mirror of
https://github.com/openssl/openssl.git
synced 2025-01-03 15:53:31 +08:00
e863d92010
On Linux when creating the .so file we were exporting all symbols. We should only be exporting public symbols. This commit fixes the issue. It is only applicable to linux currently although the same technique may work for other platforms (e.g. Solaris should work the same way). This also adds symbol version information to our exported symbols. Reviewed-by: Richard Levitte <levitte@openssl.org>
2069 lines
51 KiB
C
2069 lines
51 KiB
C
/* crypto/bn/bntest.c */
|
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
|
|
*
|
|
* Portions of the attached software ("Contribution") are developed by
|
|
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
|
|
*
|
|
* The Contribution is licensed pursuant to the Eric Young open source
|
|
* license provided above.
|
|
*
|
|
* The binary polynomial arithmetic software is originally written by
|
|
* Sheueling Chang Shantz and Douglas Stebila of Sun Microsystems Laboratories.
|
|
*
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
|
|
#include "e_os.h"
|
|
|
|
#include <openssl/bio.h>
|
|
#include <openssl/bn.h>
|
|
#include <openssl/rand.h>
|
|
#include <openssl/x509.h>
|
|
#include <openssl/err.h>
|
|
|
|
#include "../crypto/bn/bn_lcl.h"
|
|
|
|
static const int num0 = 100; /* number of tests */
|
|
static const int num1 = 50; /* additional tests for some functions */
|
|
static const int num2 = 5; /* number of tests for slow functions */
|
|
|
|
int test_add(BIO *bp);
|
|
int test_sub(BIO *bp);
|
|
int test_lshift1(BIO *bp);
|
|
int test_lshift(BIO *bp, BN_CTX *ctx, BIGNUM *a_);
|
|
int test_rshift1(BIO *bp);
|
|
int test_rshift(BIO *bp, BN_CTX *ctx);
|
|
int test_div(BIO *bp, BN_CTX *ctx);
|
|
int test_div_word(BIO *bp);
|
|
int test_div_recp(BIO *bp, BN_CTX *ctx);
|
|
int test_mul(BIO *bp);
|
|
int test_sqr(BIO *bp, BN_CTX *ctx);
|
|
int test_mont(BIO *bp, BN_CTX *ctx);
|
|
int test_mod(BIO *bp, BN_CTX *ctx);
|
|
int test_mod_mul(BIO *bp, BN_CTX *ctx);
|
|
int test_mod_exp(BIO *bp, BN_CTX *ctx);
|
|
int test_mod_exp_mont_consttime(BIO *bp, BN_CTX *ctx);
|
|
int test_mod_exp_mont5(BIO *bp, BN_CTX *ctx);
|
|
int test_exp(BIO *bp, BN_CTX *ctx);
|
|
int test_gf2m_add(BIO *bp);
|
|
int test_gf2m_mod(BIO *bp);
|
|
int test_gf2m_mod_mul(BIO *bp, BN_CTX *ctx);
|
|
int test_gf2m_mod_sqr(BIO *bp, BN_CTX *ctx);
|
|
int test_gf2m_mod_inv(BIO *bp, BN_CTX *ctx);
|
|
int test_gf2m_mod_div(BIO *bp, BN_CTX *ctx);
|
|
int test_gf2m_mod_exp(BIO *bp, BN_CTX *ctx);
|
|
int test_gf2m_mod_sqrt(BIO *bp, BN_CTX *ctx);
|
|
int test_gf2m_mod_solve_quad(BIO *bp, BN_CTX *ctx);
|
|
int test_kron(BIO *bp, BN_CTX *ctx);
|
|
int test_sqrt(BIO *bp, BN_CTX *ctx);
|
|
int test_small_prime(BIO *bp, BN_CTX *ctx);
|
|
int test_probable_prime_coprime(BIO *bp, BN_CTX *ctx);
|
|
int rand_neg(void);
|
|
static int results = 0;
|
|
|
|
static unsigned char lst[] =
|
|
"\xC6\x4F\x43\x04\x2A\xEA\xCA\x6E\x58\x36\x80\x5B\xE8\xC9"
|
|
"\x9B\x04\x5D\x48\x36\xC2\xFD\x16\xC9\x64\xF0";
|
|
|
|
static const char rnd_seed[] =
|
|
"string to make the random number generator think it has entropy";
|
|
|
|
static void message(BIO *out, char *m)
|
|
{
|
|
fprintf(stderr, "test %s\n", m);
|
|
BIO_puts(out, "print \"test ");
|
|
BIO_puts(out, m);
|
|
BIO_puts(out, "\\n\"\n");
|
|
}
|
|
|
|
int main(int argc, char *argv[])
|
|
{
|
|
BN_CTX *ctx;
|
|
BIO *out;
|
|
char *outfile = NULL;
|
|
|
|
results = 0;
|
|
|
|
RAND_seed(rnd_seed, sizeof rnd_seed); /* or BN_generate_prime may fail */
|
|
|
|
argc--;
|
|
argv++;
|
|
while (argc >= 1) {
|
|
if (strcmp(*argv, "-results") == 0)
|
|
results = 1;
|
|
else if (strcmp(*argv, "-out") == 0) {
|
|
if (--argc < 1)
|
|
break;
|
|
outfile = *(++argv);
|
|
}
|
|
argc--;
|
|
argv++;
|
|
}
|
|
|
|
ctx = BN_CTX_new();
|
|
if (ctx == NULL)
|
|
EXIT(1);
|
|
|
|
out = BIO_new(BIO_s_file());
|
|
if (out == NULL)
|
|
EXIT(1);
|
|
if (outfile == NULL) {
|
|
BIO_set_fp(out, stdout, BIO_NOCLOSE | BIO_FP_TEXT);
|
|
} else {
|
|
if (!BIO_write_filename(out, outfile)) {
|
|
perror(outfile);
|
|
EXIT(1);
|
|
}
|
|
}
|
|
#ifdef OPENSSL_SYS_VMS
|
|
{
|
|
BIO *tmpbio = BIO_new(BIO_f_linebuffer());
|
|
out = BIO_push(tmpbio, out);
|
|
}
|
|
#endif
|
|
|
|
if (!results)
|
|
BIO_puts(out, "obase=16\nibase=16\n");
|
|
|
|
message(out, "BN_add");
|
|
if (!test_add(out))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_sub");
|
|
if (!test_sub(out))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_lshift1");
|
|
if (!test_lshift1(out))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_lshift (fixed)");
|
|
if (!test_lshift(out, ctx, BN_bin2bn(lst, sizeof(lst) - 1, NULL)))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_lshift");
|
|
if (!test_lshift(out, ctx, NULL))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_rshift1");
|
|
if (!test_rshift1(out))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_rshift");
|
|
if (!test_rshift(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_sqr");
|
|
if (!test_sqr(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_mul");
|
|
if (!test_mul(out))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_div");
|
|
if (!test_div(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_div_word");
|
|
if (!test_div_word(out))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_div_recp");
|
|
if (!test_div_recp(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_mod");
|
|
if (!test_mod(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_mod_mul");
|
|
if (!test_mod_mul(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_mont");
|
|
if (!test_mont(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_mod_exp");
|
|
if (!test_mod_exp(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_mod_exp_mont_consttime");
|
|
if (!test_mod_exp_mont_consttime(out, ctx))
|
|
goto err;
|
|
if (!test_mod_exp_mont5(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_exp");
|
|
if (!test_exp(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_kronecker");
|
|
