mirror of
https://github.com/openssl/openssl.git
synced 2024-12-18 14:33:42 +08:00
024d681e69
When configured with "no-mdc2 enable-crypto-mdebug" the evp_test will leak memory due to skipped tests, and error out. Also fix a skip condition Reviewed-by: Richard Levitte <levitte@openssl.org> Reviewed-by: Rich Salz <rsalz@openssl.org> (Merged from https://github.com/openssl/openssl/pull/1968)
1862 lines
50 KiB
C
1862 lines
50 KiB
C
/*
|
|
* Copyright 2015-2016 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <string.h>
|
|
#include <stdlib.h>
|
|
#include <ctype.h>
|
|
#include <openssl/evp.h>
|
|
#include <openssl/pem.h>
|
|
#include <openssl/err.h>
|
|
#include <openssl/x509v3.h>
|
|
#include <openssl/pkcs12.h>
|
|
#include <openssl/kdf.h>
|
|
#include "internal/numbers.h"
|
|
|
|
/* Remove spaces from beginning and end of a string */
|
|
|
|
static void remove_space(char **pval)
|
|
{
|
|
unsigned char *p = (unsigned char *)*pval;
|
|
|
|
while (isspace(*p))
|
|
p++;
|
|
|
|
*pval = (char *)p;
|
|
|
|
p = p + strlen(*pval) - 1;
|
|
|
|
/* Remove trailing space */
|
|
while (isspace(*p))
|
|
*p-- = 0;
|
|
}
|
|
|
|
/*
|
|
* Given a line of the form:
|
|
* name = value # comment
|
|
* extract name and value. NB: modifies passed buffer.
|
|
*/
|
|
|
|
static int parse_line(char **pkw, char **pval, char *linebuf)
|
|
{
|
|
char *p;
|
|
|
|
p = linebuf + strlen(linebuf) - 1;
|
|
|
|
if (*p != '\n') {
|
|
fprintf(stderr, "FATAL: missing EOL\n");
|
|
exit(1);
|
|
}
|
|
|
|
/* Look for # */
|
|
|
|
p = strchr(linebuf, '#');
|
|
|
|
if (p)
|
|
*p = '\0';
|
|
|
|
/* Look for = sign */
|
|
p = strchr(linebuf, '=');
|
|
|
|
/* If no '=' exit */
|
|
if (!p)
|
|
return 0;
|
|
|
|
*p++ = '\0';
|
|
|
|
*pkw = linebuf;
|
|
*pval = p;
|
|
|
|
/* Remove spaces from keyword and value */
|
|
remove_space(pkw);
|
|
remove_space(pval);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Unescape some escape sequences in string literals.
|
|
* Return the result in a newly allocated buffer.
|
|
* Currently only supports '\n'.
|
|
* If the input length is 0, returns a valid 1-byte buffer, but sets
|
|
* the length to 0.
|
|
*/
|
|
static unsigned char* unescape(const char *input, size_t input_len,
|
|
size_t *out_len)
|
|
{
|
|
unsigned char *ret, *p;
|
|
size_t i;
|
|
if (input_len == 0) {
|
|
*out_len = 0;
|
|
return OPENSSL_zalloc(1);
|
|
}
|
|
|
|
/* Escaping is non-expanding; over-allocate original size for simplicity. */
|
|
ret = p = OPENSSL_malloc(input_len);
|
|
if (ret == NULL)
|
|
return NULL;
|
|
|
|
for (i = 0; i < input_len; i++) {
|
|
if (input[i] == '\\') {
|
|
if (i == input_len - 1 || input[i+1] != 'n')
|
|
goto err;
|
|
*p++ = '\n';
|
|
i++;
|
|
} else {
|
|
*p++ = input[i];
|
|
}
|
|
}
|
|
|
|
*out_len = p - ret;
|
|
return ret;
|
|
|
|
err:
|
|
OPENSSL_free(ret);
|
|
return NULL;
|
|
}
|
|
|
|
/* For a hex string "value" convert to a binary allocated buffer */
|
|
static int test_bin(const char *value, unsigned char **buf, size_t *buflen)
|
|
{
|
|
long len;
|
|
|
|
*buflen = 0;
|
|
if (!*value) {
|
|
/*
|
|
* Don't return NULL for zero length buffer.
|
|
* This is needed for some tests with empty keys: HMAC_Init_ex() expects
|
|
* a non-NULL key buffer even if the key length is 0, in order to detect
|
|
* key reset.
|
|
*/
|
|
*buf = OPENSSL_malloc(1);
|
|
if (!*buf)
|
|
return 0;
|
|
**buf = 0;
|
|
*buflen = 0;
|
|
return 1;
|
|
}
|
|
/* Check for string literal */
|
|
if (value[0] == '"') {
|
|
size_t vlen;
|
|
value++;
|
|
vlen = strlen(value);
|
|
if (value[vlen - 1] != '"')
|
|
return 0;
|
|
vlen--;
|
|
*buf = unescape(value, vlen, buflen);
|
|
if (*buf == NULL)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
*buf = OPENSSL_hexstr2buf(value, &len);
|
|
if (!*buf) {
|
|
fprintf(stderr, "Value=%s\n", value);
|
|
ERR_print_errors_fp(stderr);
|
|
return -1;
|
|
}
|
|
/* Size of input buffer means we'll never overflow */
|
|
*buflen = len;
|
|
return 1;
|
|
}
|
|
#ifndef OPENSSL_NO_SCRYPT
|
|
/* Currently only used by scrypt tests */
|
|
/* Parse unsigned decimal 64 bit integer value */
|
|
static int test_uint64(const char *value, uint64_t *pr)
|
|
{
|
|
const char *p = value;
|
|
if (!*p) {
|
|
fprintf(stderr, "Invalid empty integer value\n");
|
|
return -1;
|
|
}
|
|
*pr = 0;
|
|
while (*p) {
|
|
if (*pr > UINT64_MAX/10) {
|
|
fprintf(stderr, "Integer string overflow value=%s\n", value);
|
|
return -1;
|
|
}
|
|
*pr *= 10;
|
|
if (*p < '0' || *p > '9') {
|
|
fprintf(stderr, "Invalid integer string value=%s\n", value);
|
|
return -1;
|
|
}
|
|
*pr += *p - '0';
|
|
p++;
|
|
}
|
|
return 1;
|
|
}
|
|
#endif
|
|
|
|
/* Structure holding test information */
|
|
struct evp_test {
|
|
/* file being read */
|
|
BIO *in;
|
|
/* List of public and private keys */
|
|
struct key_list *private;
|
|
struct key_list *public;
|
|
/* method for this test */
|
|
const struct evp_test_method *meth;
|
|
/* current line being processed */
|
|
unsigned int line;
|
|
/* start line of current test */
|
|
unsigned int start_line;
|
|
/* Error string for test */
|
|
const char *err, *aux_err;
|
|
/* Expected error value of test */
|
|
char *expected_err;
|
|
/* Number of tests */
|
|
int ntests;
|
|
/* Error count */
|
|
int errors;
|
|
/* Number of tests skipped */
|
|
int nskip;
|
|
/* If output mismatch expected and got value */
|
|
unsigned char *out_received;
|
|
size_t out_received_len;
|
|
unsigned char *out_expected;
|
|
size_t out_expected_len;
|
|
/* test specific data */
|
|
void *data;
|
|
/* Current test should be skipped */
|
|
int skip;
|
|
};
|
|
|
|
struct key_list {
|
|
char *name;
|
|
EVP_PKEY *key;
|
|
struct key_list *next;
|
|
};
|
|
|
|
/* Test method structure */
|
|
struct evp_test_method {
|
|
/* Name of test as it appears in file */
|
|
const char *name;
|
|
/* Initialise test for "alg" */
|
|
int (*init) (struct evp_test * t, const char *alg);
|
|
/* Clean up method */
|
|
void (*cleanup) (struct evp_test * t);
|
|
/* Test specific name value pair processing */
|
|
int (*parse) (struct evp_test * t, const char *name, const char *value);
|
|
/* Run the test itself */
|
|
int (*run_test) (struct evp_test * t);
|
|
};
|
|
|
|
static const struct evp_test_method digest_test_method, cipher_test_method;
|
|
