openssl/apps/speed.c
Andrea Grandi 0ff4343575 Fix the error with RSA and the daysnc engine in async mode.
Move RSA struct in the job local struct.
The change is applied also to other crypto operations (e.g. DSA) to
make things consistent.

Reviewed-by: Richard Levitte <levitte@openssl.org>
Reviewed-by: Matt Caswell <matt@openssl.org>
2016-03-07 16:27:25 +00:00

3195 lines
100 KiB
C

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
*
* Portions of the attached software ("Contribution") are developed by
* SUN MICROSYSTEMS, INC., and are contributed to the OpenSSL project.
*
* The Contribution is licensed pursuant to the OpenSSL open source
* license provided above.
*
* The ECDH and ECDSA speed test software is originally written by
* Sumit Gupta of Sun Microsystems Laboratories.
*
*/
#undef SECONDS
#define SECONDS 3
#define PRIME_SECONDS 10
#define RSA_SECONDS 10
#define DSA_SECONDS 10
#define ECDSA_SECONDS 10
#define ECDH_SECONDS 10
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "apps.h"
#include <openssl/crypto.h>
#include <openssl/rand.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/objects.h>
#include <openssl/async.h>
#if !defined(OPENSSL_SYS_MSDOS)
# include OPENSSL_UNISTD
#endif
#ifndef OPENSSL_SYS_NETWARE
# include <signal.h>
#endif
#if defined(_WIN32)
# include <windows.h>
#endif
#if defined(OPENSSL_SYS_UNIX) && defined(OPENSSL_THREADS)
# include <unistd.h>
#endif
#if !defined(OPENSSL_NO_ASYNC)
# if defined(OPENSSL_SYS_UNIX) && defined(OPENSSL_THREADS)
# if _POSIX_VERSION >= 200112L
# define ASYNC_POSIX
# endif
# elif defined(_WIN32) || defined(__CYGWIN__)
# define ASYNC_WIN
# endif
#endif
#if !defined(ASYNC_POSIX) && !defined(ASYNC_WIN)
# define ASYNC_NULL
#endif
#include <openssl/bn.h>
#ifndef OPENSSL_NO_DES
# include <openssl/des.h>
#endif
#ifndef OPENSSL_NO_AES
# include <openssl/aes.h>
#endif
#ifndef OPENSSL_NO_CAMELLIA
# include <openssl/camellia.h>
#endif
#ifndef OPENSSL_NO_MD2
# include <openssl/md2.h>
#endif
#ifndef OPENSSL_NO_MDC2
# include <openssl/mdc2.h>
#endif
#ifndef OPENSSL_NO_MD4
# include <openssl/md4.h>
#endif
#ifndef OPENSSL_NO_MD5
# include <openssl/md5.h>
#endif
#include <openssl/hmac.h>
#include <openssl/sha.h>
#ifndef OPENSSL_NO_RMD160
# include <openssl/ripemd.h>
#endif
#ifndef OPENSSL_NO_WHIRLPOOL
# include <openssl/whrlpool.h>
#endif
#ifndef OPENSSL_NO_RC4
# include <openssl/rc4.h>
#endif
#ifndef OPENSSL_NO_RC5
# include <openssl/rc5.h>
#endif
#ifndef OPENSSL_NO_RC2
# include <openssl/rc2.h>
#endif
#ifndef OPENSSL_NO_IDEA
# include <openssl/idea.h>
#endif
#ifndef OPENSSL_NO_SEED
# include <openssl/seed.h>
#endif
#ifndef OPENSSL_NO_BF
# include <openssl/blowfish.h>
#endif
#ifndef OPENSSL_NO_CAST
# include <openssl/cast.h>
#endif
#ifndef OPENSSL_NO_RSA
# include <openssl/rsa.h>
# include "./testrsa.h"
#endif
#include <openssl/x509.h>
#ifndef OPENSSL_NO_DSA
# include <openssl/dsa.h>
# include "./testdsa.h"
#endif
#ifndef OPENSSL_NO_EC
# include <openssl/ec.h>
#endif
#include <openssl/modes.h>
#ifndef HAVE_FORK
# if defined(OPENSSL_SYS_VMS) || defined(OPENSSL_SYS_WINDOWS) || defined(OPENSSL_SYS_OS2) || defined(OPENSSL_SYS_NETWARE)
# define HAVE_FORK 0
# else
# define HAVE_FORK 1
# endif
#endif
#if HAVE_FORK
# undef NO_FORK
#else
# define NO_FORK
#endif
#undef BUFSIZE
#define BUFSIZE (1024*16+1)
#define MAX_MISALIGNMENT 63
#define ALGOR_NUM 30
#define SIZE_NUM 6
#define PRIME_NUM 3
#define RSA_NUM 7
#define DSA_NUM 3
#define EC_NUM 17
#define MAX_ECDH_SIZE 256
#define MISALIGN 64
static volatile int run = 0;
static int mr = 0;
static int usertime = 1;
typedef struct loopargs_st {
ASYNC_JOB *inprogress_job;
unsigned char *buf;
unsigned char *buf2;
unsigned char *buf_malloc;
unsigned char *buf2_malloc;
unsigned int *siglen;
#ifndef OPENSSL_NO_RSA
RSA *rsa_key[RSA_NUM];
#endif
#ifndef OPENSSL_NO_DSA
DSA *dsa_key[DSA_NUM];
#endif
#ifndef OPENSSL_NO_EC
EC_KEY *ecdsa[EC_NUM];
EC_KEY *ecdh_a[EC_NUM];
EC_KEY *ecdh_b[EC_NUM];
unsigned char *secret_a;
unsigned char *secret_b;
#endif
EVP_CIPHER_CTX *ctx;
HMAC_CTX *hctx;
GCM128_CONTEXT *gcm_ctx;
} loopargs_t;
#ifndef OPENSSL_NO_MD2
static int EVP_Digest_MD2_loop(void *args);
#endif
#ifndef OPENSSL_NO_MDC2
static int EVP_Digest_MDC2_loop(void *args);
#endif
#ifndef OPENSSL_NO_MD4
static int EVP_Digest_MD4_loop(void *args);
#endif
#ifndef OPENSSL_NO_MD5
static int MD5_loop(void *args);
static int HMAC_loop(void *args);
#endif
static int SHA1_loop(void *args);
static int SHA256_loop(void *args);
static int SHA512_loop(void *args);
#ifndef OPENSSL_NO_WHIRLPOOL
static int WHIRLPOOL_loop(void *args);
#endif
#ifndef OPENSSL_NO_RMD160
static int EVP_Digest_RMD160_loop(void *args);
#endif
#ifndef OPENSSL_NO_RC4
static int RC4_loop(void *args);
#endif
#ifndef OPENSSL_NO_DES
static int DES_ncbc_encrypt_loop(void *args);