if (!test_kron(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_mod_sqrt");
|
|
if (!test_sqrt(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "Small prime generation");
|
|
if (!test_small_prime(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
#if defined(OPENSSL_SYS_WIN32) || defined(OPENSSL_SYS_LINUX)
|
|
message(out, "Probable prime generation with coprimes disabled");
|
|
#else
|
|
message(out, "Probable prime generation with coprimes");
|
|
if (!test_probable_prime_coprime(out, ctx))
|
|
goto err;
|
|
#endif
|
|
(void)BIO_flush(out);
|
|
|
|
#ifndef OPENSSL_NO_EC2M
|
|
message(out, "BN_GF2m_add");
|
|
if (!test_gf2m_add(out))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_GF2m_mod");
|
|
if (!test_gf2m_mod(out))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_GF2m_mod_mul");
|
|
if (!test_gf2m_mod_mul(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_GF2m_mod_sqr");
|
|
if (!test_gf2m_mod_sqr(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_GF2m_mod_inv");
|
|
if (!test_gf2m_mod_inv(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_GF2m_mod_div");
|
|
if (!test_gf2m_mod_div(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_GF2m_mod_exp");
|
|
if (!test_gf2m_mod_exp(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_GF2m_mod_sqrt");
|
|
if (!test_gf2m_mod_sqrt(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
|
|
message(out, "BN_GF2m_mod_solve_quad");
|
|
if (!test_gf2m_mod_solve_quad(out, ctx))
|
|
goto err;
|
|
(void)BIO_flush(out);
|
|
#endif
|
|
BN_CTX_free(ctx);
|
|
BIO_free(out);
|
|
|
|
EXIT(0);
|
|
err:
|
|
BIO_puts(out, "1\n"); /* make sure the Perl script fed by bc
|
|
* notices the failure, see test_bn in
|
|
* test/Makefile.ssl */
|
|
(void)BIO_flush(out);
|
|
ERR_load_crypto_strings();
|
|
ERR_print_errors_fp(stderr);
|
|
EXIT(1);
|
|
}
|
|
|
|
int test_add(BIO *bp)
|
|
{
|
|
BIGNUM *a, *b, *c;
|
|
int i;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
|
|
BN_bntest_rand(a, 512, 0, 0);
|
|
for (i = 0; i < num0; i++) {
|
|
BN_bntest_rand(b, 450 + i, 0, 0);
|
|
a->neg = rand_neg();
|
|
b->neg = rand_neg();
|
|
BN_add(c, a, b);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " + ");
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, c);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
a->neg = !a->neg;
|
|
b->neg = !b->neg;
|
|
BN_add(c, c, b);
|
|
BN_add(c, c, a);
|
|
if (!BN_is_zero(c)) {
|
|
fprintf(stderr, "Add test failed!\n");
|
|
return 0;
|
|
}
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
return (1);
|
|
}
|
|
|
|
int test_sub(BIO *bp)
|
|
{
|
|
BIGNUM *a, *b, *c;
|
|
int i;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
|
|
for (i = 0; i < num0 + num1; i++) {
|
|
if (i < num1) {
|
|
BN_bntest_rand(a, 512, 0, 0);
|
|
BN_copy(b, a);
|
|
if (BN_set_bit(a, i) == 0)
|
|
return (0);
|
|
BN_add_word(b, i);
|
|
} else {
|
|
BN_bntest_rand(b, 400 + i - num1, 0, 0);
|
|
a->neg = rand_neg();
|
|
b->neg = rand_neg();
|
|
}
|
|
BN_sub(c, a, b);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " - ");
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, c);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_add(c, c, b);
|
|
BN_sub(c, c, a);
|
|
if (!BN_is_zero(c)) {
|
|
fprintf(stderr, "Subtract test failed!\n");
|
|
return 0;
|
|
}
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
return (1);
|
|
}
|
|
|
|
int test_div(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b, *c, *d, *e;
|
|
int i;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
|
|
BN_one(a);
|
|
BN_zero(b);
|
|
|
|
if (BN_div(d, c, a, b, ctx)) {
|
|
fprintf(stderr, "Division by zero succeeded!\n");
|
|
return 0;
|
|
}
|
|
|
|
for (i = 0; i < num0 + num1; i++) {
|
|
if (i < num1) {
|
|
BN_bntest_rand(a, 400, 0, 0);
|
|
BN_copy(b, a);
|
|
BN_lshift(a, a, i);
|
|
BN_add_word(a, i);
|
|
} else
|
|
BN_bntest_rand(b, 50 + 3 * (i - num1), 0, 0);
|
|
a->neg = rand_neg();
|
|
b->neg = rand_neg();
|
|
BN_div(d, c, a, b, ctx);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " / ");
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, d);
|
|
BIO_puts(bp, "\n");
|
|
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " % ");
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, c);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_mul(e, d, b, ctx);
|
|
BN_add(d, e, c);
|
|
BN_sub(d, d, a);
|
|
if (!BN_is_zero(d)) {
|
|
fprintf(stderr, "Division test failed!\n");
|
|
return 0;
|
|
}
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
return (1);
|
|
}
|
|
|
|
static void print_word(BIO *bp, BN_ULONG w)
|
|
{
|
|
#ifdef SIXTY_FOUR_BIT
|
|
if (sizeof(w) > sizeof(unsigned long)) {
|
|
unsigned long h = (unsigned long)(w >> 32), l = (unsigned long)(w);
|
|
|
|
if (h)
|
|
BIO_printf(bp, "%lX%08lX", h, l);
|
|
else
|
|
BIO_printf(bp, "%lX", l);
|
|
return;
|
|
}
|
|
#endif
|
|
BIO_printf(bp, BN_HEX_FMT1, w);
|
|
}
|
|
|
|
int test_div_word(BIO *bp)
|
|
{
|
|
BIGNUM *a, *b;
|
|
BN_ULONG r, s;
|
|
int i;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
|
|
for (i = 0; i < num0; i++) {
|
|
do {
|
|
BN_bntest_rand(a, 512, -1, 0);
|
|
BN_bntest_rand(b, BN_BITS2, -1, 0);
|
|
} while (BN_is_zero(b));
|
|
|
|
s = b->d[0];
|
|
BN_copy(b, a);
|
|
r = BN_div_word(b, s);
|
|
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " / ");
|
|
print_word(bp, s);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, "\n");
|
|
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " % ");
|
|
print_word(bp, s);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
print_word(bp, r);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_mul_word(b, s);
|
|
BN_add_word(b, r);
|
|
BN_sub(b, a, b);
|
|
if (!BN_is_zero(b)) {
|
|
fprintf(stderr, "Division (word) test failed!\n");
|
|
return 0;
|
|
}
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
return (1);
|
|
}
|
|
|
|
int test_div_recp(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b, *c, *d, *e;
|
|
BN_RECP_CTX *recp;
|
|
int i;
|
|
|
|
recp = BN_RECP_CTX_new();
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
|
|
for (i = 0; i < num0 + num1; i++) {
|
|