static const struct evp_test_method mac_test_method;
|
|
static const struct evp_test_method psign_test_method, pverify_test_method;
|
|
static const struct evp_test_method pdecrypt_test_method;
|
|
static const struct evp_test_method pverify_recover_test_method;
|
|
static const struct evp_test_method pderive_test_method;
|
|
static const struct evp_test_method pbe_test_method;
|
|
static const struct evp_test_method encode_test_method;
|
|
static const struct evp_test_method kdf_test_method;
|
|
|
|
static const struct evp_test_method *evp_test_list[] = {
|
|
&digest_test_method,
|
|
&cipher_test_method,
|
|
&mac_test_method,
|
|
&psign_test_method,
|
|
&pverify_test_method,
|
|
&pdecrypt_test_method,
|
|
&pverify_recover_test_method,
|
|
&pderive_test_method,
|
|
&pbe_test_method,
|
|
&encode_test_method,
|
|
&kdf_test_method,
|
|
NULL
|
|
};
|
|
|
|
static const struct evp_test_method *evp_find_test(const char *name)
|
|
{
|
|
const struct evp_test_method **tt;
|
|
|
|
for (tt = evp_test_list; *tt; tt++) {
|
|
if (strcmp(name, (*tt)->name) == 0)
|
|
return *tt;
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
static void hex_print(const char *name, const unsigned char *buf, size_t len)
|
|
{
|
|
size_t i;
|
|
fprintf(stderr, "%s ", name);
|
|
for (i = 0; i < len; i++)
|
|
fprintf(stderr, "%02X", buf[i]);
|
|
fputs("\n", stderr);
|
|
}
|
|
|
|
static void free_expected(struct evp_test *t)
|
|
{
|
|
OPENSSL_free(t->expected_err);
|
|
t->expected_err = NULL;
|
|
OPENSSL_free(t->out_expected);
|
|
OPENSSL_free(t->out_received);
|
|
t->out_expected = NULL;
|
|
t->out_received = NULL;
|
|
t->out_expected_len = 0;
|
|
t->out_received_len = 0;
|
|
/* Literals. */
|
|
t->err = NULL;
|
|
}
|
|
|
|
static void print_expected(struct evp_test *t)
|
|
{
|
|
if (t->out_expected == NULL && t->out_received == NULL)
|
|
return;
|
|
hex_print("Expected:", t->out_expected, t->out_expected_len);
|
|
hex_print("Got: ", t->out_received, t->out_received_len);
|
|
free_expected(t);
|
|
}
|
|
|
|
static int check_test_error(struct evp_test *t)
|
|
{
|
|
if (!t->err && !t->expected_err)
|
|
return 1;
|
|
if (t->err && !t->expected_err) {
|
|
if (t->aux_err != NULL) {
|
|
fprintf(stderr, "Test line %d(%s): unexpected error %s\n",
|
|
t->start_line, t->aux_err, t->err);
|
|
} else {
|
|
fprintf(stderr, "Test line %d: unexpected error %s\n",
|
|
t->start_line, t->err);
|
|
}
|
|
print_expected(t);
|
|
return 0;
|
|
}
|
|
if (!t->err && t->expected_err) {
|
|
fprintf(stderr, "Test line %d: succeeded expecting %s\n",
|
|
t->start_line, t->expected_err);
|
|
return 0;
|
|
}
|
|
if (strcmp(t->err, t->expected_err) == 0)
|
|
return 1;
|
|
|
|
fprintf(stderr, "Test line %d: expecting %s got %s\n",
|
|
t->start_line, t->expected_err, t->err);
|
|
return 0;
|
|
}
|
|
|
|
/* Setup a new test, run any existing test */
|
|
|
|
static int setup_test(struct evp_test *t, const struct evp_test_method *tmeth)
|
|
{
|
|
/* If we already have a test set up run it */
|
|
if (t->meth) {
|
|
t->ntests++;
|
|
if (t->skip) {
|
|
t->nskip++;
|
|
} else {
|
|
/* run the test */
|
|
t->err = NULL;
|
|
if (t->meth->run_test(t) != 1) {
|
|
fprintf(stderr, "%s test error line %d\n",
|
|
t->meth->name, t->start_line);
|
|
return 0;
|
|
}
|
|
if (!check_test_error(t)) {
|
|
if (t->err)
|
|
ERR_print_errors_fp(stderr);
|
|
t->errors++;
|
|
}
|
|
}
|
|
/* clean it up */
|
|
ERR_clear_error();
|
|
if (t->data != NULL) {
|
|
t->meth->cleanup(t);
|
|
OPENSSL_free(t->data);
|
|
t->data = NULL;
|
|
}
|
|
OPENSSL_free(t->expected_err);
|
|
t->expected_err = NULL;
|
|
free_expected(t);
|
|
}
|
|
t->meth = tmeth;
|
|
return 1;
|
|
}
|
|
|
|
static int find_key(EVP_PKEY **ppk, const char *name, struct key_list *lst)
|
|
{
|
|
for (; lst; lst = lst->next) {
|
|
if (strcmp(lst->name, name) == 0) {
|
|
if (ppk)
|
|
*ppk = lst->key;
|
|
return 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static void free_key_list(struct key_list *lst)
|
|
{
|
|
while (lst != NULL) {
|
|
struct key_list *ltmp;
|
|
EVP_PKEY_free(lst->key);
|
|
OPENSSL_free(lst->name);
|
|
ltmp = lst->next;
|
|
OPENSSL_free(lst);
|
|
lst = ltmp;
|
|
}
|
|
}
|
|
|
|
static int check_unsupported()
|
|
{
|
|
long err = ERR_peek_error();
|
|
if (ERR_GET_LIB(err) == ERR_LIB_EVP
|
|
&& ERR_GET_REASON(err) == EVP_R_UNSUPPORTED_ALGORITHM) {
|
|
ERR_clear_error();
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int process_test(struct evp_test *t, char *buf, int verbose)
|
|
{
|
|
char *keyword = NULL, *value = NULL;
|
|
int rv = 0, add_key = 0;
|
|
long save_pos = 0;
|
|
struct key_list **lst = NULL, *key = NULL;
|
|
EVP_PKEY *pk = NULL;
|
|
const struct evp_test_method *tmeth = NULL;
|
|
if (verbose)
|
|
fputs(buf, stdout);
|
|
if (!parse_line(&keyword, &value, buf))
|
|
return 1;
|
|
if (strcmp(keyword, "PrivateKey") == 0) {
|
|
save_pos = BIO_tell(t->in);
|
|
pk = PEM_read_bio_PrivateKey(t->in, NULL, 0, NULL);
|
|
if (pk == NULL && !check_unsupported()) {
|
|
fprintf(stderr, "Error reading private key %s\n", value);
|
|
ERR_print_errors_fp(stderr);
|
|
return 0;
|
|
}
|
|
lst = &t->private;
|
|
add_key = 1;
|
|
}
|
|
if (strcmp(keyword, "PublicKey") == 0) {
|
|
save_pos = BIO_tell(t->in);
|
|
pk = PEM_read_bio_PUBKEY(t->in, NULL, 0, NULL);
|
|
if (pk == NULL && !check_unsupported()) {
|
|
fprintf(stderr, "Error reading public key %s\n", value);
|
|
ERR_print_errors_fp(stderr);
|
|
return 0;
|
|
}
|
|
lst = &t->public;
|
|
add_key = 1;
|
|
}
|
|
/* If we have a key add to list */
|
|
if (add_key) {
|
|
char tmpbuf[80];
|
|
if (find_key(NULL, value, *lst)) {
|
|
fprintf(stderr, "Duplicate key %s\n", value);
|
|
return 0;
|
|
}
|
|
key = OPENSSL_malloc(sizeof(*key));
|
|
if (!key)
|
|
return 0;
|
|
key->name = OPENSSL_strdup(value);
|
|
key->key = pk;
|
|
key->next = *lst;
|
|
*lst = key;
|
|
/* Rewind input, read to end and update line numbers */
|
|
(void)BIO_seek(t->in, save_pos);
|
|
while (BIO_gets(t->in,tmpbuf, sizeof(tmpbuf))) {
|
|
t->line++;
|
|
if (strncmp(tmpbuf, "-----END", 8) == 0)
|
|
return 1;
|
|
}
|
|
fprintf(stderr, "Can't find key end\n");
|
|
return 0;
|
|
}
|
|
|
|
/* See if keyword corresponds to a test start */
|
|
tmeth = evp_find_test(keyword);
|
|
if (tmeth) {
|
|
if (!setup_test(t, tmeth))
|
|