static int DES_ede3_cbc_encrypt_loop(void *args);
#endif
#ifndef OPENSSL_NO_AES
static int AES_cbc_128_encrypt_loop(void *args);
static int AES_cbc_192_encrypt_loop(void *args);
static int AES_ige_128_encrypt_loop(void *args);
static int AES_cbc_256_encrypt_loop(void *args);
static int AES_ige_192_encrypt_loop(void *args);
static int AES_ige_256_encrypt_loop(void *args);
static int CRYPTO_gcm128_aad_loop(void *args);
#endif
static int EVP_Update_loop(void *args);
static int EVP_Digest_loop(void *args);
#ifndef OPENSSL_NO_RSA
static int RSA_sign_loop(void *args);
static int RSA_verify_loop(void *args);
#endif
#ifndef OPENSSL_NO_DSA
static int DSA_sign_loop(void *args);
static int DSA_verify_loop(void *args);
#endif
#ifndef OPENSSL_NO_EC
static int ECDSA_sign_loop(void *args);
static int ECDSA_verify_loop(void *args);
static int ECDH_compute_key_loop(void *args);
#endif
static int run_benchmark(int async_jobs, int (*loop_function)(void *), loopargs_t *loopargs);
static double Time_F(int s);
static void print_message(const char *s, long num, int length);
static void pkey_print_message(const char *str, const char *str2,
long num, int bits, int sec);
static void print_result(int alg, int run_no, int count, double time_used);
#ifndef NO_FORK
static int do_multi(int multi);
#endif
static const char *names[ALGOR_NUM] = {
"md2", "mdc2", "md4", "md5", "hmac(md5)", "sha1", "rmd160", "rc4",
"des cbc", "des ede3", "idea cbc", "seed cbc",
"rc2 cbc", "rc5-32/12 cbc", "blowfish cbc", "cast cbc",
"aes-128 cbc", "aes-192 cbc", "aes-256 cbc",
"camellia-128 cbc", "camellia-192 cbc", "camellia-256 cbc",
"evp", "sha256", "sha512", "whirlpool",
"aes-128 ige", "aes-192 ige", "aes-256 ige", "ghash"
};
static double results[ALGOR_NUM][SIZE_NUM];
static int lengths[SIZE_NUM] = {
16, 64, 256, 1024, 8 * 1024, 16 * 1024
};
#ifndef OPENSSL_NO_RSA
static double rsa_results[RSA_NUM][2];
#endif
#ifndef OPENSSL_NO_DSA
static double dsa_results[DSA_NUM][2];
#endif
#ifndef OPENSSL_NO_EC
static double ecdsa_results[EC_NUM][2];
static double ecdh_results[EC_NUM][1];
#endif
#if defined(OPENSSL_NO_DSA) && !defined(OPENSSL_NO_EC)
static const char rnd_seed[] =
"string to make the random number generator think it has entropy";
static int rnd_fake = 0;
#endif
#ifdef SIGALRM
# if defined(__STDC__) || defined(sgi) || defined(_AIX)
# define SIGRETTYPE void
# else
# define SIGRETTYPE int
# endif
static SIGRETTYPE sig_done(int sig);
static SIGRETTYPE sig_done(int sig)
{
signal(SIGALRM, sig_done);
run = 0;
}
#endif
#define START 0
#define STOP 1
#if defined(_WIN32)
# if !defined(SIGALRM)
# define SIGALRM
# endif
static unsigned int lapse, schlock;
static void alarm_win32(unsigned int secs)
{
lapse = secs * 1000;
}
# define alarm alarm_win32
static DWORD WINAPI sleepy(VOID * arg)
{
schlock = 1;
Sleep(lapse);
run = 0;
return 0;
}
static double Time_F(int s)
{
double ret;
static HANDLE thr;
if (s == START) {
schlock = 0;
thr = CreateThread(NULL, 4096, sleepy, NULL, 0, NULL);
if (thr == NULL) {
DWORD err = GetLastError();
BIO_printf(bio_err, "unable to CreateThread (%lu)", err);
ExitProcess(err);
}
while (!schlock)
Sleep(0); /* scheduler spinlock */
ret = app_tminterval(s, usertime);
} else {
ret = app_tminterval(s, usertime);
if (run)
TerminateThread(thr, 0);
CloseHandle(thr);
}
return ret;
}
#else
static double Time_F(int s)
{
double ret = app_tminterval(s, usertime);
if (s == STOP)
alarm(0);
return ret;
}
#endif
#ifndef OPENSSL_NO_EC
static const int KDF1_SHA1_len = 20;
static void *KDF1_SHA1(const void *in, size_t inlen, void *out,
size_t *outlen)
{
if (*outlen < SHA_DIGEST_LENGTH)
return NULL;
*outlen = SHA_DIGEST_LENGTH;
return SHA1(in, inlen, out);
}
#endif /* OPENSSL_NO_EC */
static void multiblock_speed(const EVP_CIPHER *evp_cipher);
static int found(const char *name, const OPT_PAIR * pairs, int *result)
{
for (; pairs->name; pairs++)
if (strcmp(name, pairs->name) == 0) {
*result = pairs->retval;
return 1;
}
return 0;
}
typedef enum OPTION_choice {
OPT_ERR = -1, OPT_EOF = 0, OPT_HELP,
OPT_ELAPSED, OPT_EVP, OPT_DECRYPT, OPT_ENGINE, OPT_MULTI,
OPT_MR, OPT_MB, OPT_MISALIGN, OPT_ASYNCJOBS
} OPTION_CHOICE;
OPTIONS speed_options[] = {
{OPT_HELP_STR, 1, '-', "Usage: %s [options] ciphers...\n"},
{OPT_HELP_STR, 1, '-', "Valid options are:\n"},
{"help", OPT_HELP, '-', "Display this summary"},
{"evp", OPT_EVP, 's', "Use specified EVP cipher"},
{"decrypt", OPT_DECRYPT, '-',
"Time decryption instead of encryption (only EVP)"},
{"mr", OPT_MR, '-', "Produce machine readable output"},
{"mb", OPT_MB, '-'},
{"misalign", OPT_MISALIGN, 'n', "Amount to mis-align buffers"},
{"elapsed", OPT_ELAPSED, '-',
"Measure time in real time instead of CPU user time"},
#ifndef NO_FORK
{"multi", OPT_MULTI, 'p', "Run benchmarks in parallel"},
#endif
#ifndef ASYNC_NULL
