mirror of
https://github.com/openssl/openssl.git
synced 2024-11-25 19:13:48 +08:00
8a99cb29d1
This change adds the option to calculate (EC)DSA nonces by hashing the message and private key along with entropy to avoid leaking the private key if the PRNG fails.
386 lines
12 KiB
C
386 lines
12 KiB
C
/* crypto/bn/bn_rand.c */
|
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
* All rights reserved.
|
|
*
|
|
* This package is an SSL implementation written
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
*
|
|
* This library is free for commercial and non-commercial use as long as
|
|
* the following conditions are aheared to. The following conditions
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
* included with this distribution is covered by the same copyright terms
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
*
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
* the code are not to be removed.
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
* as the author of the parts of the library used.
|
|
* This can be in the form of a textual message at program startup or
|
|
* in documentation (online or textual) provided with the package.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
* must display the following acknowledgement:
|
|
* "This product includes cryptographic software written by
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
* being used are not cryptographic related :-).
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
* SUCH DAMAGE.
|
|
*
|
|
* The licence and distribution terms for any publically available version or
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
* copied and put under another distribution licence
|
|
* [including the GNU Public Licence.]
|
|
*/
|
|
/* ====================================================================
|
|
* Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
*
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
*
|
|
* 3. All advertising materials mentioning features or use of this
|
|
* software must display the following acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
*
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
* endorse or promote products derived from this software without
|
|
* prior written permission. For written permission, please contact
|
|
* openssl-core@openssl.org.
|
|
*
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
* permission of the OpenSSL Project.
|
|
*
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
* acknowledgment:
|
|
* "This product includes software developed by the OpenSSL Project
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
* ====================================================================
|
|
*
|
|
* This product includes cryptographic software written by Eric Young
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
* Hudson (tjh@cryptsoft.com).
|
|
*
|
|
*/
|
|
|
|
#define OPENSSL_FIPSAPI
|
|
|
|
#include <stdio.h>
|
|
#include <time.h>
|
|
#include "cryptlib.h"
|
|
#include "bn_lcl.h"
|
|
#include <openssl/rand.h>
|
|
#include <openssl/sha.h>
|
|
|
|
static int bnrand(int pseudorand, BIGNUM *rnd, int bits, int top, int bottom)
|
|
{
|
|