if (i < num1) {
|
|
BN_bntest_rand(a, 400, 0, 0);
|
|
BN_copy(b, a);
|
|
BN_lshift(a, a, i);
|
|
BN_add_word(a, i);
|
|
} else
|
|
BN_bntest_rand(b, 50 + 3 * (i - num1), 0, 0);
|
|
a->neg = rand_neg();
|
|
b->neg = rand_neg();
|
|
BN_RECP_CTX_set(recp, b, ctx);
|
|
BN_div_recp(d, c, a, recp, ctx);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " / ");
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, d);
|
|
BIO_puts(bp, "\n");
|
|
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " % ");
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, c);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_mul(e, d, b, ctx);
|
|
BN_add(d, e, c);
|
|
BN_sub(d, d, a);
|
|
if (!BN_is_zero(d)) {
|
|
fprintf(stderr, "Reciprocal division test failed!\n");
|
|
fprintf(stderr, "a=");
|
|
BN_print_fp(stderr, a);
|
|
fprintf(stderr, "\nb=");
|
|
BN_print_fp(stderr, b);
|
|
fprintf(stderr, "\n");
|
|
return 0;
|
|
}
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
BN_RECP_CTX_free(recp);
|
|
return (1);
|
|
}
|
|
|
|
int test_mul(BIO *bp)
|
|
{
|
|
BIGNUM *a, *b, *c, *d, *e;
|
|
int i;
|
|
BN_CTX *ctx;
|
|
|
|
ctx = BN_CTX_new();
|
|
if (ctx == NULL)
|
|
EXIT(1);
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
|
|
for (i = 0; i < num0 + num1; i++) {
|
|
if (i <= num1) {
|
|
BN_bntest_rand(a, 100, 0, 0);
|
|
BN_bntest_rand(b, 100, 0, 0);
|
|
} else
|
|
BN_bntest_rand(b, i - num1, 0, 0);
|
|
a->neg = rand_neg();
|
|
b->neg = rand_neg();
|
|
BN_mul(c, a, b, ctx);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " * ");
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, c);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_div(d, e, c, a, ctx);
|
|
BN_sub(d, d, b);
|
|
if (!BN_is_zero(d) || !BN_is_zero(e)) {
|
|
fprintf(stderr, "Multiplication test failed!\n");
|
|
return 0;
|
|
}
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
BN_CTX_free(ctx);
|
|
return (1);
|
|
}
|
|
|
|
int test_sqr(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *c, *d, *e;
|
|
int i, ret = 0;
|
|
|
|
a = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
if (a == NULL || c == NULL || d == NULL || e == NULL) {
|
|
goto err;
|
|
}
|
|
|
|
for (i = 0; i < num0; i++) {
|
|
BN_bntest_rand(a, 40 + i * 10, 0, 0);
|
|
a->neg = rand_neg();
|
|
BN_sqr(c, a, ctx);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " * ");
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, c);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_div(d, e, c, a, ctx);
|
|
BN_sub(d, d, a);
|
|
if (!BN_is_zero(d) || !BN_is_zero(e)) {
|
|
fprintf(stderr, "Square test failed!\n");
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/* Regression test for a BN_sqr overflow bug. */
|
|
BN_hex2bn(&a,
|
|
"80000000000000008000000000000001"
|
|
"FFFFFFFFFFFFFFFE0000000000000000");
|
|
BN_sqr(c, a, ctx);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " * ");
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, c);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_mul(d, a, a, ctx);
|
|
if (BN_cmp(c, d)) {
|
|
fprintf(stderr, "Square test failed: BN_sqr and BN_mul produce "
|
|
"different results!\n");
|
|
goto err;
|
|
}
|
|
|
|
/* Regression test for a BN_sqr overflow bug. */
|
|
BN_hex2bn(&a,
|
|
"80000000000000000000000080000001"
|
|
"FFFFFFFE000000000000000000000000");
|
|
BN_sqr(c, a, ctx);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " * ");
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, c);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_mul(d, a, a, ctx);
|
|
if (BN_cmp(c, d)) {
|
|
fprintf(stderr, "Square test failed: BN_sqr and BN_mul produce "
|
|
"different results!\n");
|
|
goto err;
|
|
}
|
|
ret = 1;
|
|
err:
|
|
BN_free(a);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
return ret;
|
|
}
|
|
|
|
int test_mont(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b, *c, *d, *A, *B;
|
|
BIGNUM *n;
|
|
int i;
|
|
BN_MONT_CTX *mont;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
A = BN_new();
|
|
B = BN_new();
|
|
n = BN_new();
|
|
|
|
mont = BN_MONT_CTX_new();
|
|
if (mont == NULL)
|
|
return 0;
|
|
|
|
BN_zero(n);
|
|
if (BN_MONT_CTX_set(mont, n, ctx)) {
|
|
fprintf(stderr, "BN_MONT_CTX_set succeeded for zero modulus!\n");
|
|
return 0;
|
|
}
|
|
|
|
BN_set_word(n, 16);
|
|
if (BN_MONT_CTX_set(mont, n, ctx)) {
|
|
fprintf(stderr, "BN_MONT_CTX_set succeeded for even modulus!\n");
|
|
return 0;
|
|
}
|
|
|
|
BN_bntest_rand(a, 100, 0, 0);
|
|
BN_bntest_rand(b, 100, 0, 0);
|
|
for (i = 0; i < num2; i++) {
|
|
int bits = (200 * (i + 1)) / num2;
|
|
|
|
if (bits == 0)
|
|
continue;
|
|
BN_bntest_rand(n, bits, 0, 1);
|
|
BN_MONT_CTX_set(mont, n, ctx);
|
|
|
|
BN_nnmod(a, a, n, ctx);
|
|
BN_nnmod(b, b, n, ctx);
|
|
|
|
BN_to_montgomery(A, a, mont, ctx);
|
|
BN_to_montgomery(B, b, mont, ctx);
|
|
|
|
BN_mod_mul_montgomery(c, A, B, mont, ctx);
|
|
BN_from_montgomery(A, c, mont, ctx);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " * ");
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, " % ");
|
|
BN_print(bp, &mont->N);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, A);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_mod_mul(d, a, b, n, ctx);
|
|
BN_sub(d, d, A);
|
|
if (!BN_is_zero(d)) {
|
|
fprintf(stderr, "Montgomery multiplication test failed!\n");
|
|
return 0;
|
|
}
|
|
}
|
|
BN_MONT_CTX_free(mont);
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(A);
|
|
BN_free(B);
|
|
BN_free(n);
|
|
return (1);
|
|
}
|
|
|
|
int test_mod(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b, *c, *d, *e;
|
|
int i;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
|
|
BN_bntest_rand(a, 1024, 0, 0);
|
|
for (i = 0; i < num0; i++) {
|
|
BN_bntest_rand(b, 450 + i * 10, 0, 0);
|
|
a->neg = rand_neg();
|
|
b->neg = rand_neg();
|
|
BN_mod(c, a, b, ctx);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " % ");
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, c);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_div(d, e, a, b, ctx);
|
|
BN_sub(e, e, c);
|
|
if (!BN_is_zero(e)) {
|
|