return 0;
|
|
t->start_line = t->line;
|
|
t->skip = 0;
|
|
if (!tmeth->init(t, value)) {
|
|
fprintf(stderr, "Unknown %s: %s\n", keyword, value);
|
|
return 0;
|
|
}
|
|
return 1;
|
|
} else if (t->skip) {
|
|
return 1;
|
|
} else if (strcmp(keyword, "Result") == 0) {
|
|
if (t->expected_err) {
|
|
fprintf(stderr, "Line %d: multiple result lines\n", t->line);
|
|
return 0;
|
|
}
|
|
t->expected_err = OPENSSL_strdup(value);
|
|
if (!t->expected_err)
|
|
return 0;
|
|
} else {
|
|
/* Must be test specific line: try to parse it */
|
|
if (t->meth)
|
|
rv = t->meth->parse(t, keyword, value);
|
|
|
|
if (rv == 0)
|
|
fprintf(stderr, "line %d: unexpected keyword %s\n",
|
|
t->line, keyword);
|
|
|
|
if (rv < 0)
|
|
fprintf(stderr, "line %d: error processing keyword %s\n",
|
|
t->line, keyword);
|
|
if (rv <= 0)
|
|
return 0;
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int check_var_length_output(struct evp_test *t,
|
|
const unsigned char *expected,
|
|
size_t expected_len,
|
|
const unsigned char *received,
|
|
size_t received_len)
|
|
{
|
|
if (expected_len == received_len &&
|
|
memcmp(expected, received, expected_len) == 0) {
|
|
return 0;
|
|
}
|
|
|
|
/* The result printing code expects a non-NULL buffer. */
|
|
t->out_expected = OPENSSL_memdup(expected, expected_len ? expected_len : 1);
|
|
t->out_expected_len = expected_len;
|
|
t->out_received = OPENSSL_memdup(received, received_len ? received_len : 1);
|
|
t->out_received_len = received_len;
|
|
if (t->out_expected == NULL || t->out_received == NULL) {
|
|
fprintf(stderr, "Memory allocation error!\n");
|
|
exit(1);
|
|
}
|
|
return 1;
|
|
}
|
|
|
|
static int check_output(struct evp_test *t,
|
|
const unsigned char *expected,
|
|
const unsigned char *received,
|
|
size_t len)
|
|
{
|
|
return check_var_length_output(t, expected, len, received, len);
|
|
}
|
|
|
|
int main(int argc, char **argv)
|
|
{
|
|
BIO *in = NULL;
|
|
char buf[10240];
|
|
struct evp_test t;
|
|
|
|
if (argc != 2) {
|
|
fprintf(stderr, "usage: evp_test testfile.txt\n");
|
|
return 1;
|
|
}
|
|
|
|
CRYPTO_mem_ctrl(CRYPTO_MEM_CHECK_ON);
|
|
|
|
memset(&t, 0, sizeof(t));
|
|
t.start_line = -1;
|
|
in = BIO_new_file(argv[1], "r");
|
|
if (in == NULL) {
|
|
fprintf(stderr, "Can't open %s for reading\n", argv[1]);
|
|
return 1;
|
|
}
|
|
t.in = in;
|
|
while (BIO_gets(in, buf, sizeof(buf))) {
|
|
t.line++;
|
|
if (!process_test(&t, buf, 0))
|
|
exit(1);
|
|
}
|
|
/* Run any final test we have */
|
|
if (!setup_test(&t, NULL))
|
|
exit(1);
|
|
fprintf(stderr, "%d tests completed with %d errors, %d skipped\n",
|
|
t.ntests, t.errors, t.nskip);
|
|
free_key_list(t.public);
|
|
free_key_list(t.private);
|
|
BIO_free(in);
|
|
|
|
#ifndef OPENSSL_NO_CRYPTO_MDEBUG
|
|
if (CRYPTO_mem_leaks_fp(stderr) <= 0)
|
|
return 1;
|
|
#endif
|
|
if (t.errors)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
static void test_free(void *d)
|
|
{
|
|
OPENSSL_free(d);
|
|
}
|
|
|
|
/* Message digest tests */
|
|
|
|
struct digest_data {
|
|
/* Digest this test is for */
|
|
const EVP_MD *digest;
|
|
/* Input to digest */
|
|
unsigned char *input;
|
|
size_t input_len;
|
|
/* Repeat count for input */
|
|
size_t nrpt;
|
|
/* Expected output */
|
|
unsigned char *output;
|
|
size_t output_len;
|
|
};
|
|
|
|
static int digest_test_init(struct evp_test *t, const char *alg)
|
|
{
|
|
const EVP_MD *digest;
|
|
struct digest_data *mdat;
|
|
digest = EVP_get_digestbyname(alg);
|
|
if (!digest) {
|
|
/* If alg has an OID assume disabled algorithm */
|
|
if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
|
|
t->skip = 1;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
mdat = OPENSSL_malloc(sizeof(*mdat));
|
|
mdat->digest = digest;
|
|
mdat->input = NULL;
|
|
mdat->output = NULL;
|
|
mdat->nrpt = 1;
|
|
t->data = mdat;
|
|
return 1;
|
|
}
|
|
|
|
static void digest_test_cleanup(struct evp_test *t)
|
|
{
|
|
struct digest_data *mdat = t->data;
|
|
test_free(mdat->input);
|
|
test_free(mdat->output);
|
|
}
|
|
|
|
static int digest_test_parse(struct evp_test *t,
|
|
const char *keyword, const char *value)
|
|
{
|
|
struct digest_data *mdata = t->data;
|
|
if (strcmp(keyword, "Input") == 0)
|
|
return test_bin(value, &mdata->input, &mdata->input_len);
|
|
if (strcmp(keyword, "Output") == 0)
|
|
return test_bin(value, &mdata->output, &mdata->output_len);
|
|
if (strcmp(keyword, "Count") == 0) {
|
|
long nrpt = atoi(value);
|
|
if (nrpt <= 0)
|
|
return 0;
|
|
mdata->nrpt = (size_t)nrpt;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int digest_test_run(struct evp_test *t)
|
|
{
|
|
struct digest_data *mdata = t->data;
|
|
size_t i;
|
|
const char *err = "INTERNAL_ERROR";
|
|
EVP_MD_CTX *mctx;
|
|
unsigned char md[EVP_MAX_MD_SIZE];
|
|
unsigned int md_len;
|
|
mctx = EVP_MD_CTX_new();
|
|
if (!mctx)
|
|
goto err;
|
|
err = "DIGESTINIT_ERROR";
|
|
if (!EVP_DigestInit_ex(mctx, mdata->digest, NULL))
|
|
goto err;
|
|
err = "DIGESTUPDATE_ERROR";
|
|
for (i = 0; i < mdata->nrpt; i++) {
|
|
if (!EVP_DigestUpdate(mctx, mdata->input, mdata->input_len))
|
|
goto err;
|
|
}
|
|
err = "DIGESTFINAL_ERROR";
|
|
if (!EVP_DigestFinal(mctx, md, &md_len))
|
|
goto err;
|
|
err = "DIGEST_LENGTH_MISMATCH";
|
|
if (md_len != mdata->output_len)
|
|
goto err;
|
|
err = "DIGEST_MISMATCH";
|
|
if (check_output(t, mdata->output, md, md_len))
|
|
goto err;
|
|
err = NULL;
|
|
err:
|
|
EVP_MD_CTX_free(mctx);
|
|
t->err = err;
|
|
return 1;
|
|
}
|
|
|
|
static const struct evp_test_method digest_test_method = {
|
|
"Digest",
|
|
digest_test_init,
|
|
digest_test_cleanup,
|
|
digest_test_parse,
|
|
digest_test_run
|
|
};
|
|
|
|
/* Cipher tests */
|
|
struct cipher_data {
|
|
const EVP_CIPHER *cipher;
|
|
int enc;
|
|
/* EVP_CIPH_GCM_MODE, EVP_CIPH_CCM_MODE or EVP_CIPH_OCB_MODE if AEAD */
|
|
int aead;
|
|
unsigned char *key;
|
|
size_t key_len;
|
|
unsigned char *iv;
|
|
size_t iv_len;
|
|
unsigned char *plaintext;
|
|
size_t plaintext_len;
|
|
unsigned char *ciphertext;
|
|
size_t ciphertext_len;
|
|
/* GCM, CCM only */
|
|
unsigned char *aad;
|
|
size_t aad_len;
|
|
unsigned char *tag;
|
|
size_t tag_len;
|
|
};
|
|
|
|
static int cipher_test_init(struct evp_test *t, const char *alg)
|
|
{
|
|
const EVP_CIPHER *cipher;
|
|