unsigned char *buf=NULL;
|
|
int ret=0,bit,bytes,mask;
|
|
time_t tim;
|
|
|
|
if (bits == 0)
|
|
{
|
|
BN_zero(rnd);
|
|
return 1;
|
|
}
|
|
|
|
bytes=(bits+7)/8;
|
|
bit=(bits-1)%8;
|
|
mask=0xff<<(bit+1);
|
|
|
|
buf=(unsigned char *)OPENSSL_malloc(bytes);
|
|
if (buf == NULL)
|
|
{
|
|
BNerr(BN_F_BNRAND,ERR_R_MALLOC_FAILURE);
|
|
goto err;
|
|
}
|
|
|
|
/* make a random number and set the top and bottom bits */
|
|
time(&tim);
|
|
RAND_add(&tim,sizeof(tim),0.0);
|
|
|
|
if (pseudorand)
|
|
{
|
|
if (RAND_pseudo_bytes(buf, bytes) == -1)
|
|
goto err;
|
|
}
|
|
else
|
|
{
|
|
if (RAND_bytes(buf, bytes) <= 0)
|
|
goto err;
|
|
}
|
|
|
|
#if 1
|
|
if (pseudorand == 2)
|
|
{
|
|
/* generate patterns that are more likely to trigger BN
|
|
library bugs */
|
|
int i;
|
|
unsigned char c;
|
|
|
|
for (i = 0; i < bytes; i++)
|
|
{
|
|
RAND_pseudo_bytes(&c, 1);
|
|
if (c >= 128 && i > 0)
|
|
buf[i] = buf[i-1];
|
|
else if (c < 42)
|
|
buf[i] = 0;
|
|
else if (c < 84)
|
|
buf[i] = 255;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
if (top != -1)
|
|
{
|
|
if (top)
|
|
{
|
|
if (bit == 0)
|
|
{
|
|
buf[0]=1;
|
|
buf[1]|=0x80;
|
|
}
|
|
else
|
|
{
|
|
buf[0]|=(3<<(bit-1));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
buf[0]|=(1<<bit);
|
|
}
|
|
}
|
|
buf[0] &= ~mask;
|
|
if (bottom) /* set bottom bit if requested */
|
|
buf[bytes-1]|=1;
|
|
if (!BN_bin2bn(buf,bytes,rnd)) goto err;
|
|
ret=1;
|
|
err:
|
|
if (buf != NULL)
|
|
{
|
|
OPENSSL_cleanse(buf,bytes);
|
|
OPENSSL_free(buf);
|
|
}
|
|
bn_check_top(rnd);
|
|
return(ret);
|
|
}
|
|
|
|
int BN_rand(BIGNUM *rnd, int bits, int top, int bottom)
|
|
{
|
|
return bnrand(0, rnd, bits, top, bottom);
|
|
}
|
|
|
|
int BN_pseudo_rand(BIGNUM *rnd, int bits, int top, int bottom)
|
|
{
|
|
return bnrand(1, rnd, bits, top, bottom);
|
|
}
|
|
|
|
#if 1
|
|
int BN_bntest_rand(BIGNUM *rnd, int bits, int top, int bottom)
|
|
{
|
|
return bnrand(2, rnd, bits, top, bottom);
|
|
}
|
|
#endif
|
|
|
|
|
|
/* random number r: 0 <= r < range */
|
|
static int bn_rand_range(int pseudo, BIGNUM *r, const BIGNUM *range)
|
|
{
|
|
int (*bn_rand)(BIGNUM *, int, int, int) = pseudo ? BN_pseudo_rand : BN_rand;
|
|
int n;
|
|
int count = 100;
|
|
|
|
if (range->neg || BN_is_zero(range))
|
|
{
|
|
BNerr(BN_F_BN_RAND_RANGE, BN_R_INVALID_RANGE);
|
|
return 0;
|
|
}
|
|
|
|
n = BN_num_bits(range); /* n > 0 */
|
|
|
|
/* BN_is_bit_set(range, n - 1) always holds */
|
|
|
|
if (n == 1)
|
|
BN_zero(r);
|
|
#ifdef OPENSSL_FIPS
|
|
/* FIPS 186-3 is picky about how random numbers for keys etc are
|
|
* generated. So we just use the second case which is equivalent to
|
|
* "Generation by Testing Candidates" mentioned in B.1.2 et al.
|
|
*/
|
|
else if (!FIPS_module_mode() && !BN_is_bit_set(range, n - 2) && !BN_is_bit_set(range, n - 3))
|
|
#else
|
|
else if (!BN_is_bit_set(range, n - 2) && !BN_is_bit_set(range, n - 3))
|
|
#endif
|
|
{
|
|
/* range = 100..._2,
|
|
* so 3*range (= 11..._2) is exactly one bit longer than range */
|
|
do
|
|
{
|
|
if (!bn_rand(r, n + 1, -1, 0)) return 0;
|
|
/* If r < 3*range, use r := r MOD range
|
|
* (which is either r, r - range, or r - 2*range).
|
|
* Otherwise, iterate once more.