fprintf(stderr, "Modulo test failed!\n");
|
|
return 0;
|
|
}
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
return (1);
|
|
}
|
|
|
|
int test_mod_mul(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b, *c, *d, *e;
|
|
int i, j;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
|
|
BN_one(a);
|
|
BN_one(b);
|
|
BN_zero(c);
|
|
if (BN_mod_mul(e, a, b, c, ctx)) {
|
|
fprintf(stderr, "BN_mod_mul with zero modulus succeeded!\n");
|
|
return 0;
|
|
}
|
|
|
|
for (j = 0; j < 3; j++) {
|
|
BN_bntest_rand(c, 1024, 0, 0);
|
|
for (i = 0; i < num0; i++) {
|
|
BN_bntest_rand(a, 475 + i * 10, 0, 0);
|
|
BN_bntest_rand(b, 425 + i * 11, 0, 0);
|
|
a->neg = rand_neg();
|
|
b->neg = rand_neg();
|
|
if (!BN_mod_mul(e, a, b, c, ctx)) {
|
|
unsigned long l;
|
|
|
|
while ((l = ERR_get_error()))
|
|
fprintf(stderr, "ERROR:%s\n", ERR_error_string(l, NULL));
|
|
EXIT(1);
|
|
}
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " * ");
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, " % ");
|
|
BN_print(bp, c);
|
|
if ((a->neg ^ b->neg) && !BN_is_zero(e)) {
|
|
/*
|
|
* If (a*b) % c is negative, c must be added in order
|
|
* to obtain the normalized remainder (new with
|
|
* OpenSSL 0.9.7, previous versions of BN_mod_mul
|
|
* could generate negative results)
|
|
*/
|
|
BIO_puts(bp, " + ");
|
|
BN_print(bp, c);
|
|
}
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, e);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_mul(d, a, b, ctx);
|
|
BN_sub(d, d, e);
|
|
BN_div(a, b, d, c, ctx);
|
|
if (!BN_is_zero(b)) {
|
|
fprintf(stderr, "Modulo multiply test failed!\n");
|
|
ERR_print_errors_fp(stderr);
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
return (1);
|
|
}
|
|
|
|
int test_mod_exp(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b, *c, *d, *e;
|
|
int i;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
|
|
BN_one(a);
|
|
BN_one(b);
|
|
BN_zero(c);
|
|
if (BN_mod_exp(d, a, b, c, ctx)) {
|
|
fprintf(stderr, "BN_mod_exp with zero modulus succeeded!\n");
|
|
return 0;
|
|
}
|
|
|
|
BN_bntest_rand(c, 30, 0, 1); /* must be odd for montgomery */
|
|
for (i = 0; i < num2; i++) {
|
|
BN_bntest_rand(a, 20 + i * 5, 0, 0);
|
|
BN_bntest_rand(b, 2 + i, 0, 0);
|
|
|
|
if (!BN_mod_exp(d, a, b, c, ctx))
|
|
return (0);
|
|
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " ^ ");
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, " % ");
|
|
BN_print(bp, c);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, d);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_exp(e, a, b, ctx);
|
|
BN_sub(e, e, d);
|
|
BN_div(a, b, e, c, ctx);
|
|
if (!BN_is_zero(b)) {
|
|
fprintf(stderr, "Modulo exponentiation test failed!\n");
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* Regression test for carry propagation bug in sqr8x_reduction */
|
|
BN_hex2bn(&a, "050505050505");
|
|
BN_hex2bn(&b, "02");
|
|
BN_hex2bn(&c,
|
|
"4141414141414141414141274141414141414141414141414141414141414141"
|
|
"4141414141414141414141414141414141414141414141414141414141414141"
|
|
"4141414141414141414141800000000000000000000000000000000000000000"
|
|
"0000000000000000000000000000000000000000000000000000000000000000"
|
|
"0000000000000000000000000000000000000000000000000000000000000000"
|
|
"0000000000000000000000000000000000000000000000000000000001");
|
|
BN_mod_exp(d, a, b, c, ctx);
|
|
BN_mul(e, a, a, ctx);
|
|
if (BN_cmp(d, e)) {
|
|
fprintf(stderr, "BN_mod_exp and BN_mul produce different results!\n");
|
|
return 0;
|
|
}
|
|
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
return (1);
|
|
}
|
|
|
|
int test_mod_exp_mont_consttime(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b, *c, *d, *e;
|
|
int i;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
|
|
BN_one(a);
|
|
BN_one(b);
|
|
BN_zero(c);
|
|
if (BN_mod_exp_mont_consttime(d, a, b, c, ctx, NULL)) {
|
|
fprintf(stderr, "BN_mod_exp_mont_consttime with zero modulus "
|
|
"succeeded\n");
|
|
return 0;
|
|
}
|
|
|
|
BN_set_word(c, 16);
|
|
if (BN_mod_exp_mont_consttime(d, a, b, c, ctx, NULL)) {
|
|
fprintf(stderr, "BN_mod_exp_mont_consttime with even modulus "
|
|
"succeeded\n");
|
|
return 0;
|
|
}
|
|
|
|
BN_bntest_rand(c, 30, 0, 1); /* must be odd for montgomery */
|
|
for (i = 0; i < num2; i++) {
|
|
BN_bntest_rand(a, 20 + i * 5, 0, 0);
|
|
BN_bntest_rand(b, 2 + i, 0, 0);
|
|
|
|
if (!BN_mod_exp_mont_consttime(d, a, b, c, ctx, NULL))
|
|
return (00);
|
|
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " ^ ");
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, " % ");
|
|
BN_print(bp, c);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, d);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_exp(e, a, b, ctx);
|
|
BN_sub(e, e, d);
|
|
BN_div(a, b, e, c, ctx);
|
|
if (!BN_is_zero(b)) {
|
|
fprintf(stderr, "Modulo exponentiation test failed!\n");
|
|
return 0;
|
|
}
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
return (1);
|
|
}
|
|
|
|
/*
|
|
* Test constant-time modular exponentiation with 1024-bit inputs, which on
|
|
* x86_64 cause a different code branch to be taken.
|
|
*/
|
|
int test_mod_exp_mont5(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *p, *m, *d, *e;
|
|
BN_MONT_CTX *mont;
|
|
|
|
a = BN_new();
|
|
p = BN_new();
|
|
m = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
mont = BN_MONT_CTX_new();
|
|
|
|
BN_bntest_rand(m, 1024, 0, 1); /* must be odd for montgomery */
|
|
/* Zero exponent */
|
|
BN_bntest_rand(a, 1024, 0, 0);
|
|
BN_zero(p);
|
|
if (!BN_mod_exp_mont_consttime(d, a, p, m, ctx, NULL))
|
|
return 0;
|
|
if (!BN_is_one(d)) {
|
|
fprintf(stderr, "Modular exponentiation test failed!\n");
|
|
return 0;
|
|
}
|
|
/* Zero input */
|
|
BN_bntest_rand(p, 1024, 0, 0);
|
|
BN_zero(a);
|
|
if (!BN_mod_exp_mont_consttime(d, a, p, m, ctx, NULL))
|
|
return 0;
|
|
if (!BN_is_zero(d)) {
|
|
fprintf(stderr, "Modular exponentiation test failed!\n");
|
|
return 0;
|
|
}
|
|
/*
|
|
* Craft an input whose Montgomery representation is 1, i.e., shorter
|
|
* than the modulus m, in order to test the const time precomputation
|
|
* scattering/gathering.