struct cipher_data *cdat = t->data;
|
|
cipher = EVP_get_cipherbyname(alg);
|
|
if (!cipher) {
|
|
/* If alg has an OID assume disabled algorithm */
|
|
if (OBJ_sn2nid(alg) != NID_undef || OBJ_ln2nid(alg) != NID_undef) {
|
|
t->skip = 1;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
cdat = OPENSSL_malloc(sizeof(*cdat));
|
|
cdat->cipher = cipher;
|
|
cdat->enc = -1;
|
|
cdat->key = NULL;
|
|
cdat->iv = NULL;
|
|
cdat->ciphertext = NULL;
|
|
cdat->plaintext = NULL;
|
|
cdat->aad = NULL;
|
|
cdat->tag = NULL;
|
|
t->data = cdat;
|
|
if (EVP_CIPHER_mode(cipher) == EVP_CIPH_GCM_MODE
|
|
|| EVP_CIPHER_mode(cipher) == EVP_CIPH_OCB_MODE
|
|
|| EVP_CIPHER_mode(cipher) == EVP_CIPH_CCM_MODE)
|
|
cdat->aead = EVP_CIPHER_mode(cipher);
|
|
else if (EVP_CIPHER_flags(cipher) & EVP_CIPH_FLAG_AEAD_CIPHER)
|
|
cdat->aead = -1;
|
|
else
|
|
cdat->aead = 0;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static void cipher_test_cleanup(struct evp_test *t)
|
|
{
|
|
struct cipher_data *cdat = t->data;
|
|
test_free(cdat->key);
|
|
test_free(cdat->iv);
|
|
test_free(cdat->ciphertext);
|
|
test_free(cdat->plaintext);
|
|
test_free(cdat->aad);
|
|
test_free(cdat->tag);
|
|
}
|
|
|
|
static int cipher_test_parse(struct evp_test *t, const char *keyword,
|
|
const char *value)
|
|
{
|
|
struct cipher_data *cdat = t->data;
|
|
if (strcmp(keyword, "Key") == 0)
|
|
return test_bin(value, &cdat->key, &cdat->key_len);
|
|
if (strcmp(keyword, "IV") == 0)
|
|
return test_bin(value, &cdat->iv, &cdat->iv_len);
|
|
if (strcmp(keyword, "Plaintext") == 0)
|
|
return test_bin(value, &cdat->plaintext, &cdat->plaintext_len);
|
|
if (strcmp(keyword, "Ciphertext") == 0)
|
|
return test_bin(value, &cdat->ciphertext, &cdat->ciphertext_len);
|
|
if (cdat->aead) {
|
|
if (strcmp(keyword, "AAD") == 0)
|
|
return test_bin(value, &cdat->aad, &cdat->aad_len);
|
|
if (strcmp(keyword, "Tag") == 0)
|
|
return test_bin(value, &cdat->tag, &cdat->tag_len);
|
|
}
|
|
|
|
if (strcmp(keyword, "Operation") == 0) {
|
|
if (strcmp(value, "ENCRYPT") == 0)
|
|
cdat->enc = 1;
|
|
else if (strcmp(value, "DECRYPT") == 0)
|
|
cdat->enc = 0;
|
|
else
|
|
return 0;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int cipher_test_enc(struct evp_test *t, int enc,
|
|
size_t out_misalign, size_t inp_misalign)
|
|
{
|
|
struct cipher_data *cdat = t->data;
|
|
unsigned char *in, *out, *tmp = NULL;
|
|
size_t in_len, out_len;
|
|
int tmplen, tmpflen;
|
|
EVP_CIPHER_CTX *ctx = NULL;
|
|
const char *err;
|
|
err = "INTERNAL_ERROR";
|
|
ctx = EVP_CIPHER_CTX_new();
|
|
if (!ctx)
|
|
goto err;
|
|
EVP_CIPHER_CTX_set_flags(ctx, EVP_CIPHER_CTX_FLAG_WRAP_ALLOW);
|
|
if (enc) {
|
|
in = cdat->plaintext;
|
|
in_len = cdat->plaintext_len;
|
|
out = cdat->ciphertext;
|
|
out_len = cdat->ciphertext_len;
|
|
} else {
|
|
in = cdat->ciphertext;
|
|
in_len = cdat->ciphertext_len;
|
|
out = cdat->plaintext;
|
|
out_len = cdat->plaintext_len;
|
|
}
|
|
if (inp_misalign == (size_t)-1) {
|
|
/*
|
|
* Exercise in-place encryption
|
|
*/
|
|
tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH);
|
|
if (!tmp)
|
|
goto err;
|
|
in = memcpy(tmp + out_misalign, in, in_len);
|
|
} else {
|
|
inp_misalign += 16 - ((out_misalign + in_len) & 15);
|
|
/*
|
|
* 'tmp' will store both output and copy of input. We make the copy
|
|
* of input to specifically aligned part of 'tmp'. So we just
|
|
* figured out how much padding would ensure the required alignment,
|
|
* now we allocate extended buffer and finally copy the input just
|
|
* past inp_misalign in expression below. Output will be written
|
|
* past out_misalign...
|
|
*/
|
|
tmp = OPENSSL_malloc(out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
|
|
inp_misalign + in_len);
|
|
if (!tmp)
|
|
goto err;
|
|
in = memcpy(tmp + out_misalign + in_len + 2 * EVP_MAX_BLOCK_LENGTH +
|
|
inp_misalign, in, in_len);
|
|
}
|
|
err = "CIPHERINIT_ERROR";
|
|
if (!EVP_CipherInit_ex(ctx, cdat->cipher, NULL, NULL, NULL, enc))
|
|
goto err;
|
|
err = "INVALID_IV_LENGTH";
|
|
if (cdat->iv) {
|
|
if (cdat->aead) {
|
|
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_IVLEN,
|
|
cdat->iv_len, 0))
|
|
goto err;
|
|
} else if (cdat->iv_len != (size_t)EVP_CIPHER_CTX_iv_length(ctx))
|
|
goto err;
|
|
}
|
|
if (cdat->aead) {
|
|
unsigned char *tag;
|
|
/*
|
|
* If encrypting or OCB just set tag length initially, otherwise
|
|
* set tag length and value.
|
|
*/
|
|
if (enc || cdat->aead == EVP_CIPH_OCB_MODE) {
|
|
err = "TAG_LENGTH_SET_ERROR";
|
|
tag = NULL;
|
|
} else {
|
|
err = "TAG_SET_ERROR";
|
|
tag = cdat->tag;
|
|
}
|
|
if (tag || cdat->aead != EVP_CIPH_GCM_MODE) {
|
|
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
|
|
cdat->tag_len, tag))
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
err = "INVALID_KEY_LENGTH";
|
|
if (!EVP_CIPHER_CTX_set_key_length(ctx, cdat->key_len))
|
|
goto err;
|
|
err = "KEY_SET_ERROR";
|
|
if (!EVP_CipherInit_ex(ctx, NULL, NULL, cdat->key, cdat->iv, -1))
|
|
goto err;
|
|
|
|
if (!enc && cdat->aead == EVP_CIPH_OCB_MODE) {
|
|
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_TAG,
|
|
cdat->tag_len, cdat->tag)) {
|
|
err = "TAG_SET_ERROR";
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
if (cdat->aead == EVP_CIPH_CCM_MODE) {
|
|
if (!EVP_CipherUpdate(ctx, NULL, &tmplen, NULL, out_len)) {
|
|
err = "CCM_PLAINTEXT_LENGTH_SET_ERROR";
|
|
goto err;
|
|
}
|
|
}
|
|
if (cdat->aad) {
|
|
if (!EVP_CipherUpdate(ctx, NULL, &tmplen, cdat->aad, cdat->aad_len)) {
|
|
err = "AAD_SET_ERROR";
|
|
goto err;
|
|
}
|
|
}
|
|
EVP_CIPHER_CTX_set_padding(ctx, 0);
|
|
err = "CIPHERUPDATE_ERROR";
|
|
if (!EVP_CipherUpdate(ctx, tmp + out_misalign, &tmplen, in, in_len))
|
|
goto err;
|
|
if (cdat->aead == EVP_CIPH_CCM_MODE)
|
|
tmpflen = 0;
|
|
else {
|
|
err = "CIPHERFINAL_ERROR";
|
|
if (!EVP_CipherFinal_ex(ctx, tmp + out_misalign + tmplen, &tmpflen))
|
|
goto err;
|
|
}
|
|
err = "LENGTH_MISMATCH";
|
|
if (out_len != (size_t)(tmplen + tmpflen))
|
|
goto err;
|
|
err = "VALUE_MISMATCH";
|
|
if (check_output(t, out, tmp + out_misalign, out_len))
|
|
goto err;
|
|
if (enc && cdat->aead) {
|
|
unsigned char rtag[16];
|
|
if (cdat->tag_len > sizeof(rtag)) {
|
|
err = "TAG_LENGTH_INTERNAL_ERROR";
|
|
goto err;
|
|
}
|
|