{"async_jobs", OPT_ASYNCJOBS, 'p', "Enable async mode and start pnum jobs"},
#endif
#ifndef OPENSSL_NO_ENGINE
{"engine", OPT_ENGINE, 's', "Use engine, possibly a hardware device"},
#endif
{NULL},
};
#define D_MD2 0
#define D_MDC2 1
#define D_MD4 2
#define D_MD5 3
#define D_HMAC 4
#define D_SHA1 5
#define D_RMD160 6
#define D_RC4 7
#define D_CBC_DES 8
#define D_EDE3_DES 9
#define D_CBC_IDEA 10
#define D_CBC_SEED 11
#define D_CBC_RC2 12
#define D_CBC_RC5 13
#define D_CBC_BF 14
#define D_CBC_CAST 15
#define D_CBC_128_AES 16
#define D_CBC_192_AES 17
#define D_CBC_256_AES 18
#define D_CBC_128_CML 19
#define D_CBC_192_CML 20
#define D_CBC_256_CML 21
#define D_EVP 22
#define D_SHA256 23
#define D_SHA512 24
#define D_WHIRLPOOL 25
#define D_IGE_128_AES 26
#define D_IGE_192_AES 27
#define D_IGE_256_AES 28
#define D_GHASH 29
static OPT_PAIR doit_choices[] = {
#ifndef OPENSSL_NO_MD2
{"md2", D_MD2},
#endif
#ifndef OPENSSL_NO_MDC2
{"mdc2", D_MDC2},
#endif
#ifndef OPENSSL_NO_MD4
{"md4", D_MD4},
#endif
#ifndef OPENSSL_NO_MD5
{"md5", D_MD5},
#endif
#ifndef OPENSSL_NO_MD5
{"hmac", D_HMAC},
#endif
{"sha1", D_SHA1},
{"sha256", D_SHA256},
{"sha512", D_SHA512},
#ifndef OPENSSL_NO_WHIRLPOOL
{"whirlpool", D_WHIRLPOOL},
#endif
#ifndef OPENSSL_NO_RMD160
{"ripemd", D_RMD160},
{"rmd160", D_RMD160},
{"ripemd160", D_RMD160},
#endif
#ifndef OPENSSL_NO_RC4
{"rc4", D_RC4},
#endif
#ifndef OPENSSL_NO_DES
{"des-cbc", D_CBC_DES},
{"des-ede3", D_EDE3_DES},
#endif
#ifndef OPENSSL_NO_AES
{"aes-128-cbc", D_CBC_128_AES},
{"aes-192-cbc", D_CBC_192_AES},
{"aes-256-cbc", D_CBC_256_AES},
{"aes-128-ige", D_IGE_128_AES},
{"aes-192-ige", D_IGE_192_AES},
{"aes-256-ige", D_IGE_256_AES},
#endif
#ifndef OPENSSL_NO_RC2
{"rc2-cbc", D_CBC_RC2},
{"rc2", D_CBC_RC2},
#endif
#ifndef OPENSSL_NO_RC5
{"rc5-cbc", D_CBC_RC5},
{"rc5", D_CBC_RC5},
#endif
#ifndef OPENSSL_NO_IDEA
{"idea-cbc", D_CBC_IDEA},
{"idea", D_CBC_IDEA},
#endif
#ifndef OPENSSL_NO_SEED
{"seed-cbc", D_CBC_SEED},
{"seed", D_CBC_SEED},
#endif
#ifndef OPENSSL_NO_BF
{"bf-cbc", D_CBC_BF},
{"blowfish", D_CBC_BF},
{"bf", D_CBC_BF},
#endif
#ifndef OPENSSL_NO_CAST
{"cast-cbc", D_CBC_CAST},
{"cast", D_CBC_CAST},
{"cast5", D_CBC_CAST},
#endif
{"ghash", D_GHASH},
{NULL}
};
#define R_DSA_512 0
#define R_DSA_1024 1
#define R_DSA_2048 2
static OPT_PAIR dsa_choices[] = {
{"dsa512", R_DSA_512},
{"dsa1024", R_DSA_1024},
{"dsa2048", R_DSA_2048},
{NULL},
};
#define R_RSA_512 0
#define R_RSA_1024 1
#define R_RSA_2048 2
#define R_RSA_3072 3
#define R_RSA_4096 4
#define R_RSA_7680 5
#define R_RSA_15360 6
static OPT_PAIR rsa_choices[] = {
{"rsa512", R_RSA_512},
{"rsa1024", R_RSA_1024},
{"rsa2048", R_RSA_2048},
{"rsa3072", R_RSA_3072},
{"rsa4096", R_RSA_4096},
{"rsa7680", R_RSA_7680},
{"rsa15360", R_RSA_15360},
{NULL}
};
#define R_EC_P160 0
#define R_EC_P192 1
#define R_EC_P224 2
#define R_EC_P256 3
#define R_EC_P384 4
#define R_EC_P521 5
#define R_EC_K163 6
#define R_EC_K233 7
#define R_EC_K283 8
#define R_EC_K409 9
#define R_EC_K571 10
#define R_EC_B163 11
#define R_EC_B233 12
#define R_EC_B283 13
#define R_EC_B409 14
#define R_EC_B571 15
#define R_EC_X25519 16
#ifndef OPENSSL_NO_EC
static OPT_PAIR ecdsa_choices[] = {
{"ecdsap160", R_EC_P160},
{"ecdsap192", R_EC_P192},
{"ecdsap224", R_EC_P224},
{"ecdsap256", R_EC_P256},
{"ecdsap384", R_EC_P384},
{"ecdsap521", R_EC_P521},
{"ecdsak163", R_EC_K163},
{"ecdsak233", R_EC_K233},
{"ecdsak283", R_EC_K283},
{"ecdsak409", R_EC_K409},
{"ecdsak571", R_EC_K571},
{"ecdsab163", R_EC_B163},
{"ecdsab233", R_EC_B233},
{"ecdsab283", R_EC_B283},
{"ecdsab409", R_EC_B409},
{"ecdsab571", R_EC_B571},
{NULL}
};
static OPT_PAIR ecdh_choices[] = {
{"ecdhp160", R_EC_P160},
{"ecdhp192", R_EC_P192},
{"ecdhp224", R_EC_P224},
{"ecdhp256", R_EC_P256},
{"ecdhp384", R_EC_P384},
{"ecdhp521", R_EC_P521},
{"ecdhk163", R_EC_K163},
{"ecdhk233", R_EC_K233},
{"ecdhk283", R_EC_K283},
{"ecdhk409", R_EC_K409},
{"ecdhk571", R_EC_K571},
{"ecdhb163", R_EC_B163},
{"ecdhb233", R_EC_B233},
{"ecdhb283", R_EC_B283},
{"ecdhb409", R_EC_B409},
{"ecdhb571", R_EC_B571},
{"ecdhx25519", R_EC_X25519},
{NULL}
};
#endif
#ifndef SIGALRM
# define COND(d) (count < (d))
# define COUNT(d) (d)
#else
# define COND(c) (run && count<0x7fffffff)
# define COUNT(d) (count)
#endif /* SIGALRM */
static int testnum;
static char *engine_id = NULL;
#ifndef OPENSSL_NO_MD2
static int EVP_Digest_MD2_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
unsigned char md2[MD2_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_MD2][testnum]); count++)
EVP_Digest(buf, (unsigned long)lengths[testnum], &(md2[0]), NULL,
EVP_md2(), NULL);
return count;
}
#endif
#ifndef OPENSSL_NO_MDC2
static int EVP_Digest_MDC2_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
unsigned char mdc2[MDC2_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_MDC2][testnum]); count++)