|
|
*/
|
|
BN_one(a);
|
|
BN_MONT_CTX_set(mont, m, ctx);
|
|
if (!BN_from_montgomery(e, a, mont, ctx))
|
|
return 0;
|
|
if (!BN_mod_exp_mont_consttime(d, e, p, m, ctx, NULL))
|
|
return 0;
|
|
if (!BN_mod_exp_simple(a, e, p, m, ctx))
|
|
return 0;
|
|
if (BN_cmp(a, d) != 0) {
|
|
fprintf(stderr, "Modular exponentiation test failed!\n");
|
|
return 0;
|
|
}
|
|
/* Finally, some regular test vectors. */
|
|
BN_bntest_rand(e, 1024, 0, 0);
|
|
if (!BN_mod_exp_mont_consttime(d, e, p, m, ctx, NULL))
|
|
return 0;
|
|
if (!BN_mod_exp_simple(a, e, p, m, ctx))
|
|
return 0;
|
|
if (BN_cmp(a, d) != 0) {
|
|
fprintf(stderr, "Modular exponentiation test failed!\n");
|
|
return 0;
|
|
}
|
|
BN_MONT_CTX_free(mont);
|
|
BN_free(a);
|
|
BN_free(p);
|
|
BN_free(m);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
return (1);
|
|
}
|
|
|
|
int test_exp(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b, *d, *e, *one;
|
|
int i;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
one = BN_new();
|
|
BN_one(one);
|
|
|
|
for (i = 0; i < num2; i++) {
|
|
BN_bntest_rand(a, 20 + i * 5, 0, 0);
|
|
BN_bntest_rand(b, 2 + i, 0, 0);
|
|
|
|
if (BN_exp(d, a, b, ctx) <= 0)
|
|
return (0);
|
|
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " ^ ");
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, d);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_one(e);
|
|
for (; !BN_is_zero(b); BN_sub(b, b, one))
|
|
BN_mul(e, e, a, ctx);
|
|
BN_sub(e, e, d);
|
|
if (!BN_is_zero(e)) {
|
|
fprintf(stderr, "Exponentiation test failed!\n");
|
|
return 0;
|
|
}
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
BN_free(one);
|
|
return (1);
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_EC2M
|
|
int test_gf2m_add(BIO *bp)
|
|
{
|
|
BIGNUM *a, *b, *c;
|
|
int i, ret = 0;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
|
|
for (i = 0; i < num0; i++) {
|
|
BN_rand(a, 512, 0, 0);
|
|
BN_copy(b, BN_value_one());
|
|
a->neg = rand_neg();
|
|
b->neg = rand_neg();
|
|
BN_GF2m_add(c, a, b);
|
|
/* Test that two added values have the correct parity. */
|
|
if ((BN_is_odd(a) && BN_is_odd(c))
|
|
|| (!BN_is_odd(a) && !BN_is_odd(c))) {
|
|
fprintf(stderr, "GF(2^m) addition test (a) failed!\n");
|
|
goto err;
|
|
}
|
|
BN_GF2m_add(c, c, c);
|
|
/* Test that c + c = 0. */
|
|
if (!BN_is_zero(c)) {
|
|
fprintf(stderr, "GF(2^m) addition test (b) failed!\n");
|
|
goto err;
|
|
}
|
|
}
|
|
ret = 1;
|
|
err:
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
return ret;
|
|
}
|
|
|
|
int test_gf2m_mod(BIO *bp)
|
|
{
|
|
BIGNUM *a, *b[2], *c, *d, *e;
|
|
int i, j, ret = 0;
|
|
int p0[] = { 163, 7, 6, 3, 0, -1 };
|
|
int p1[] = { 193, 15, 0, -1 };
|
|
|
|
a = BN_new();
|
|
b[0] = BN_new();
|
|
b[1] = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
|
|
BN_GF2m_arr2poly(p0, b[0]);
|
|
BN_GF2m_arr2poly(p1, b[1]);
|
|
|
|
for (i = 0; i < num0; i++) {
|
|
BN_bntest_rand(a, 1024, 0, 0);
|
|
for (j = 0; j < 2; j++) {
|
|
BN_GF2m_mod(c, a, b[j]);
|
|
BN_GF2m_add(d, a, c);
|
|
BN_GF2m_mod(e, d, b[j]);
|
|
/* Test that a + (a mod p) mod p == 0. */
|
|
if (!BN_is_zero(e)) {
|
|
fprintf(stderr, "GF(2^m) modulo test failed!\n");
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
ret = 1;
|
|
err:
|
|
BN_free(a);
|
|
BN_free(b[0]);
|
|
BN_free(b[1]);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
return ret;
|
|
}
|
|
|
|
int test_gf2m_mod_mul(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b[2], *c, *d, *e, *f, *g, *h;
|
|
int i, j, ret = 0;
|
|
int p0[] = { 163, 7, 6, 3, 0, -1 };
|
|
int p1[] = { 193, 15, 0, -1 };
|
|
|
|
a = BN_new();
|
|
b[0] = BN_new();
|
|
b[1] = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
f = BN_new();
|
|
g = BN_new();
|
|
h = BN_new();
|
|
|
|
BN_GF2m_arr2poly(p0, b[0]);
|
|
BN_GF2m_arr2poly(p1, b[1]);
|
|
|
|
for (i = 0; i < num0; i++) {
|
|
BN_bntest_rand(a, 1024, 0, 0);
|
|
BN_bntest_rand(c, 1024, 0, 0);
|
|
BN_bntest_rand(d, 1024, 0, 0);
|
|
for (j = 0; j < 2; j++) {
|
|
BN_GF2m_mod_mul(e, a, c, b[j], ctx);
|
|
BN_GF2m_add(f, a, d);
|
|
BN_GF2m_mod_mul(g, f, c, b[j], ctx);
|
|
BN_GF2m_mod_mul(h, d, c, b[j], ctx);
|
|
BN_GF2m_add(f, e, g);
|
|
BN_GF2m_add(f, f, h);
|
|
/* Test that (a+d)*c = a*c + d*c. */
|
|
if (!BN_is_zero(f)) {
|
|
fprintf(stderr,
|
|
"GF(2^m) modular multiplication test failed!\n");
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
ret = 1;
|
|
err:
|
|
BN_free(a);
|
|
BN_free(b[0]);
|
|
BN_free(b[1]);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
BN_free(f);
|
|
BN_free(g);
|
|
BN_free(h);
|
|
return ret;
|
|
}
|
|
|
|
int test_gf2m_mod_sqr(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b[2], *c, *d;
|
|
int i, j, ret = 0;
|
|
int p0[] = { 163, 7, 6, 3, 0, -1 };
|
|
int p1[] = { 193, 15, 0, -1 };
|
|
|
|
a = BN_new();
|
|
b[0] = BN_new();
|
|
b[1] = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
|
|
BN_GF2m_arr2poly(p0, b[0]);
|
|
BN_GF2m_arr2poly(p1, b[1]);
|
|
|
|
for (i = 0; i < num0; i++) {
|
|
BN_bntest_rand(a, 1024, 0, 0);
|
|
for (j = 0; j < 2; j++) {
|
|
BN_GF2m_mod_sqr(c, a, b[j], ctx);
|
|
BN_copy(d, a);
|
|