if (!EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_GET_TAG,
|
|
cdat->tag_len, rtag)) {
|
|
err = "TAG_RETRIEVE_ERROR";
|
|
goto err;
|
|
}
|
|
if (check_output(t, cdat->tag, rtag, cdat->tag_len)) {
|
|
err = "TAG_VALUE_MISMATCH";
|
|
goto err;
|
|
}
|
|
}
|
|
err = NULL;
|
|
err:
|
|
OPENSSL_free(tmp);
|
|
EVP_CIPHER_CTX_free(ctx);
|
|
t->err = err;
|
|
return err ? 0 : 1;
|
|
}
|
|
|
|
static int cipher_test_run(struct evp_test *t)
|
|
{
|
|
struct cipher_data *cdat = t->data;
|
|
int rv;
|
|
size_t out_misalign, inp_misalign;
|
|
|
|
if (!cdat->key) {
|
|
t->err = "NO_KEY";
|
|
return 0;
|
|
}
|
|
if (!cdat->iv && EVP_CIPHER_iv_length(cdat->cipher)) {
|
|
/* IV is optional and usually omitted in wrap mode */
|
|
if (EVP_CIPHER_mode(cdat->cipher) != EVP_CIPH_WRAP_MODE) {
|
|
t->err = "NO_IV";
|
|
return 0;
|
|
}
|
|
}
|
|
if (cdat->aead && !cdat->tag) {
|
|
t->err = "NO_TAG";
|
|
return 0;
|
|
}
|
|
for (out_misalign = 0; out_misalign <= 1; out_misalign++) {
|
|
static char aux_err[64];
|
|
t->aux_err = aux_err;
|
|
for (inp_misalign = (size_t)-1; inp_misalign != 2; inp_misalign++) {
|
|
if (inp_misalign == (size_t)-1) {
|
|
/* kludge: inp_misalign == -1 means "exercise in-place" */
|
|
BIO_snprintf(aux_err, sizeof(aux_err), "%s in-place",
|
|
out_misalign ? "misaligned" : "aligned");
|
|
} else {
|
|
BIO_snprintf(aux_err, sizeof(aux_err), "%s output and %s input",
|
|
out_misalign ? "misaligned" : "aligned",
|
|
inp_misalign ? "misaligned" : "aligned");
|
|
}
|
|
if (cdat->enc) {
|
|
rv = cipher_test_enc(t, 1, out_misalign, inp_misalign);
|
|
/* Not fatal errors: return */
|
|
if (rv != 1) {
|
|
if (rv < 0)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
}
|
|
if (cdat->enc != 1) {
|
|
rv = cipher_test_enc(t, 0, out_misalign, inp_misalign);
|
|
/* Not fatal errors: return */
|
|
if (rv != 1) {
|
|
if (rv < 0)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
t->aux_err = NULL;
|
|
|
|
return 1;
|
|
}
|
|
|
|
static const struct evp_test_method cipher_test_method = {
|
|
"Cipher",
|
|
cipher_test_init,
|
|
cipher_test_cleanup,
|
|
cipher_test_parse,
|
|
cipher_test_run
|
|
};
|
|
|
|
struct mac_data {
|
|
/* MAC type */
|
|
int type;
|
|
/* Algorithm string for this MAC */
|
|
char *alg;
|
|
/* MAC key */
|
|
unsigned char *key;
|
|
size_t key_len;
|
|
/* Input to MAC */
|
|
unsigned char *input;
|
|
size_t input_len;
|
|
/* Expected output */
|
|
unsigned char *output;
|
|
size_t output_len;
|
|
};
|
|
|
|
static int mac_test_init(struct evp_test *t, const char *alg)
|
|
{
|
|
int type;
|
|
struct mac_data *mdat;
|
|
if (strcmp(alg, "HMAC") == 0) {
|
|
type = EVP_PKEY_HMAC;
|
|
} else if (strcmp(alg, "CMAC") == 0) {
|
|
#ifndef OPENSSL_NO_CMAC
|
|
type = EVP_PKEY_CMAC;
|
|
#else
|
|
t->skip = 1;
|
|
return 1;
|
|
#endif
|
|
} else
|
|
return 0;
|
|
|
|
mdat = OPENSSL_malloc(sizeof(*mdat));
|
|
mdat->type = type;
|
|
mdat->alg = NULL;
|
|
mdat->key = NULL;
|
|
mdat->input = NULL;
|
|
mdat->output = NULL;
|
|
t->data = mdat;
|
|
return 1;
|
|
}
|
|
|
|
static void mac_test_cleanup(struct evp_test *t)
|
|
{
|
|
struct mac_data *mdat = t->data;
|
|
test_free(mdat->alg);
|
|
test_free(mdat->key);
|
|
test_free(mdat->input);
|
|
test_free(mdat->output);
|
|
}
|
|
|
|
static int mac_test_parse(struct evp_test *t,
|
|
const char *keyword, const char *value)
|
|
{
|
|
struct mac_data *mdata = t->data;
|
|
if (strcmp(keyword, "Key") == 0)
|
|
return test_bin(value, &mdata->key, &mdata->key_len);
|
|
if (strcmp(keyword, "Algorithm") == 0) {
|
|
mdata->alg = OPENSSL_strdup(value);
|
|
if (!mdata->alg)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
if (strcmp(keyword, "Input") == 0)
|
|
return test_bin(value, &mdata->input, &mdata->input_len);
|
|
if (strcmp(keyword, "Output") == 0)
|
|
return test_bin(value, &mdata->output, &mdata->output_len);
|
|
return 0;
|
|
}
|
|
|
|
static int mac_test_run(struct evp_test *t)
|
|
{
|
|
struct mac_data *mdata = t->data;
|
|
const char *err = "INTERNAL_ERROR";
|
|
EVP_MD_CTX *mctx = NULL;
|
|
EVP_PKEY_CTX *pctx = NULL, *genctx = NULL;
|
|
EVP_PKEY *key = NULL;
|
|
const EVP_MD *md = NULL;
|
|
unsigned char *mac = NULL;
|
|
size_t mac_len;
|
|
|
|
#ifdef OPENSSL_NO_DES
|
|
if (strstr(mdata->alg, "DES") != NULL) {
|
|
/* Skip DES */
|
|
err = NULL;
|
|
goto err;
|
|
}
|
|
#endif
|
|
|
|
err = "MAC_PKEY_CTX_ERROR";
|
|
genctx = EVP_PKEY_CTX_new_id(mdata->type, NULL);
|
|
if (!genctx)
|
|
goto err;
|
|
|
|
err = "MAC_KEYGEN_INIT_ERROR";
|
|
if (EVP_PKEY_keygen_init(genctx) <= 0)
|
|
goto err;
|
|
if (mdata->type == EVP_PKEY_CMAC) {
|
|
err = "MAC_ALGORITHM_SET_ERROR";
|
|
if (EVP_PKEY_CTX_ctrl_str(genctx, "cipher", mdata->alg) <= 0)
|
|
goto err;
|
|
}
|
|
|
|
err = "MAC_KEY_SET_ERROR";
|
|
if (EVP_PKEY_CTX_set_mac_key(genctx, mdata->key, mdata->key_len) <= 0)
|
|
goto err;
|
|
|
|
err = "MAC_KEY_GENERATE_ERROR";
|
|
if (EVP_PKEY_keygen(genctx, &key) <= 0)
|
|
goto err;
|
|
if (mdata->type == EVP_PKEY_HMAC) {
|
|
err = "MAC_ALGORITHM_SET_ERROR";
|
|
md = EVP_get_digestbyname(mdata->alg);
|
|
if (!md)
|
|
goto err;
|
|
}
|
|
mctx = EVP_MD_CTX_new();
|
|
if (!mctx)
|
|
goto err;
|
|
err = "DIGESTSIGNINIT_ERROR";
|
|
if (!EVP_DigestSignInit(mctx, &pctx, md, NULL, key))
|
|
goto err;
|
|
|
|
err = "DIGESTSIGNUPDATE_ERROR";
|
|
if (!EVP_DigestSignUpdate(mctx, mdata->input, mdata->input_len))
|
|
goto err;
|
|
err = "DIGESTSIGNFINAL_LENGTH_ERROR";
|
|
if (!EVP_DigestSignFinal(mctx, NULL, &mac_len))
|
|
goto err;
|
|
mac = OPENSSL_malloc(mac_len);
|
|
if (!mac) {
|
|
fprintf(stderr, "Error allocating mac buffer!\n");
|
|
exit(1);
|
|
}
|
|
if (!EVP_DigestSignFinal(mctx, mac, &mac_len))
|
|
goto err;
|
|
err = "MAC_LENGTH_MISMATCH";
|
|
if (mac_len != mdata->output_len)
|
|
goto err;
|
|
err = "MAC_MISMATCH";
|
|
if (check_output(t, mdata->output, mac, mac_len))
|
|
goto err;
|
|
err = NULL;
|
|
err:
|
|
EVP_MD_CTX_free(mctx);
|
|
OPENSSL_free(mac);
|
|
EVP_PKEY_CTX_free(genctx);
|
|
EVP_PKEY_free(key);
|
|
t->err = err;
|
|
return 1;
|
|
}
|
|
|
|
static const struct evp_test_method mac_test_method = {
|
|
"MAC",
|
|
mac_test_init,
|
|
mac_test_cleanup,
|
|
mac_test_parse,
|
|
mac_test_run
|
|
};
|
|
|
|
/*
|
|
* Public key operations. These are all very similar and can share
|
|
* a lot of common code.