EVP_Digest(buf, (unsigned long)lengths[testnum], &(mdc2[0]), NULL,
EVP_mdc2(), NULL);
return count;
}
#endif
#ifndef OPENSSL_NO_MD4
static int EVP_Digest_MD4_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
unsigned char md4[MD4_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_MD4][testnum]); count++)
EVP_Digest(&(buf[0]), (unsigned long)lengths[testnum], &(md4[0]),
NULL, EVP_md4(), NULL);
return count;
}
#endif
#ifndef OPENSSL_NO_MD5
static int MD5_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
unsigned char md5[MD5_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_MD5][testnum]); count++)
MD5(buf, lengths[testnum], md5);
return count;
}
static int HMAC_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
HMAC_CTX *hctx = tempargs->hctx;
unsigned char hmac[MD5_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_HMAC][testnum]); count++) {
HMAC_Init_ex(hctx, NULL, 0, NULL, NULL);
HMAC_Update(hctx, buf, lengths[testnum]);
HMAC_Final(hctx, &(hmac[0]), NULL);
}
return count;
}
#endif
static int SHA1_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
unsigned char sha[SHA_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_SHA1][testnum]); count++)
SHA1(buf, lengths[testnum], sha);
return count;
}
static int SHA256_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
unsigned char sha256[SHA256_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_SHA256][testnum]); count++)
SHA256(buf, lengths[testnum], sha256);
return count;
}
static int SHA512_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
unsigned char sha512[SHA512_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_SHA512][testnum]); count++)
SHA512(buf, lengths[testnum], sha512);
return count;
}
#ifndef OPENSSL_NO_WHIRLPOOL
static int WHIRLPOOL_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
unsigned char whirlpool[WHIRLPOOL_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_WHIRLPOOL][testnum]); count++)
WHIRLPOOL(buf, lengths[testnum], whirlpool);
return count;
}
#endif
#ifndef OPENSSL_NO_RMD160
static int EVP_Digest_RMD160_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
unsigned char rmd160[RIPEMD160_DIGEST_LENGTH];
int count;
for (count = 0; COND(c[D_RMD160][testnum]); count++)
EVP_Digest(buf, (unsigned long)lengths[testnum], &(rmd160[0]), NULL,
EVP_ripemd160(), NULL);
return count;
}
#endif
#ifndef OPENSSL_NO_RC4
static RC4_KEY rc4_ks;
static int RC4_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_RC4][testnum]); count++)
RC4(&rc4_ks, (unsigned int)lengths[testnum], buf, buf);
return count;
}
#endif
#ifndef OPENSSL_NO_DES
static unsigned char DES_iv[8];
static DES_key_schedule sch;
static DES_key_schedule sch2;
static DES_key_schedule sch3;
static int DES_ncbc_encrypt_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_CBC_DES][testnum]); count++)
DES_ncbc_encrypt(buf, buf, lengths[testnum], &sch,
&DES_iv, DES_ENCRYPT);
return count;
}
static int DES_ede3_cbc_encrypt_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_EDE3_DES][testnum]); count++)
DES_ede3_cbc_encrypt(buf, buf, lengths[testnum],
&sch, &sch2, &sch3,
&DES_iv, DES_ENCRYPT);
return count;
}
#endif
#ifndef OPENSSL_NO_AES
# define MAX_BLOCK_SIZE 128
#else
# define MAX_BLOCK_SIZE 64
#endif
static unsigned char iv[2 * MAX_BLOCK_SIZE / 8];
#ifndef OPENSSL_NO_AES
static AES_KEY aes_ks1, aes_ks2, aes_ks3;
static int AES_cbc_128_encrypt_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_CBC_128_AES][testnum]); count++)
AES_cbc_encrypt(buf, buf,
(unsigned long)lengths[testnum], &aes_ks1,
iv, AES_ENCRYPT);
return count;
}
static int AES_cbc_192_encrypt_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_CBC_192_AES][testnum]); count++)
AES_cbc_encrypt(buf, buf,
(unsigned long)lengths[testnum], &aes_ks2,
iv, AES_ENCRYPT);
return count;
}
static int AES_cbc_256_encrypt_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
int count;
for (count = 0; COND(c[D_CBC_256_AES][testnum]); count++)
AES_cbc_encrypt(buf, buf,
(unsigned long)lengths[testnum], &aes_ks3,
iv, AES_ENCRYPT);
return count;
}
static int AES_ige_128_encrypt_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
int count;
for (count = 0; COND(c[D_IGE_128_AES][testnum]); count++)
AES_ige_encrypt(buf, buf2,
(unsigned long)lengths[testnum], &aes_ks1,
iv, AES_ENCRYPT);
return count;
}
static int AES_ige_192_encrypt_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
int count;
for (count = 0; COND(c[D_IGE_192_AES][testnum]); count++)
AES_ige_encrypt(buf, buf2,
(unsigned long)lengths[testnum], &aes_ks2,
iv, AES_ENCRYPT);
return count;
}
static int AES_ige_256_encrypt_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
int count;
for (count = 0; COND(c[D_IGE_256_AES][testnum]); count++)
AES_ige_encrypt(buf, buf2,