BN_GF2m_mod_mul(d, a, d, b[j], ctx);
|
|
BN_GF2m_add(d, c, d);
|
|
/* Test that a*a = a^2. */
|
|
if (!BN_is_zero(d)) {
|
|
fprintf(stderr, "GF(2^m) modular squaring test failed!\n");
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
ret = 1;
|
|
err:
|
|
BN_free(a);
|
|
BN_free(b[0]);
|
|
BN_free(b[1]);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
return ret;
|
|
}
|
|
|
|
int test_gf2m_mod_inv(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b[2], *c, *d;
|
|
int i, j, ret = 0;
|
|
int p0[] = { 163, 7, 6, 3, 0, -1 };
|
|
int p1[] = { 193, 15, 0, -1 };
|
|
|
|
a = BN_new();
|
|
b[0] = BN_new();
|
|
b[1] = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
|
|
BN_GF2m_arr2poly(p0, b[0]);
|
|
BN_GF2m_arr2poly(p1, b[1]);
|
|
|
|
for (i = 0; i < num0; i++) {
|
|
BN_bntest_rand(a, 512, 0, 0);
|
|
for (j = 0; j < 2; j++) {
|
|
BN_GF2m_mod_inv(c, a, b[j], ctx);
|
|
BN_GF2m_mod_mul(d, a, c, b[j], ctx);
|
|
/* Test that ((1/a)*a) = 1. */
|
|
if (!BN_is_one(d)) {
|
|
fprintf(stderr, "GF(2^m) modular inversion test failed!\n");
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
ret = 1;
|
|
err:
|
|
BN_free(a);
|
|
BN_free(b[0]);
|
|
BN_free(b[1]);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
return ret;
|
|
}
|
|
|
|
int test_gf2m_mod_div(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b[2], *c, *d, *e, *f;
|
|
int i, j, ret = 0;
|
|
int p0[] = { 163, 7, 6, 3, 0, -1 };
|
|
int p1[] = { 193, 15, 0, -1 };
|
|
|
|
a = BN_new();
|
|
b[0] = BN_new();
|
|
b[1] = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
f = BN_new();
|
|
|
|
BN_GF2m_arr2poly(p0, b[0]);
|
|
BN_GF2m_arr2poly(p1, b[1]);
|
|
|
|
for (i = 0; i < num0; i++) {
|
|
BN_bntest_rand(a, 512, 0, 0);
|
|
BN_bntest_rand(c, 512, 0, 0);
|
|
for (j = 0; j < 2; j++) {
|
|
BN_GF2m_mod_div(d, a, c, b[j], ctx);
|
|
BN_GF2m_mod_mul(e, d, c, b[j], ctx);
|
|
BN_GF2m_mod_div(f, a, e, b[j], ctx);
|
|
/* Test that ((a/c)*c)/a = 1. */
|
|
if (!BN_is_one(f)) {
|
|
fprintf(stderr, "GF(2^m) modular division test failed!\n");
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
ret = 1;
|
|
err:
|
|
BN_free(a);
|
|
BN_free(b[0]);
|
|
BN_free(b[1]);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
BN_free(f);
|
|
return ret;
|
|
}
|
|
|
|
int test_gf2m_mod_exp(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b[2], *c, *d, *e, *f;
|
|
int i, j, ret = 0;
|
|
int p0[] = { 163, 7, 6, 3, 0, -1 };
|
|
int p1[] = { 193, 15, 0, -1 };
|
|
|
|
a = BN_new();
|
|
b[0] = BN_new();
|
|
b[1] = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
f = BN_new();
|
|
|
|
BN_GF2m_arr2poly(p0, b[0]);
|
|
BN_GF2m_arr2poly(p1, b[1]);
|
|
|
|
for (i = 0; i < num0; i++) {
|
|
BN_bntest_rand(a, 512, 0, 0);
|
|
BN_bntest_rand(c, 512, 0, 0);
|
|
BN_bntest_rand(d, 512, 0, 0);
|
|
for (j = 0; j < 2; j++) {
|
|
BN_GF2m_mod_exp(e, a, c, b[j], ctx);
|
|
BN_GF2m_mod_exp(f, a, d, b[j], ctx);
|
|
BN_GF2m_mod_mul(e, e, f, b[j], ctx);
|
|
BN_add(f, c, d);
|
|
BN_GF2m_mod_exp(f, a, f, b[j], ctx);
|
|
BN_GF2m_add(f, e, f);
|
|
/* Test that a^(c+d)=a^c*a^d. */
|
|
if (!BN_is_zero(f)) {
|
|
fprintf(stderr,
|
|
"GF(2^m) modular exponentiation test failed!\n");
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
ret = 1;
|
|
err:
|
|
BN_free(a);
|
|
BN_free(b[0]);
|
|
BN_free(b[1]);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
BN_free(f);
|
|
return ret;
|
|
}
|
|
|
|
int test_gf2m_mod_sqrt(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b[2], *c, *d, *e, *f;
|
|
int i, j, ret = 0;
|
|
int p0[] = { 163, 7, 6, 3, 0, -1 };
|
|
int p1[] = { 193, 15, 0, -1 };
|
|
|
|
a = BN_new();
|
|
b[0] = BN_new();
|
|
b[1] = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
f = BN_new();
|
|
|
|
BN_GF2m_arr2poly(p0, b[0]);
|
|
BN_GF2m_arr2poly(p1, b[1]);
|
|
|
|
for (i = 0; i < num0; i++) {
|
|
BN_bntest_rand(a, 512, 0, 0);
|
|
for (j = 0; j < 2; j++) {
|
|
BN_GF2m_mod(c, a, b[j]);
|
|
BN_GF2m_mod_sqrt(d, a, b[j], ctx);
|
|
BN_GF2m_mod_sqr(e, d, b[j], ctx);
|
|
BN_GF2m_add(f, c, e);
|
|
/* Test that d^2 = a, where d = sqrt(a). */
|
|
if (!BN_is_zero(f)) {
|
|
fprintf(stderr, "GF(2^m) modular square root test failed!\n");
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
ret = 1;
|
|
err:
|
|
BN_free(a);
|
|
BN_free(b[0]);
|
|
BN_free(b[1]);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
BN_free(f);
|
|
return ret;
|
|
}
|
|
|
|
int test_gf2m_mod_solve_quad(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b[2], *c, *d, *e;
|
|
int i, j, s = 0, t, ret = 0;
|
|
int p0[] = { 163, 7, 6, 3, 0, -1 };
|
|
int p1[] = { 193, 15, 0, -1 };
|
|
|
|
a = BN_new();
|
|
b[0] = BN_new();
|
|
b[1] = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
|
|
BN_GF2m_arr2poly(p0, b[0]);
|
|
BN_GF2m_arr2poly(p1, b[1]);
|
|
|
|
for (i = 0; i < num0; i++) {
|
|
BN_bntest_rand(a, 512, 0, 0);
|
|
for (j = 0; j < 2; j++) {
|
|
t = BN_GF2m_mod_solve_quad(c, a, b[j], ctx);
|
|
if (t) {
|
|
s++;
|
|
BN_GF2m_mod_sqr(d, c, b[j], ctx);
|
|
BN_GF2m_add(d, c, d);
|
|
BN_GF2m_mod(e, a, b[j]);
|
|
BN_GF2m_add(e, e, d);
|
|
/*
|
|
* Test that solution of quadratic c satisfies c^2 + c = a.