|
|
*/
|
|
|
|
struct pkey_data {
|
|
/* Context for this operation */
|
|
EVP_PKEY_CTX *ctx;
|
|
/* Key operation to perform */
|
|
int (*keyop) (EVP_PKEY_CTX *ctx,
|
|
unsigned char *sig, size_t *siglen,
|
|
const unsigned char *tbs, size_t tbslen);
|
|
/* Input to MAC */
|
|
unsigned char *input;
|
|
size_t input_len;
|
|
/* Expected output */
|
|
unsigned char *output;
|
|
size_t output_len;
|
|
};
|
|
|
|
/*
|
|
* Perform public key operation setup: lookup key, allocated ctx and call
|
|
* the appropriate initialisation function
|
|
*/
|
|
static int pkey_test_init(struct evp_test *t, const char *name,
|
|
int use_public,
|
|
int (*keyopinit) (EVP_PKEY_CTX *ctx),
|
|
int (*keyop) (EVP_PKEY_CTX *ctx,
|
|
unsigned char *sig, size_t *siglen,
|
|
const unsigned char *tbs,
|
|
size_t tbslen)
|
|
)
|
|
{
|
|
struct pkey_data *kdata;
|
|
EVP_PKEY *pkey = NULL;
|
|
int rv = 0;
|
|
if (use_public)
|
|
rv = find_key(&pkey, name, t->public);
|
|
if (!rv)
|
|
rv = find_key(&pkey, name, t->private);
|
|
if (!rv || pkey == NULL) {
|
|
t->skip = 1;
|
|
return 1;
|
|
}
|
|
|
|
kdata = OPENSSL_malloc(sizeof(*kdata));
|
|
if (!kdata) {
|
|
EVP_PKEY_free(pkey);
|
|
return 0;
|
|
}
|
|
kdata->ctx = NULL;
|
|
kdata->input = NULL;
|
|
kdata->output = NULL;
|
|
kdata->keyop = keyop;
|
|
t->data = kdata;
|
|
kdata->ctx = EVP_PKEY_CTX_new(pkey, NULL);
|
|
if (!kdata->ctx)
|
|
return 0;
|
|
if (keyopinit(kdata->ctx) <= 0)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static void pkey_test_cleanup(struct evp_test *t)
|
|
{
|
|
struct pkey_data *kdata = t->data;
|
|
|
|
OPENSSL_free(kdata->input);
|
|
OPENSSL_free(kdata->output);
|
|
EVP_PKEY_CTX_free(kdata->ctx);
|
|
}
|
|
|
|
static int pkey_test_ctrl(struct evp_test *t, EVP_PKEY_CTX *pctx,
|
|
const char *value)
|
|
{
|
|
int rv;
|
|
char *p, *tmpval;
|
|
|
|
tmpval = OPENSSL_strdup(value);
|
|
if (tmpval == NULL)
|
|
return 0;
|
|
p = strchr(tmpval, ':');
|
|
if (p != NULL)
|
|
*p++ = 0;
|
|
rv = EVP_PKEY_CTX_ctrl_str(pctx, tmpval, p);
|
|
if (p != NULL && rv <= 0 && rv != -2) {
|
|
/* If p has an OID assume disabled algorithm */
|
|
if (OBJ_sn2nid(p) != NID_undef || OBJ_ln2nid(p) != NID_undef) {
|
|
t->skip = 1;
|
|
rv = 1;
|
|
}
|
|
}
|
|
OPENSSL_free(tmpval);
|
|
return rv > 0;
|
|
}
|
|
|
|
static int pkey_test_parse(struct evp_test *t,
|
|
const char *keyword, const char *value)
|
|
{
|
|
struct pkey_data *kdata = t->data;
|
|
if (strcmp(keyword, "Input") == 0)
|
|
return test_bin(value, &kdata->input, &kdata->input_len);
|
|
if (strcmp(keyword, "Output") == 0)
|
|
return test_bin(value, &kdata->output, &kdata->output_len);
|
|
if (strcmp(keyword, "Ctrl") == 0)
|
|
return pkey_test_ctrl(t, kdata->ctx, value);
|
|
return 0;
|
|
}
|
|
|
|
static int pkey_test_run(struct evp_test *t)
|
|
{
|
|
struct pkey_data *kdata = t->data;
|
|
unsigned char *out = NULL;
|
|
size_t out_len;
|
|
const char *err = "KEYOP_LENGTH_ERROR";
|
|
if (kdata->keyop(kdata->ctx, NULL, &out_len, kdata->input,
|
|
kdata->input_len) <= 0)
|
|
goto err;
|
|
out = OPENSSL_malloc(out_len);
|
|
if (!out) {
|
|
fprintf(stderr, "Error allocating output buffer!\n");
|
|
exit(1);
|
|
}
|
|
err = "KEYOP_ERROR";
|
|
if (kdata->keyop
|
|
(kdata->ctx, out, &out_len, kdata->input, kdata->input_len) <= 0)
|
|
goto err;
|
|
err = "KEYOP_LENGTH_MISMATCH";
|
|
if (out_len != kdata->output_len)
|
|
goto err;
|
|
err = "KEYOP_MISMATCH";
|
|
if (check_output(t, kdata->output, out, out_len))
|
|
goto err;
|
|
err = NULL;
|
|
err:
|
|
OPENSSL_free(out);
|
|
t->err = err;
|
|
return 1;
|
|
}
|
|
|
|
static int sign_test_init(struct evp_test *t, const char *name)
|
|
{
|
|
return pkey_test_init(t, name, 0, EVP_PKEY_sign_init, EVP_PKEY_sign);
|
|
}
|
|
|
|
static const struct evp_test_method psign_test_method = {
|
|
"Sign",
|
|
sign_test_init,
|
|
pkey_test_cleanup,
|
|
pkey_test_parse,
|
|
pkey_test_run
|
|
};
|
|
|
|
static int verify_recover_test_init(struct evp_test *t, const char *name)
|
|
{
|
|
return pkey_test_init(t, name, 1, EVP_PKEY_verify_recover_init,
|
|
EVP_PKEY_verify_recover);
|
|
}
|
|
|
|
static const struct evp_test_method pverify_recover_test_method = {
|
|
"VerifyRecover",
|
|
verify_recover_test_init,
|
|
pkey_test_cleanup,
|
|
pkey_test_parse,
|
|
pkey_test_run
|
|
};
|
|
|
|
static int decrypt_test_init(struct evp_test *t, const char *name)
|
|
{
|
|
return pkey_test_init(t, name, 0, EVP_PKEY_decrypt_init,
|
|
EVP_PKEY_decrypt);
|
|
}
|
|
|
|
static const struct evp_test_method pdecrypt_test_method = {
|
|
"Decrypt",
|
|
decrypt_test_init,
|
|
pkey_test_cleanup,
|
|
pkey_test_parse,
|
|
pkey_test_run
|
|
};
|
|
|
|
static int verify_test_init(struct evp_test *t, const char *name)
|
|
{
|
|
return pkey_test_init(t, name, 1, EVP_PKEY_verify_init, 0);
|
|
}
|
|
|
|
static int verify_test_run(struct evp_test *t)
|
|
{
|
|
struct pkey_data *kdata = t->data;
|
|
if (EVP_PKEY_verify(kdata->ctx, kdata->output, kdata->output_len,
|
|
kdata->input, kdata->input_len) <= 0)
|
|
t->err = "VERIFY_ERROR";
|
|
return 1;
|
|
}
|
|
|
|
static const struct evp_test_method pverify_test_method = {
|
|
"Verify",
|
|
verify_test_init,
|
|
pkey_test_cleanup,
|
|
pkey_test_parse,
|
|
verify_test_run
|
|
};
|
|
|
|
|
|
static int pderive_test_init(struct evp_test *t, const char *name)
|
|
{
|
|
return pkey_test_init(t, name, 0, EVP_PKEY_derive_init, 0);
|
|
}
|
|
|
|
static int pderive_test_parse(struct evp_test *t,
|
|
const char *keyword, const char *value)
|
|
{
|
|
struct pkey_data *kdata = t->data;
|
|
|
|
if (strcmp(keyword, "PeerKey") == 0) {
|
|
EVP_PKEY *peer;
|
|
if (find_key(&peer, value, t->public) == 0)
|
|
return 0;
|
|
if (EVP_PKEY_derive_set_peer(kdata->ctx, peer) <= 0)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
if (strcmp(keyword, "SharedSecret") == 0)
|
|
return test_bin(value, &kdata->output, &kdata->output_len);
|
|
if (strcmp(keyword, "Ctrl") == 0)
|
|
return pkey_test_ctrl(t, kdata->ctx, value);
|
|
return 0;
|
|
}
|
|
|
|