(unsigned long)lengths[testnum], &aes_ks3,
iv, AES_ENCRYPT);
return count;
}
static int CRYPTO_gcm128_aad_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
GCM128_CONTEXT *gcm_ctx = tempargs->gcm_ctx;
int count;
for (count = 0; COND(c[D_GHASH][testnum]); count++)
CRYPTO_gcm128_aad(gcm_ctx, buf, lengths[testnum]);
return count;
}
#endif
static int decrypt = 0;
static int EVP_Update_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
EVP_CIPHER_CTX *ctx = tempargs->ctx;
int outl, count;
if (decrypt)
for (count = 0;
COND(save_count * 4 * lengths[0] / lengths[testnum]);
count++)
EVP_DecryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
else
for (count = 0;
COND(save_count * 4 * lengths[0] / lengths[testnum]);
count++)
EVP_EncryptUpdate(ctx, buf, &outl, buf, lengths[testnum]);
if (decrypt)
EVP_DecryptFinal_ex(ctx, buf, &outl);
else
EVP_EncryptFinal_ex(ctx, buf, &outl);
return count;
}
static const EVP_MD *evp_md = NULL;
static int EVP_Digest_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
unsigned char md[EVP_MAX_MD_SIZE];
int count;
for (count = 0;
COND(save_count * 4 * lengths[0] / lengths[testnum]); count++)
EVP_Digest(buf, lengths[testnum], &(md[0]), NULL, evp_md, NULL);
return count;
}
#ifndef OPENSSL_NO_RSA
static long rsa_c[RSA_NUM][2];
static int RSA_sign_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
unsigned int *rsa_num = tempargs->siglen;
RSA **rsa_key = tempargs->rsa_key;
int ret, count;
for (count = 0; COND(rsa_c[testnum][0]); count++) {
ret = RSA_sign(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]);
if (ret == 0) {
BIO_printf(bio_err, "RSA sign failure\n");
ERR_print_errors(bio_err);
count = -1;
break;
}
}
return count;
}
static int RSA_verify_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
unsigned int rsa_num = *(tempargs->siglen);
RSA **rsa_key = tempargs->rsa_key;
int ret, count;
for (count = 0; COND(rsa_c[testnum][1]); count++) {
ret = RSA_verify(NID_md5_sha1, buf, 36, buf2, rsa_num, rsa_key[testnum]);
if (ret <= 0) {
BIO_printf(bio_err, "RSA verify failure\n");
ERR_print_errors(bio_err);
count = -1;
break;
}
}
return count;
}
#endif
#ifndef OPENSSL_NO_DSA
static long dsa_c[DSA_NUM][2];
static int DSA_sign_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
DSA **dsa_key = tempargs->dsa_key;
unsigned int *siglen = tempargs->siglen;
int ret, count;
for (count = 0; COND(dsa_c[testnum][0]); count++) {
ret = DSA_sign(0, buf, 20, buf2, siglen, dsa_key[testnum]);
if (ret == 0) {
BIO_printf(bio_err, "DSA sign failure\n");
ERR_print_errors(bio_err);
count = -1;
break;
}
}
return count;
}
static int DSA_verify_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
unsigned char *buf2 = tempargs->buf2;
DSA **dsa_key = tempargs->dsa_key;
unsigned int siglen = *(tempargs->siglen);
int ret, count;
for (count = 0; COND(dsa_c[testnum][1]); count++) {
ret = DSA_verify(0, buf, 20, buf2, siglen, dsa_key[testnum]);
if (ret <= 0) {
BIO_printf(bio_err, "DSA verify failure\n");
ERR_print_errors(bio_err);
count = -1;
break;
}
}
return count;
}
#endif
#ifndef OPENSSL_NO_EC
static long ecdsa_c[EC_NUM][2];
static int ECDSA_sign_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
EC_KEY **ecdsa = tempargs->ecdsa;
unsigned char *ecdsasig = tempargs->buf2;
unsigned int *ecdsasiglen = tempargs->siglen;
int ret, count;
for (count = 0; COND(ecdsa_c[testnum][0]); count++) {
ret = ECDSA_sign(0, buf, 20,
ecdsasig, ecdsasiglen, ecdsa[testnum]);
if (ret == 0) {
BIO_printf(bio_err, "ECDSA sign failure\n");
ERR_print_errors(bio_err);
count = -1;
break;
}
}
return count;
}
static int ECDSA_verify_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
unsigned char *buf = tempargs->buf;
EC_KEY **ecdsa = tempargs->ecdsa;
unsigned char *ecdsasig = tempargs->buf2;
unsigned int ecdsasiglen = *(tempargs->siglen);
int ret, count;
for (count = 0; COND(ecdsa_c[testnum][1]); count++) {
ret = ECDSA_verify(0, buf, 20, ecdsasig, ecdsasiglen,
ecdsa[testnum]);
if (ret != 1) {
BIO_printf(bio_err, "ECDSA verify failure\n");
ERR_print_errors(bio_err);
count = -1;
break;
}
}
return count;
}
static int outlen;
static void *(*kdf) (const void *in, size_t inlen, void *out,
size_t *xoutlen);
static int ECDH_compute_key_loop(void *args)
{
loopargs_t *tempargs = (loopargs_t *)args;
EC_KEY **ecdh_a = tempargs->ecdh_a;
EC_KEY **ecdh_b = tempargs->ecdh_b;
unsigned char *secret_a = tempargs->secret_a;
int count;
for (count = 0; COND(ecdh_c[testnum][0]); count++) {
ECDH_compute_key(secret_a, outlen,
EC_KEY_get0_public_key(ecdh_b[testnum]),
ecdh_a[testnum], kdf);
}
return count;
}
#endif
static int run_benchmark(int async_jobs, int (*loop_function)(void *), loopargs_t *loopargs)
{
int job_op_count = 0;
int total_op_count = 0;
int num_inprogress = 0;
int error = 0;
int i = 0;
run = 1;
if (async_jobs == 0) {