|
|
*/
|
|
if (!BN_is_zero(e)) {
|
|
fprintf(stderr,
|
|
"GF(2^m) modular solve quadratic test failed!\n");
|
|
goto err;
|
|
}
|
|
|
|
}
|
|
}
|
|
}
|
|
if (s == 0) {
|
|
fprintf(stderr,
|
|
"All %i tests of GF(2^m) modular solve quadratic resulted in no roots;\n",
|
|
num0);
|
|
fprintf(stderr,
|
|
"this is very unlikely and probably indicates an error.\n");
|
|
goto err;
|
|
}
|
|
ret = 1;
|
|
err:
|
|
BN_free(a);
|
|
BN_free(b[0]);
|
|
BN_free(b[1]);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
return ret;
|
|
}
|
|
#endif
|
|
static int genprime_cb(int p, int n, BN_GENCB *arg)
|
|
{
|
|
char c = '*';
|
|
|
|
if (p == 0)
|
|
c = '.';
|
|
if (p == 1)
|
|
c = '+';
|
|
if (p == 2)
|
|
c = '*';
|
|
if (p == 3)
|
|
c = '\n';
|
|
putc(c, stderr);
|
|
fflush(stderr);
|
|
return 1;
|
|
}
|
|
|
|
int test_kron(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BN_GENCB cb;
|
|
BIGNUM *a, *b, *r, *t;
|
|
int i;
|
|
int legendre, kronecker;
|
|
int ret = 0;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
r = BN_new();
|
|
t = BN_new();
|
|
if (a == NULL || b == NULL || r == NULL || t == NULL)
|
|
goto err;
|
|
|
|
BN_GENCB_set(&cb, genprime_cb, NULL);
|
|
|
|
/*
|
|
* We test BN_kronecker(a, b, ctx) just for b odd (Jacobi symbol). In
|
|
* this case we know that if b is prime, then BN_kronecker(a, b, ctx) is
|
|
* congruent to $a^{(b-1)/2}$, modulo $b$ (Legendre symbol). So we
|
|
* generate a random prime b and compare these values for a number of
|
|
* random a's. (That is, we run the Solovay-Strassen primality test to
|
|
* confirm that b is prime, except that we don't want to test whether b
|
|
* is prime but whether BN_kronecker works.)
|
|
*/
|
|
|
|
if (!BN_generate_prime_ex(b, 512, 0, NULL, NULL, &cb))
|
|
goto err;
|
|
b->neg = rand_neg();
|
|
putc('\n', stderr);
|
|
|
|
for (i = 0; i < num0; i++) {
|
|
if (!BN_bntest_rand(a, 512, 0, 0))
|
|
goto err;
|
|
a->neg = rand_neg();
|
|
|
|
/* t := (|b|-1)/2 (note that b is odd) */
|
|
if (!BN_copy(t, b))
|
|
goto err;
|
|
t->neg = 0;
|
|
if (!BN_sub_word(t, 1))
|
|
goto err;
|
|
if (!BN_rshift1(t, t))
|
|
goto err;
|
|
/* r := a^t mod b */
|
|
b->neg = 0;
|
|
|
|
if (!BN_mod_exp_recp(r, a, t, b, ctx))
|
|
goto err;
|
|
b->neg = 1;
|
|
|
|
if (BN_is_word(r, 1))
|
|
legendre = 1;
|
|
else if (BN_is_zero(r))
|
|
legendre = 0;
|
|
else {
|
|
if (!BN_add_word(r, 1))
|
|
goto err;
|
|
if (0 != BN_ucmp(r, b)) {
|
|
fprintf(stderr, "Legendre symbol computation failed\n");
|
|
goto err;
|
|
}
|
|
legendre = -1;
|
|
}
|
|
|
|
kronecker = BN_kronecker(a, b, ctx);
|
|
if (kronecker < -1)
|
|
goto err;
|
|
/* we actually need BN_kronecker(a, |b|) */
|
|
if (a->neg && b->neg)
|
|
kronecker = -kronecker;
|
|
|
|
if (legendre != kronecker) {
|
|
fprintf(stderr, "legendre != kronecker; a = ");
|
|
BN_print_fp(stderr, a);
|
|
fprintf(stderr, ", b = ");
|
|
BN_print_fp(stderr, b);
|
|
fprintf(stderr, "\n");
|
|
goto err;
|
|
}
|
|
|
|
putc('.', stderr);
|
|
fflush(stderr);
|
|
}
|
|
|
|
putc('\n', stderr);
|
|
fflush(stderr);
|
|
ret = 1;
|
|
err:
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(r);
|
|
BN_free(t);
|
|
return ret;
|
|
}
|
|
|
|
int test_sqrt(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BN_GENCB cb;
|
|
BIGNUM *a, *p, *r;
|
|
int i, j;
|
|
int ret = 0;
|
|
|
|
a = BN_new();
|
|
p = BN_new();
|
|
r = BN_new();
|
|
if (a == NULL || p == NULL || r == NULL)
|
|
goto err;
|
|
|
|
BN_GENCB_set(&cb, genprime_cb, NULL);
|
|
|
|
for (i = 0; i < 16; i++) {
|
|
if (i < 8) {
|
|
unsigned primes[8] = { 2, 3, 5, 7, 11, 13, 17, 19 };
|
|
|
|
if (!BN_set_word(p, primes[i]))
|
|
goto err;
|
|
} else {
|
|
if (!BN_set_word(a, 32))
|
|
goto err;
|
|
if (!BN_set_word(r, 2 * i + 1))
|
|
goto err;
|
|
|
|
if (!BN_generate_prime_ex(p, 256, 0, a, r, &cb))
|
|
goto err;
|
|
putc('\n', stderr);
|
|
}
|
|
p->neg = rand_neg();
|
|
|
|
for (j = 0; j < num2; j++) {
|
|
/*
|
|
* construct 'a' such that it is a square modulo p, but in
|
|
* general not a proper square and not reduced modulo p
|
|
*/
|
|
if (!BN_bntest_rand(r, 256, 0, 3))
|
|
goto err;
|
|
if (!BN_nnmod(r, r, p, ctx))
|
|
goto err;
|
|
if (!BN_mod_sqr(r, r, p, ctx))
|
|
goto err;
|
|
if (!BN_bntest_rand(a, 256, 0, 3))
|
|
goto err;
|
|
if (!BN_nnmod(a, a, p, ctx))
|
|
goto err;
|
|
if (!BN_mod_sqr(a, a, p, ctx))
|
|
goto err;
|
|
if (!BN_mul(a, a, r, ctx))
|
|
goto err;
|
|
if (rand_neg())
|
|
if (!BN_sub(a, a, p))
|
|
goto err;
|
|
|
|
if (!BN_mod_sqrt(r, a, p, ctx))
|
|
goto err;
|
|
if (!BN_mod_sqr(r, r, p, ctx))
|
|
goto err;
|
|
|
|
if (!BN_nnmod(a, a, p, ctx))
|
|
goto err;
|
|
|
|
if (BN_cmp(a, r) != 0) {
|
|
fprintf(stderr, "BN_mod_sqrt failed: a = ");
|
|
BN_print_fp(stderr, a);
|
|
fprintf(stderr, ", r = ");
|