static int pderive_test_run(struct evp_test *t)
|
|
{
|
|
struct pkey_data *kdata = t->data;
|
|
unsigned char *out = NULL;
|
|
size_t out_len;
|
|
const char *err = "INTERNAL_ERROR";
|
|
|
|
out_len = kdata->output_len;
|
|
out = OPENSSL_malloc(out_len);
|
|
if (!out) {
|
|
fprintf(stderr, "Error allocating output buffer!\n");
|
|
exit(1);
|
|
}
|
|
err = "DERIVE_ERROR";
|
|
if (EVP_PKEY_derive(kdata->ctx, out, &out_len) <= 0)
|
|
goto err;
|
|
err = "SHARED_SECRET_LENGTH_MISMATCH";
|
|
if (out_len != kdata->output_len)
|
|
goto err;
|
|
err = "SHARED_SECRET_MISMATCH";
|
|
if (check_output(t, kdata->output, out, out_len))
|
|
goto err;
|
|
err = NULL;
|
|
err:
|
|
OPENSSL_free(out);
|
|
t->err = err;
|
|
return 1;
|
|
}
|
|
|
|
static const struct evp_test_method pderive_test_method = {
|
|
"Derive",
|
|
pderive_test_init,
|
|
pkey_test_cleanup,
|
|
pderive_test_parse,
|
|
pderive_test_run
|
|
};
|
|
|
|
/* PBE tests */
|
|
|
|
#define PBE_TYPE_SCRYPT 1
|
|
#define PBE_TYPE_PBKDF2 2
|
|
#define PBE_TYPE_PKCS12 3
|
|
|
|
struct pbe_data {
|
|
|
|
int pbe_type;
|
|
|
|
/* scrypt parameters */
|
|
uint64_t N, r, p, maxmem;
|
|
|
|
/* PKCS#12 parameters */
|
|
int id, iter;
|
|
const EVP_MD *md;
|
|
|
|
/* password */
|
|
unsigned char *pass;
|
|
size_t pass_len;
|
|
|
|
/* salt */
|
|
unsigned char *salt;
|
|
size_t salt_len;
|
|
|
|
/* Expected output */
|
|
unsigned char *key;
|
|
size_t key_len;
|
|
};
|
|
|
|
#ifndef OPENSSL_NO_SCRYPT
|
|
static int scrypt_test_parse(struct evp_test *t,
|
|
const char *keyword, const char *value)
|
|
{
|
|
struct pbe_data *pdata = t->data;
|
|
|
|
if (strcmp(keyword, "N") == 0)
|
|
return test_uint64(value, &pdata->N);
|
|
if (strcmp(keyword, "p") == 0)
|
|
return test_uint64(value, &pdata->p);
|
|
if (strcmp(keyword, "r") == 0)
|
|
return test_uint64(value, &pdata->r);
|
|
if (strcmp(keyword, "maxmem") == 0)
|
|
return test_uint64(value, &pdata->maxmem);
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static int pbkdf2_test_parse(struct evp_test *t,
|
|
const char *keyword, const char *value)
|
|
{
|
|
struct pbe_data *pdata = t->data;
|
|
|
|
if (strcmp(keyword, "iter") == 0) {
|
|
pdata->iter = atoi(value);
|
|
if (pdata->iter <= 0)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
if (strcmp(keyword, "MD") == 0) {
|
|
pdata->md = EVP_get_digestbyname(value);
|
|
if (pdata->md == NULL)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int pkcs12_test_parse(struct evp_test *t,
|
|
const char *keyword, const char *value)
|
|
{
|
|
struct pbe_data *pdata = t->data;
|
|
|
|
if (strcmp(keyword, "id") == 0) {
|
|
pdata->id = atoi(value);
|
|
if (pdata->id <= 0)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
return pbkdf2_test_parse(t, keyword, value);
|
|
}
|
|
|
|
static int pbe_test_init(struct evp_test *t, const char *alg)
|
|
{
|
|
struct pbe_data *pdat;
|
|
int pbe_type = 0;
|
|
|
|
if (strcmp(alg, "scrypt") == 0) {
|
|
#ifndef OPENSSL_NO_SCRYPT
|
|
pbe_type = PBE_TYPE_SCRYPT;
|
|
#else
|
|
t->skip = 1;
|
|
return 1;
|
|
#endif
|
|
} else if (strcmp(alg, "pbkdf2") == 0) {
|
|
pbe_type = PBE_TYPE_PBKDF2;
|
|
} else if (strcmp(alg, "pkcs12") == 0) {
|
|
pbe_type = PBE_TYPE_PKCS12;
|
|
} else {
|
|
fprintf(stderr, "Unknown pbe algorithm %s\n", alg);
|
|
}
|
|
pdat = OPENSSL_malloc(sizeof(*pdat));
|
|
pdat->pbe_type = pbe_type;
|
|
pdat->pass = NULL;
|
|
pdat->salt = NULL;
|
|
pdat->N = 0;
|
|
pdat->r = 0;
|
|
pdat->p = 0;
|
|
pdat->maxmem = 0;
|
|
pdat->id = 0;
|
|
pdat->iter = 0;
|
|
pdat->md = NULL;
|
|
t->data = pdat;
|
|
return 1;
|
|
}
|
|
|
|
static void pbe_test_cleanup(struct evp_test *t)
|
|
{
|
|
struct pbe_data *pdat = t->data;
|
|
test_free(pdat->pass);
|
|
test_free(pdat->salt);
|
|
test_free(pdat->key);
|
|
}
|
|
|
|
static int pbe_test_parse(struct evp_test *t,
|
|
const char *keyword, const char *value)
|
|
{
|
|
struct pbe_data *pdata = t->data;
|
|
|
|
if (strcmp(keyword, "Password") == 0)
|
|
return test_bin(value, &pdata->pass, &pdata->pass_len);
|
|
if (strcmp(keyword, "Salt") == 0)
|
|
return test_bin(value, &pdata->salt, &pdata->salt_len);
|
|
if (strcmp(keyword, "Key") == 0)
|
|
return test_bin(value, &pdata->key, &pdata->key_len);
|
|
if (pdata->pbe_type == PBE_TYPE_PBKDF2)
|
|
return pbkdf2_test_parse(t, keyword, value);
|
|
else if (pdata->pbe_type == PBE_TYPE_PKCS12)
|
|
return pkcs12_test_parse(t, keyword, value);
|
|
#ifndef OPENSSL_NO_SCRYPT
|
|
else if (pdata->pbe_type == PBE_TYPE_SCRYPT)
|
|
return scrypt_test_parse(t, keyword, value);
|
|
#endif
|
|
return 0;
|
|
}
|
|
|
|
static int pbe_test_run(struct evp_test *t)
|
|
{
|
|
struct pbe_data *pdata = t->data;
|
|
const char *err = "INTERNAL_ERROR";
|
|
unsigned char *key;
|
|
|
|
key = OPENSSL_malloc(pdata->key_len);
|
|
if (!key)
|
|
goto err;
|
|
if (pdata->pbe_type == PBE_TYPE_PBKDF2) {
|
|
err = "PBKDF2_ERROR";
|
|
if (PKCS5_PBKDF2_HMAC((char *)pdata->pass, pdata->pass_len,
|
|
pdata->salt, pdata->salt_len,
|
|
pdata->iter, pdata->md,
|
|
pdata->key_len, key) == 0)
|
|
goto err;
|
|
#ifndef OPENSSL_NO_SCRYPT
|
|
} else if (pdata->pbe_type == PBE_TYPE_SCRYPT) {
|
|
err = "SCRYPT_ERROR";
|
|
if (EVP_PBE_scrypt((const char *)pdata->pass, pdata->pass_len,
|
|
pdata->salt, pdata->salt_len,
|
|
pdata->N, pdata->r, pdata->p, pdata->maxmem,
|
|
key, pdata->key_len) == 0)
|
|
goto err;
|
|
#endif
|
|
} else if (pdata->pbe_type == PBE_TYPE_PKCS12) {
|
|
err = "PKCS12_ERROR";
|
|
if (PKCS12_key_gen_uni(pdata->pass, pdata->pass_len,
|
|
pdata->salt, pdata->salt_len,
|
|
pdata->id, pdata->iter, pdata->key_len,
|
|
key, pdata->md) == 0)
|
|
goto err;
|
|
}
|
|
err = "KEY_MISMATCH";
|
|
if (check_output(t, pdata->key, key, pdata->key_len))
|
|
goto err;
|
|
err = NULL;
|
|
err:
|
|
OPENSSL_free(key);
|
|
t->err = err;
|
|
return 1;
|
|
}
|
|
|
|
static const struct evp_test_method pbe_test_method = {
|
|
"PBE",
|
|
pbe_test_init,
|
|
pbe_test_cleanup,
|
|
pbe_test_parse,
|
|
pbe_test_run
|
|
};
|
|
|
|
/* Base64 tests */
|
|
|
|