return loop_function((void *)loopargs);
}
for (i = 0; i < async_jobs && !error; i++) {
switch (ASYNC_start_job(&(loopargs[i].inprogress_job), &job_op_count,
loop_function, (void *)(loopargs + i), sizeof(loopargs_t))) {
case ASYNC_PAUSE:
++num_inprogress;
break;
case ASYNC_FINISH:
if (job_op_count == -1) {
error = 1;
} else {
total_op_count += job_op_count;
}
break;
case ASYNC_NO_JOBS:
case ASYNC_ERR:
BIO_printf(bio_err, "Failure in the job\n");
ERR_print_errors(bio_err);
error = 1;
break;
}
}
while (num_inprogress > 0) {
OSSL_ASYNC_FD job_fd = 0;
#if defined(ASYNC_POSIX)
OSSL_ASYNC_FD max_fd = 0;
int select_result = 0;
fd_set waitfdset;
struct timeval select_timeout;
FD_ZERO(&waitfdset);
select_timeout.tv_sec=0;
select_timeout.tv_usec=0;
for (i = 0; i < async_jobs; i++) {
if (loopargs[i].inprogress_job != NULL) {
job_fd = ASYNC_get_wait_fd(loopargs[i].inprogress_job);
FD_SET(job_fd, &waitfdset);
if (job_fd > max_fd)
max_fd = job_fd;
}
}
select_result = select(max_fd + 1, &waitfdset, NULL, NULL, &select_timeout);
if (select_result == -1 && errno == EINTR)
continue;
if (select_result == -1) {
BIO_printf(bio_err, "Failure in the select\n");
ERR_print_errors(bio_err);
error = 1;
break;
}
if (select_result == 0)
continue;
#elif defined(ASYNC_WIN)
DWORD avail = 0;
#endif
for (i = 0; i < async_jobs; i++) {
if (loopargs[i].inprogress_job == NULL)
continue;
job_fd = ASYNC_get_wait_fd(loopargs[i].inprogress_job);
#if defined(ASYNC_POSIX)
if (!FD_ISSET(job_fd, &waitfdset))
continue;
#elif defined(ASYNC_WIN)
if (!PeekNamedPipe(job_fd, NULL, 0, NULL, &avail, NULL) && avail > 0)
continue;
#endif
switch (ASYNC_start_job(&(loopargs[i].inprogress_job),
&job_op_count, loop_function, (void *)(loopargs + i),
sizeof(loopargs_t))) {
case ASYNC_PAUSE:
break;
case ASYNC_FINISH:
if (job_op_count == -1) {
error = 1;
} else {
total_op_count += job_op_count;
}
--num_inprogress;
loopargs[i].inprogress_job = NULL;
break;
case ASYNC_NO_JOBS:
case ASYNC_ERR:
--num_inprogress;
loopargs[i].inprogress_job = NULL;
BIO_printf(bio_err, "Failure in the job\n");
ERR_print_errors(bio_err);
error = 1;
break;
}
}
}
return error ? -1 : total_op_count;
}
int speed_main(int argc, char **argv)
{
loopargs_t *loopargs = NULL;
int loopargs_len = 0;
char *prog;
const EVP_CIPHER *evp_cipher = NULL;
double d = 0.0;
OPTION_CHOICE o;
int multiblock = 0, doit[ALGOR_NUM], pr_header = 0;
int dsa_doit[DSA_NUM], rsa_doit[RSA_NUM];
int ret = 1, i, k, misalign = 0;
long c[ALGOR_NUM][SIZE_NUM], count = 0, save_count = 0;
#ifndef NO_FORK
int multi = 0;
#endif
int async_jobs = 0;
/* What follows are the buffers and key material. */
#if !defined(OPENSSL_NO_RSA) || !defined(OPENSSL_NO_DSA)
long rsa_count = 1;
#endif
#ifndef OPENSSL_NO_RC5
RC5_32_KEY rc5_ks;
#endif
#ifndef OPENSSL_NO_RC2
RC2_KEY rc2_ks;
#endif
#ifndef OPENSSL_NO_IDEA
IDEA_KEY_SCHEDULE idea_ks;
#endif
#ifndef OPENSSL_NO_SEED
SEED_KEY_SCHEDULE seed_ks;
#endif
#ifndef OPENSSL_NO_BF
BF_KEY bf_ks;
#endif
#ifndef OPENSSL_NO_CAST
CAST_KEY cast_ks;
#endif
static const unsigned char key16[16] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12
};
#ifndef OPENSSL_NO_AES
static const unsigned char key24[24] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
};
static const unsigned char key32[32] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
};
#endif
#ifndef OPENSSL_NO_CAMELLIA
static const unsigned char ckey24[24] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
};
static const unsigned char ckey32[32] = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0,
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12,
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34,
0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34, 0x56
};
CAMELLIA_KEY camellia_ks1, camellia_ks2, camellia_ks3;
#endif
#ifndef OPENSSL_NO_DES
static DES_cblock key = {
0x12, 0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0
};
static DES_cblock key2 = {
0x34, 0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12
};
static DES_cblock key3 = {
0x56, 0x78, 0x9a, 0xbc, 0xde, 0xf0, 0x12, 0x34
};
#endif
#ifndef OPENSSL_NO_RSA
static unsigned int rsa_bits[RSA_NUM] = {
512, 1024, 2048, 3072, 4096, 7680, 15360
};
static unsigned char *rsa_data[RSA_NUM] = {
test512, test1024, test2048, test3072, test4096, test7680, test15360
};
static int rsa_data_length[RSA_NUM] = {
sizeof(test512), sizeof(test1024),
sizeof(test2048), sizeof(test3072),
sizeof(test4096), sizeof(test7680),
sizeof(test15360)
};
#endif
#ifndef OPENSSL_NO_DSA
static unsigned int dsa_bits[DSA_NUM] = { 512, 1024, 2048 };
#endif
#ifndef OPENSSL_NO_EC
/*
* We only test over the following curves as they are representative, To
* add tests over more curves, simply add the curve NID and curve name to
* the following arrays and increase the EC_NUM value accordingly.