|
BN_print_fp(stderr, r);
|
|
fprintf(stderr, ", p = ");
|
|
BN_print_fp(stderr, p);
|
|
fprintf(stderr, "\n");
|
|
goto err;
|
|
}
|
|
|
|
putc('.', stderr);
|
|
fflush(stderr);
|
|
}
|
|
|
|
putc('\n', stderr);
|
|
fflush(stderr);
|
|
}
|
|
ret = 1;
|
|
err:
|
|
BN_free(a);
|
|
BN_free(p);
|
|
BN_free(r);
|
|
return ret;
|
|
}
|
|
|
|
int test_small_prime(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
static const int bits = 10;
|
|
int ret = 0;
|
|
BIGNUM *r;
|
|
|
|
r = BN_new();
|
|
if (!BN_generate_prime_ex(r, bits, 0, NULL, NULL, NULL))
|
|
goto err;
|
|
if (BN_num_bits(r) != bits) {
|
|
BIO_printf(bp, "Expected %d bit prime, got %d bit number\n", bits,
|
|
BN_num_bits(r));
|
|
goto err;
|
|
}
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_clear_free(r);
|
|
return ret;
|
|
}
|
|
|
|
/* We can't test this on platforms where local symbols aren't exported */
|
|
#if !defined(OPENSSL_SYS_WIN32) && !defined(OPENSSL_SYS_LINUX)
|
|
int test_probable_prime_coprime(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
int i, j, ret = 0;
|
|
BIGNUM *r;
|
|
BN_ULONG primes[5] = { 2, 3, 5, 7, 11 };
|
|
|
|
r = BN_new();
|
|
|
|
for (i = 0; i < 1000; i++) {
|
|
if (!bn_probable_prime_dh_coprime(r, 1024, ctx))
|
|
goto err;
|
|
|
|
for (j = 0; j < 5; j++) {
|
|
if (BN_mod_word(r, primes[j]) == 0) {
|
|
BIO_printf(bp, "Number generated is not coprime to "
|
|
BN_DEC_FMT1 ":\n", primes[j]);
|
|
BN_print_fp(stdout, r);
|
|
BIO_printf(bp, "\n");
|
|
goto err;
|
|
}
|
|
}
|
|
}
|
|
|
|
ret = 1;
|
|
|
|
err:
|
|
BN_clear_free(r);
|
|
return ret;
|
|
}
|
|
#endif
|
|
int test_lshift(BIO *bp, BN_CTX *ctx, BIGNUM *a_)
|
|
{
|
|
BIGNUM *a, *b, *c, *d;
|
|
int i;
|
|
|
|
b = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
BN_one(c);
|
|
|
|
if (a_)
|
|
a = a_;
|
|
else {
|
|
a = BN_new();
|
|
BN_bntest_rand(a, 200, 0, 0);
|
|
a->neg = rand_neg();
|
|
}
|
|
for (i = 0; i < num0; i++) {
|
|
BN_lshift(b, a, i + 1);
|
|
BN_add(c, c, c);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " * ");
|
|
BN_print(bp, c);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_mul(d, a, c, ctx);
|
|
BN_sub(d, d, b);
|
|
if (!BN_is_zero(d)) {
|
|
fprintf(stderr, "Left shift test failed!\n");
|
|
fprintf(stderr, "a=");
|
|
BN_print_fp(stderr, a);
|
|
fprintf(stderr, "\nb=");
|
|
BN_print_fp(stderr, b);
|
|
fprintf(stderr, "\nc=");
|
|
BN_print_fp(stderr, c);
|
|
fprintf(stderr, "\nd=");
|
|
BN_print_fp(stderr, d);
|
|
fprintf(stderr, "\n");
|
|
return 0;
|
|
}
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
return (1);
|
|
}
|
|
|
|
int test_lshift1(BIO *bp)
|
|
{
|
|
BIGNUM *a, *b, *c;
|
|
int i;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
|
|
BN_bntest_rand(a, 200, 0, 0);
|
|
a->neg = rand_neg();
|
|
for (i = 0; i < num0; i++) {
|
|
BN_lshift1(b, a);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " * 2");
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_add(c, a, a);
|
|
BN_sub(a, b, c);
|
|
if (!BN_is_zero(a)) {
|
|
fprintf(stderr, "Left shift one test failed!\n");
|
|
return 0;
|
|
}
|
|
|
|
BN_copy(a, b);
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
return (1);
|
|
}
|
|
|
|
int test_rshift(BIO *bp, BN_CTX *ctx)
|
|
{
|
|
BIGNUM *a, *b, *c, *d, *e;
|
|
int i;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
d = BN_new();
|
|
e = BN_new();
|
|
BN_one(c);
|
|
|
|
BN_bntest_rand(a, 200, 0, 0);
|
|
a->neg = rand_neg();
|
|
for (i = 0; i < num0; i++) {
|
|
BN_rshift(b, a, i + 1);
|
|
BN_add(c, c, c);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " / ");
|
|
BN_print(bp, c);
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_div(d, e, a, c, ctx);
|
|
BN_sub(d, d, b);
|
|
if (!BN_is_zero(d)) {
|
|
fprintf(stderr, "Right shift test failed!\n");
|
|
return 0;
|
|
}
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
BN_free(d);
|
|
BN_free(e);
|
|
return (1);
|
|
}
|
|
|
|
int test_rshift1(BIO *bp)
|
|
{
|
|
BIGNUM *a, *b, *c;
|
|
int i;
|
|
|
|
a = BN_new();
|
|
b = BN_new();
|
|
c = BN_new();
|
|
|
|
BN_bntest_rand(a, 200, 0, 0);
|
|
a->neg = rand_neg();
|
|
for (i = 0; i < num0; i++) {
|
|
BN_rshift1(b, a);
|
|
if (bp != NULL) {
|
|
if (!results) {
|
|
BN_print(bp, a);
|
|
BIO_puts(bp, " / 2");
|
|
BIO_puts(bp, " - ");
|
|
}
|
|
BN_print(bp, b);
|
|
BIO_puts(bp, "\n");
|
|
}
|
|
BN_sub(c, a, b);
|
|
BN_sub(c, c, b);
|
|
if (!BN_is_zero(c) && !BN_abs_is_word(c, 1)) {
|
|
fprintf(stderr, "Right shift one test failed!\n");
|
|
return 0;
|
|
}
|
|
BN_copy(a, b);
|
|
}
|
|
BN_free(a);
|
|
BN_free(b);
|
|
BN_free(c);
|
|
return (1);
|
|
}
|
|
|
|
int rand_neg(void)
|
|
{
|
|
static unsigned int neg = 0;
|
|
static int sign[8] = { 0, 0, 0, 1, 1, 0, 1, 1 };
|
|
|
|
return (sign[(neg++) % 8]);
|
|
}
|