}
drbg->state = DRBG_ERROR;
if (drbg->get_entropy != NULL)
entlen = drbg->get_entropy(drbg, &entropy, drbg->strength,
drbg->min_entropy, drbg->max_entropy);
if (entlen < drbg->min_entropy || entlen > drbg->max_entropy) {
RANDerr(RAND_F_RAND_DRBG_RESEED, RAND_R_ERROR_RETRIEVING_ENTROPY);
goto end;
}
if (!ctr_reseed(drbg, entropy, entlen, adin, adinlen))
goto end;
drbg->state = DRBG_READY;
drbg->reseed_counter = 1;
end:
if (entropy != NULL && drbg->cleanup_entropy != NULL)
drbg->cleanup_entropy(drbg, entropy);
if (drbg->state == DRBG_READY)
return 1;
return 0;
}
/*
* Generate |outlen| bytes into the buffer at |out|. Reseed if we need
* to or if |prediction_resistance| is set. Additional input can be
* sent in |adin| and |adinlen|.
*/
int RAND_DRBG_generate(RAND_DRBG *drbg, unsigned char *out, size_t outlen,
int prediction_resistance,
const unsigned char *adin, size_t adinlen)
{
if (drbg->state == DRBG_ERROR) {
RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_IN_ERROR_STATE);
return 0;
}
if (drbg->state == DRBG_UNINITIALISED) {
RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_NOT_INSTANTIATED);
return 0;
}
if (outlen > drbg->max_request) {
RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_REQUEST_TOO_LARGE_FOR_DRBG);
return 0;
}
if (adinlen > drbg->max_adin) {
RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_ADDITIONAL_INPUT_TOO_LONG);
return 0;
}
if (drbg->fork_count != rand_fork_count) {
drbg->fork_count = rand_fork_count;
drbg->state = DRBG_RESEED;
}
if (drbg->reseed_counter >= drbg->reseed_interval)
drbg->state = DRBG_RESEED;
if (drbg->state == DRBG_RESEED || prediction_resistance) {
if (!RAND_DRBG_reseed(drbg, adin, adinlen)) {
RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_RESEED_ERROR);
return 0;
}
adin = NULL;
adinlen = 0;
}
if (!ctr_generate(drbg, out, outlen, adin, adinlen)) {
drbg->state = DRBG_ERROR;
RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_GENERATE_ERROR);
return 0;
}
if (drbg->reseed_counter >= drbg->reseed_interval)
drbg->state = DRBG_RESEED;
else
drbg->reseed_counter++;
return 1;
}
/*
* Set the callbacks for entropy and nonce. We currently don't use
* the nonce; that's mainly for the KATs
*/
int RAND_DRBG_set_callbacks(RAND_DRBG *drbg,
RAND_DRBG_get_entropy_fn cb_get_entropy,
RAND_DRBG_cleanup_entropy_fn cb_cleanup_entropy,
RAND_DRBG_get_nonce_fn cb_get_nonce,
RAND_DRBG_cleanup_nonce_fn cb_cleanup_nonce)
{
if (drbg->state != DRBG_UNINITIALISED)
return 0;
drbg->get_entropy = cb_get_entropy;
drbg->cleanup_entropy = cb_cleanup_entropy;
drbg->get_nonce = cb_get_nonce;
drbg->cleanup_nonce = cb_cleanup_nonce;
return 1;
}
/*
* Set the reseed interval.
*/
int RAND_DRBG_set_reseed_interval(RAND_DRBG *drbg, int interval)
{
if (interval < 0 || interval > MAX_RESEED)
return 0;
drbg->reseed_interval = interval;
return 1;
}
/*
* Get and set the EXDATA
*/
int RAND_DRBG_set_ex_data(RAND_DRBG *drbg, int idx, void *arg)
{
return CRYPTO_set_ex_data(&drbg->ex_data, idx, arg);
}
void *RAND_DRBG_get_ex_data(const RAND_DRBG *drbg, int idx)
{
return CRYPTO_get_ex_data(&drbg->ex_data, idx);
}
/*
* The following functions provide a RAND_METHOD that works on the
* global DRBG. They lock.
*/
static int drbg_bytes(unsigned char *out, int count)
{
int ret = 0;
size_t chunk;
CRYPTO_THREAD_write_lock(rand_drbg.lock);
if (rand_drbg.state == DRBG_UNINITIALISED
&& RAND_DRBG_instantiate(&rand_drbg, NULL, 0) == 0)
goto err;
for ( ; count > 0; count -= chunk, out += chunk) {
chunk = count;
if (chunk > rand_drbg.max_request)
chunk = rand_drbg.max_request;
ret = RAND_DRBG_generate(&rand_drbg, out, chunk, 0, NULL, 0);
if (!ret)
goto err;
}
ret = 1;
err:
CRYPTO_THREAD_unlock(rand_drbg.lock);
return ret;
}
static int drbg_add(const void *buf, int num, double randomness)
{
unsigned char *in = (unsigned char *)buf;
unsigned char *out, *end;
CRYPTO_THREAD_write_lock(rand_bytes.lock);
out = &rand_bytes.buff[rand_bytes.curr];
end = &rand_bytes.buff[rand_bytes.size];
/* Copy whatever fits into the end of the buffer. */
for ( ; --num >= 0 && out < end; rand_bytes.curr++)
*out++ = *in++;
/* XOR any the leftover. */
while (num > 0) {
for (out = rand_bytes.buff; --num >= 0 && out < end; )
*out++ ^= *in++;
}
CRYPTO_THREAD_unlock(rand_bytes.lock);
return 1;
}
static int drbg_seed(const void *buf, int num)
{
return drbg_add(buf, num, num);
}
static int drbg_status(void)
{
int ret;
CRYPTO_THREAD_write_lock(rand_drbg.lock);
if (rand_drbg.state == DRBG_UNINITIALISED)
RAND_DRBG_instantiate(&rand_drbg, NULL, 0);
ret = rand_drbg.state == DRBG_READY ? 1 : 0;
CRYPTO_THREAD_unlock(rand_drbg.lock);
return ret;
}
RAND_DRBG rand_drbg; /* The default global DRBG. */
RAND_DRBG priv_drbg; /* The global private-key DRBG. */
RAND_METHOD rand_meth = {
drbg_seed,
drbg_bytes,
NULL,
drbg_add,
drbg_bytes,
drbg_status
};
RAND_METHOD *RAND_OpenSSL(void)
{
return &rand_meth;
}