|
|
* Since 3*range = 11..._2, each iteration succeeds with
|
|
* probability >= .75. */
|
|
if (BN_cmp(r ,range) >= 0)
|
|
{
|
|
if (!BN_sub(r, r, range)) return 0;
|
|
if (BN_cmp(r, range) >= 0)
|
|
if (!BN_sub(r, r, range)) return 0;
|
|
}
|
|
|
|
if (!--count)
|
|
{
|
|
BNerr(BN_F_BN_RAND_RANGE, BN_R_TOO_MANY_ITERATIONS);
|
|
return 0;
|
|
}
|
|
|
|
}
|
|
while (BN_cmp(r, range) >= 0);
|
|
}
|
|
else
|
|
{
|
|
do
|
|
{
|
|
/* range = 11..._2 or range = 101..._2 */
|
|
if (!bn_rand(r, n, -1, 0)) return 0;
|
|
|
|
if (!--count)
|
|
{
|
|
BNerr(BN_F_BN_RAND_RANGE, BN_R_TOO_MANY_ITERATIONS);
|
|
return 0;
|
|
}
|
|
}
|
|
while (BN_cmp(r, range) >= 0);
|
|
}
|
|
|
|
bn_check_top(r);
|
|
return 1;
|
|
}
|
|
|
|
|
|
int BN_rand_range(BIGNUM *r, const BIGNUM *range)
|
|
{
|
|
return bn_rand_range(0, r, range);
|
|
}
|
|
|
|
int BN_pseudo_rand_range(BIGNUM *r, const BIGNUM *range)
|
|
{
|
|
return bn_rand_range(1, r, range);
|
|
}
|
|
|
|
#ifndef OPENSSL_NO_SHA512
|
|
/* BN_generate_dsa_nonce generates a random number 0 <= out < range. Unlike
|
|
* BN_rand_range, it also includes the contents of |priv| and |message| in the
|
|
* generation so that an RNG failure isn't fatal as long as |priv| remains
|
|
* secret. This is intended for use in DSA and ECDSA where an RNG weakness
|
|
* leads directly to private key exposure unless this function is used. */
|
|
int BN_generate_dsa_nonce(BIGNUM *out, const BIGNUM *range, const BIGNUM* priv,
|
|
const unsigned char *message, size_t message_len,
|
|
BN_CTX *ctx)
|
|
{
|
|
SHA512_CTX sha;
|
|
/* We use 512 bits of random data per iteration to
|
|
* ensure that we have at least |range| bits of randomness. */
|
|
unsigned char random_bytes[64];
|
|
unsigned char digest[SHA512_DIGEST_LENGTH];
|
|
unsigned done, todo;
|
|
/* We generate |range|+8 bytes of random output. */
|
|
const unsigned num_k_bytes = BN_num_bytes(range) + 8;
|
|
unsigned char private_bytes[96];
|
|
unsigned char *k_bytes;
|
|
int ret = 0;
|
|
|
|
k_bytes = OPENSSL_malloc(num_k_bytes);
|
|
if (!k_bytes)
|
|
goto err;
|
|
|
|
/* We copy |priv| into a local buffer to avoid exposing its length. */
|
|
todo = sizeof(priv->d[0])*priv->top;
|
|
if (todo > sizeof(private_bytes))
|
|
{
|
|
/* No reasonable DSA or ECDSA key should have a private key
|
|
* this large and we don't handle this case in order to avoid
|
|
* leaking the length of the private key. */
|
|
BNerr(BN_F_BN_GENERATE_DSA_NONCE, BN_R_PRIVATE_KEY_TOO_LARGE);
|
|
goto err;
|
|
}
|
|
memcpy(private_bytes, priv->d, todo);
|
|
memset(private_bytes + todo, 0, sizeof(private_bytes) - todo);
|
|
|
|
for (done = 0; done < num_k_bytes;) {
|
|
if (RAND_bytes(random_bytes, sizeof(random_bytes)) != 1)
|
|
goto err;
|
|
SHA512_Init(&sha);
|
|
SHA512_Update(&sha, &done, sizeof(done));
|
|
SHA512_Update(&sha, private_bytes, sizeof(private_bytes));
|
|
SHA512_Update(&sha, message, message_len);
|
|
SHA512_Update(&sha, random_bytes, sizeof(random_bytes));
|
|
SHA512_Final(digest, &sha);
|
|
|
|
todo = num_k_bytes - done;
|
|
if (todo > SHA512_DIGEST_LENGTH)
|
|
todo = SHA512_DIGEST_LENGTH;
|
|
memcpy(k_bytes + done, digest, todo);
|
|
done += todo;
|
|
}
|
|
|
|
if (!BN_bin2bn(k_bytes, num_k_bytes, out))
|
|
goto err;
|
|
if (BN_mod(out, out, range, ctx) != 1)
|
|
goto err;
|
|
ret = 1;
|
|
|
|
err:
|
|
if (k_bytes)
|
|
OPENSSL_free(k_bytes);
|
|
return ret;
|
|
}
|
|
#endif /* OPENSSL_NO_SHA512 */
|