*/
static unsigned int test_curves[EC_NUM] = {
/* Prime Curves */
NID_secp160r1, NID_X9_62_prime192v1, NID_secp224r1,
NID_X9_62_prime256v1, NID_secp384r1, NID_secp521r1,
/* Binary Curves */
NID_sect163k1, NID_sect233k1, NID_sect283k1,
NID_sect409k1, NID_sect571k1, NID_sect163r2,
NID_sect233r1, NID_sect283r1, NID_sect409r1,
NID_sect571r1,
/* Other */
NID_X25519
};
static const char *test_curves_names[EC_NUM] = {
/* Prime Curves */
"secp160r1", "nistp192", "nistp224",
"nistp256", "nistp384", "nistp521",
/* Binary Curves */
"nistk163", "nistk233", "nistk283",
"nistk409", "nistk571", "nistb163",
"nistb233", "nistb283", "nistb409",
"nistb571",
/* Other */
"X25519"
};
static int test_curves_bits[EC_NUM] = {
160, 192, 224,
256, 384, 521,
163, 233, 283,
409, 571, 163,
233, 283, 409,
571, 253 /* X25519 */
};
#endif
#ifndef OPENSSL_NO_EC
int ecdsa_doit[EC_NUM];
int secret_size_a, secret_size_b;
int ecdh_checks = 1;
int secret_idx = 0;
long ecdh_c[EC_NUM][2];
int ecdh_doit[EC_NUM];
#endif
memset(results, 0, sizeof(results));
memset(c, 0, sizeof(c));
memset(DES_iv, 0, sizeof(DES_iv));
memset(iv, 0, sizeof(iv));
for (i = 0; i < ALGOR_NUM; i++)
doit[i] = 0;
for (i = 0; i < RSA_NUM; i++)
rsa_doit[i] = 0;
for (i = 0; i < DSA_NUM; i++)
dsa_doit[i] = 0;
#ifndef OPENSSL_NO_EC
for (i = 0; i < EC_NUM; i++)
ecdsa_doit[i] = 0;
for (i = 0; i < EC_NUM; i++)
ecdh_doit[i] = 0;
#endif
misalign = 0;
prog = opt_init(argc, argv, speed_options);
while ((o = opt_next()) != OPT_EOF) {
switch (o) {
case OPT_EOF:
case OPT_ERR:
opterr:
BIO_printf(bio_err, "%s: Use -help for summary.\n", prog);
goto end;
case OPT_HELP:
opt_help(speed_options);
ret = 0;
goto end;
case OPT_ELAPSED:
usertime = 0;
break;
case OPT_EVP:
evp_cipher = EVP_get_cipherbyname(opt_arg());
if (evp_cipher == NULL)
evp_md = EVP_get_digestbyname(opt_arg());
if (evp_cipher == NULL && evp_md == NULL) {
BIO_printf(bio_err,
"%s: %s an unknown cipher or digest\n",
prog, opt_arg());
goto end;
}
doit[D_EVP] = 1;
break;
case OPT_DECRYPT:
decrypt = 1;
break;
case OPT_ENGINE:
/*
* In a forked execution, an engine might need to be
* initialised by each child process, not by the parent.
* So store the name here and run setup_engine() later on.
*/
engine_id = opt_arg();
break;
case OPT_MULTI:
#ifndef NO_FORK
multi = atoi(opt_arg());
#endif
break;
case OPT_ASYNCJOBS:
#ifndef ASYNC_NULL
async_jobs = atoi(opt_arg());
#endif
break;
case OPT_MISALIGN:
if (!opt_int(opt_arg(), &misalign))
goto end;
if (misalign > MISALIGN) {
BIO_printf(bio_err,
"%s: Maximum offset is %d\n", prog, MISALIGN);
goto opterr;
}
break;
case OPT_MR:
mr = 1;
break;
case OPT_MB:
multiblock = 1;
break;
}
}
argc = opt_num_rest();
argv = opt_rest();
/* Remaining arguments are algorithms. */
for ( ; *argv; argv++) {
if (found(*argv, doit_choices, &i)) {
doit[i] = 1;
continue;
}
#ifndef OPENSSL_NO_DES
if (strcmp(*argv, "des") == 0) {
doit[D_CBC_DES] = doit[D_EDE3_DES] = 1;
continue;
}
#endif
if (strcmp(*argv, "sha") == 0) {
doit[D_SHA1] = doit[D_SHA256] = doit[D_SHA512] = 1;
continue;
}
#ifndef OPENSSL_NO_RSA
# ifndef RSA_NULL
if (strcmp(*argv, "openssl") == 0) {
RSA_set_default_method(RSA_PKCS1_OpenSSL());
continue;
}
# endif
if (strcmp(*argv, "rsa") == 0) {
rsa_doit[R_RSA_512] = rsa_doit[R_RSA_1024] =
rsa_doit[R_RSA_2048] = rsa_doit[R_RSA_3072] =
rsa_doit[R_RSA_4096] = rsa_doit[R_RSA_7680] =
rsa_doit[R_RSA_15360] = 1;
continue;
}
if (found(*argv, rsa_choices, &i)) {
rsa_doit[i] = 1;
continue;
}
#endif
#ifndef OPENSSL_NO_DSA
if (strcmp(*argv, "dsa") == 0) {
dsa_doit[R_DSA_512] = dsa_doit[R_DSA_1024] =
dsa_doit[R_DSA_2048] = 1;
continue;
}
if (found(*argv, dsa_choices, &i)) {
dsa_doit[i] = 2;
continue;
}
#endif
#ifndef OPENSSL_NO_AES
if (strcmp(*argv, "aes") == 0) {
doit[D_CBC_128_AES] = doit[D_CBC_192_AES] =
doit[D_CBC_256_AES] = 1;
continue;
}
#endif
#ifndef OPENSSL_NO_CAMELLIA
if (strcmp(*argv, "camellia") == 0) {
doit[D_CBC_128_CML] = doit[D_CBC_192_CML] =
doit[D_CBC_256_CML] = 1;
continue;
}
#endif
#ifndef OPENSSL_NO_EC
if (strcmp(*argv, "ecdsa") == 0) {
for (i = 0; i < EC_NUM; i++)
ecdsa_doit[i] = 1;
continue;
}
if (found(*argv, ecdsa_choices, &i)) {
ecdsa_doit[i] = 2;
continue;
}
if (strcmp(*argv, "ecdh") == 0) {
for (i = 0; i < EC_NUM; i++)
ecdh_doit[i] = 1;
continue;
}
if (found(*argv, ecdh_choices, &i)) {
ecdh_doit[i] = 2;
continue;
}
#endif
BIO_printf(bio_err, "%s: Unknown algorithm %s\n", prog, *argv);
goto end;
}
/* Initialize the job pool if async mode is enabled */
if (async_jobs > 0) {
if (!ASYNC_init_thread(async_jobs, async_jobs)) {
BIO_printf(bio_err, "Error creating the ASYNC job pool\n");
goto end;
}
}
loopargs_len = (async_jobs == 0 ? 1 : async_jobs);