typedef enum {
|
|
BASE64_CANONICAL_ENCODING = 0,
|
|
BASE64_VALID_ENCODING = 1,
|
|
BASE64_INVALID_ENCODING = 2
|
|
} base64_encoding_type;
|
|
|
|
struct encode_data {
|
|
/* Input to encoding */
|
|
unsigned char *input;
|
|
size_t input_len;
|
|
/* Expected output */
|
|
unsigned char *output;
|
|
size_t output_len;
|
|
base64_encoding_type encoding;
|
|
};
|
|
|
|
static int encode_test_init(struct evp_test *t, const char *encoding)
|
|
{
|
|
struct encode_data *edata = OPENSSL_zalloc(sizeof(*edata));
|
|
|
|
if (strcmp(encoding, "canonical") == 0) {
|
|
edata->encoding = BASE64_CANONICAL_ENCODING;
|
|
} else if (strcmp(encoding, "valid") == 0) {
|
|
edata->encoding = BASE64_VALID_ENCODING;
|
|
} else if (strcmp(encoding, "invalid") == 0) {
|
|
edata->encoding = BASE64_INVALID_ENCODING;
|
|
t->expected_err = OPENSSL_strdup("DECODE_ERROR");
|
|
if (t->expected_err == NULL)
|
|
return 0;
|
|
} else {
|
|
fprintf(stderr, "Bad encoding: %s. Should be one of "
|
|
"{canonical, valid, invalid}\n", encoding);
|
|
return 0;
|
|
}
|
|
t->data = edata;
|
|
return 1;
|
|
}
|
|
|
|
static void encode_test_cleanup(struct evp_test *t)
|
|
{
|
|
struct encode_data *edata = t->data;
|
|
test_free(edata->input);
|
|
test_free(edata->output);
|
|
memset(edata, 0, sizeof(*edata));
|
|
}
|
|
|
|
static int encode_test_parse(struct evp_test *t,
|
|
const char *keyword, const char *value)
|
|
{
|
|
struct encode_data *edata = t->data;
|
|
if (strcmp(keyword, "Input") == 0)
|
|
return test_bin(value, &edata->input, &edata->input_len);
|
|
if (strcmp(keyword, "Output") == 0)
|
|
return test_bin(value, &edata->output, &edata->output_len);
|
|
return 0;
|
|
}
|
|
|
|
static int encode_test_run(struct evp_test *t)
|
|
{
|
|
struct encode_data *edata = t->data;
|
|
unsigned char *encode_out = NULL, *decode_out = NULL;
|
|
int output_len, chunk_len;
|
|
const char *err = "INTERNAL_ERROR";
|
|
EVP_ENCODE_CTX *decode_ctx = EVP_ENCODE_CTX_new();
|
|
|
|
if (decode_ctx == NULL)
|
|
goto err;
|
|
|
|
if (edata->encoding == BASE64_CANONICAL_ENCODING) {
|
|
EVP_ENCODE_CTX *encode_ctx = EVP_ENCODE_CTX_new();
|
|
if (encode_ctx == NULL)
|
|
goto err;
|
|
encode_out = OPENSSL_malloc(EVP_ENCODE_LENGTH(edata->input_len));
|
|
if (encode_out == NULL)
|
|
goto err;
|
|
|
|
EVP_EncodeInit(encode_ctx);
|
|
EVP_EncodeUpdate(encode_ctx, encode_out, &chunk_len,
|
|
edata->input, edata->input_len);
|
|
output_len = chunk_len;
|
|
|
|
EVP_EncodeFinal(encode_ctx, encode_out + chunk_len, &chunk_len);
|
|
output_len += chunk_len;
|
|
|
|
EVP_ENCODE_CTX_free(encode_ctx);
|
|
|
|
if (check_var_length_output(t, edata->output, edata->output_len,
|
|
encode_out, output_len)) {
|
|
err = "BAD_ENCODING";
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
decode_out = OPENSSL_malloc(EVP_DECODE_LENGTH(edata->output_len));
|
|
if (decode_out == NULL)
|
|
goto err;
|
|
|
|
EVP_DecodeInit(decode_ctx);
|
|
if (EVP_DecodeUpdate(decode_ctx, decode_out, &chunk_len, edata->output,
|
|
edata->output_len) < 0) {
|
|
err = "DECODE_ERROR";
|
|
goto err;
|
|
}
|
|
output_len = chunk_len;
|
|
|
|
if (EVP_DecodeFinal(decode_ctx, decode_out + chunk_len, &chunk_len) != 1) {
|
|
err = "DECODE_ERROR";
|
|
goto err;
|
|
}
|
|
output_len += chunk_len;
|
|
|
|
if (edata->encoding != BASE64_INVALID_ENCODING &&
|
|
check_var_length_output(t, edata->input, edata->input_len,
|
|
decode_out, output_len)) {
|
|
err = "BAD_DECODING";
|
|
goto err;
|
|
}
|
|
|
|
err = NULL;
|
|
err:
|
|
t->err = err;
|
|
OPENSSL_free(encode_out);
|
|
OPENSSL_free(decode_out);
|
|
EVP_ENCODE_CTX_free(decode_ctx);
|
|
return 1;
|
|
}
|
|
|
|
static const struct evp_test_method encode_test_method = {
|
|
"Encoding",
|
|
encode_test_init,
|
|
encode_test_cleanup,
|
|
encode_test_parse,
|
|
encode_test_run,
|
|
};
|
|
|
|
/* KDF operations */
|
|
|
|
struct kdf_data {
|
|
/* Context for this operation */
|
|
EVP_PKEY_CTX *ctx;
|
|
/* Expected output */
|
|
unsigned char *output;
|
|
size_t output_len;
|
|
};
|
|
|
|
/*
|
|
* Perform public key operation setup: lookup key, allocated ctx and call
|
|
* the appropriate initialisation function
|
|
*/
|
|
static int kdf_test_init(struct evp_test *t, const char *name)
|
|
{
|
|
struct kdf_data *kdata;
|
|
|
|
kdata = OPENSSL_malloc(sizeof(*kdata));
|
|
if (kdata == NULL)
|
|
return 0;
|
|
kdata->ctx = NULL;
|
|
kdata->output = NULL;
|
|
t->data = kdata;
|
|
kdata->ctx = EVP_PKEY_CTX_new_id(OBJ_sn2nid(name), NULL);
|
|
if (kdata->ctx == NULL)
|
|
return 0;
|
|
if (EVP_PKEY_derive_init(kdata->ctx) <= 0)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
static void kdf_test_cleanup(struct evp_test *t)
|
|
{
|
|
struct kdf_data *kdata = t->data;
|
|
OPENSSL_free(kdata->output);
|
|
EVP_PKEY_CTX_free(kdata->ctx);
|
|
}
|
|
|
|
static int kdf_test_parse(struct evp_test *t,
|
|
const char *keyword, const char *value)
|
|
{
|
|
struct kdf_data *kdata = t->data;
|
|
if (strcmp(keyword, "Output") == 0)
|
|
return test_bin(value, &kdata->output, &kdata->output_len);
|
|
if (strncmp(keyword, "Ctrl", 4) == 0)
|
|
return pkey_test_ctrl(t, kdata->ctx, value);
|
|
return 0;
|
|
}
|
|
|
|
static int kdf_test_run(struct evp_test *t)
|
|
{
|
|
struct kdf_data *kdata = t->data;
|
|
unsigned char *out = NULL;
|
|
size_t out_len = kdata->output_len;
|
|
const char *err = "INTERNAL_ERROR";
|
|
out = OPENSSL_malloc(out_len);
|
|
if (!out) {
|
|
fprintf(stderr, "Error allocating output buffer!\n");
|
|
exit(1);
|
|
}
|
|
err = "KDF_DERIVE_ERROR";
|
|
if (EVP_PKEY_derive(kdata->ctx, out, &out_len) <= 0)
|
|
goto err;
|
|
err = "KDF_LENGTH_MISMATCH";
|
|
if (out_len != kdata->output_len)
|
|
goto err;
|
|
err = "KDF_MISMATCH";
|
|
if (check_output(t, kdata->output, out, out_len))
|
|
goto err;
|
|
err = NULL;
|
|
err:
|
|
OPENSSL_free(out);
|
|
t->err = err;
|
|
return 1;
|
|
}
|
|
|
|
static const struct evp_test_method kdf_test_method = {
|
|
"KDF",
|
|
kdf_test_init,
|
|
kdf_test_cleanup,
|
|
kdf_test_parse,
|
|
kdf_test_run
|
|
};
|