loopargs = app_malloc(loopargs_len * sizeof(loopargs_t), "array of loopargs");
memset(loopargs, 0, loopargs_len * sizeof(loopargs_t));
for (i = 0; i < loopargs_len; i++) {
loopargs[i].buf_malloc = app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer");
loopargs[i].buf2_malloc = app_malloc((int)BUFSIZE + MAX_MISALIGNMENT + 1, "input buffer");
/* Align the start of buffers on a 64 byte boundary */
loopargs[i].buf = loopargs[i].buf_malloc + misalign;
loopargs[i].buf2 = loopargs[i].buf2_malloc + misalign;
loopargs[i].siglen = app_malloc(sizeof(unsigned int), "signature length");
#ifndef OPENSSL_NO_DSA
memset(loopargs[i].dsa_key, 0, sizeof(loopargs[i].dsa_key));
#endif
#ifndef OPENSSL_NO_RSA
memset(loopargs[i].rsa_key, 0, sizeof(loopargs[i].rsa_key));
for (k = 0; k < RSA_NUM; k++)
loopargs[i].rsa_key[k] = NULL;
#endif
#ifndef OPENSSL_NO_EC
for (k = 0; k < EC_NUM; k++)
loopargs[i].ecdsa[k] = NULL;
for (k = 0; k < EC_NUM; k++)
loopargs[i].ecdh_a[k] = loopargs[i].ecdh_b[k] = NULL;
loopargs[i].secret_a = app_malloc(MAX_ECDH_SIZE, "ECDH secret a");
loopargs[i].secret_b = app_malloc(MAX_ECDH_SIZE, "ECDH secret b");
#endif
}
#ifndef NO_FORK
if (multi && do_multi(multi))
goto show_res;
#endif
/* Initialize the engine after the fork */
(void)setup_engine(engine_id, 0);
/* No parameters; turn on everything. */
if ((argc == 0) && !doit[D_EVP]) {
for (i = 0; i < ALGOR_NUM; i++)
if (i != D_EVP)
doit[i] = 1;
for (i = 0; i < RSA_NUM; i++)
rsa_doit[i] = 1;
for (i = 0; i < DSA_NUM; i++)
dsa_doit[i] = 1;
#ifndef OPENSSL_NO_EC
for (i = 0; i < EC_NUM; i++)
ecdsa_doit[i] = 1;
for (i = 0; i < EC_NUM; i++)
ecdh_doit[i] = 1;
#endif
}
for (i = 0; i < ALGOR_NUM; i++)
if (doit[i])
pr_header++;
if (usertime == 0 && !mr)
BIO_printf(bio_err,
"You have chosen to measure elapsed time "
"instead of user CPU time.\n");
#ifndef OPENSSL_NO_RSA
for (i = 0; i < loopargs_len; i++) {
for (k = 0; k < RSA_NUM; k++) {
const unsigned char *p;
p = rsa_data[k];
loopargs[i].rsa_key[k] = d2i_RSAPrivateKey(NULL, &p, rsa_data_length[k]);
if (loopargs[i].rsa_key[k] == NULL) {
BIO_printf(bio_err, "internal error loading RSA key number %d\n",
k);
goto end;
}
}
}
#endif
#ifndef OPENSSL_NO_DSA
for (i = 0; i < loopargs_len; i++) {
loopargs[i].dsa_key[0] = get_dsa512();
loopargs[i].dsa_key[1] = get_dsa1024();
loopargs[i].dsa_key[2] = get_dsa2048();
}
#endif
#ifndef OPENSSL_NO_DES
DES_set_key_unchecked(&key, &sch);
DES_set_key_unchecked(&key2, &sch2);
DES_set_key_unchecked(&key3, &sch3);
#endif
#ifndef OPENSSL_NO_AES
AES_set_encrypt_key(key16, 128, &aes_ks1);
AES_set_encrypt_key(key24, 192, &aes_ks2);
AES_set_encrypt_key(key32, 256, &aes_ks3);
#endif
#ifndef OPENSSL_NO_CAMELLIA
Camellia_set_key(key16, 128, &camellia_ks1);
Camellia_set_key(ckey24, 192, &camellia_ks2);
Camellia_set_key(ckey32, 256, &camellia_ks3);
#endif
#ifndef OPENSSL_NO_IDEA
idea_set_encrypt_key(key16, &idea_ks);
#endif
#ifndef OPENSSL_NO_SEED
SEED_set_key(key16, &seed_ks);
#endif
#ifndef OPENSSL_NO_RC4
RC4_set_key(&rc4_ks, 16, key16);
#endif
#ifndef OPENSSL_NO_RC2
RC2_set_key(&rc2_ks, 16, key16, 128);
#endif
#ifndef OPENSSL_NO_RC5
RC5_32_set_key(&rc5_ks, 16, key16, 12);
#endif
#ifndef OPENSSL_NO_BF
BF_set_key(&bf_ks, 16, key16);
#endif
#ifndef OPENSSL_NO_CAST
CAST_set_key(&cast_ks, 16, key16);
#endif
#ifndef OPENSSL_NO_RSA
memset(rsa_c, 0, sizeof(rsa_c));
#endif
#ifndef SIGALRM
# ifndef OPENSSL_NO_DES
BIO_printf(bio_err, "First we calculate the approximate speed ...\n");
count = 10;
do {
long it;
count *= 2;
Time_F(START);
for (it = count; it; it--)
DES_ecb_encrypt((DES_cblock *)loopargs[0].buf,
(DES_cblock *)loopargs[0].buf, &sch, DES_ENCRYPT);
d = Time_F(STOP);
} while (d < 3);
save_count = count;
c[D_MD2][0] = count / 10;
c[D_MDC2][0] = count / 10;
c[D_MD4][0] = count;
c[D_MD5][0] = count;
c[D_HMAC][0] = count;
c[D_SHA1][0] = count;
c[D_RMD160][0] = count;
c[D_RC4][0] = count * 5;
c[D_CBC_DES][0] = count;
c[D_EDE3_DES][0] = count / 3;
c[D_CBC_IDEA][0] = count;
c[D_CBC_SEED][0] = count;
c[D_CBC_RC2][0] = count;
c[D_CBC_RC5][0] = count;
c[D_CBC_BF][0] = count;
c[D_CBC_CAST][0] = count;
c[D_CBC_128_AES][0] = count;
c[D_CBC_192_AES][0] = count;
c[D_CBC_256_AES][0] = count;
c[D_CBC_128_CML][0] = count;
c[D_CBC_192_CML][0] = count;
c[D_CBC_256_CML][0] = count;
c[D_SHA256][0] = count;
c[D_SHA512][0] = count;
c[D_WHIRLPOOL][0] = count;
c[D_IGE_128_AES][0] = count;
c[D_IGE_192_AES][0] = count;
c[D_IGE_256_AES][0] = count;
c[D_GHASH][0] = count;
for (i = 1; i < SIZE_NUM; i++) {
long l0, l1;
l0 = (long)lengths[0];
l1 = (long)lengths[i];
c[D_MD2][i] = c[D_MD2][0] * 4 * l0 / l1;
c[D_MDC2][i] = c[D_MDC2][0] * 4 * l0 / l1;
c[D_MD4][i] = c[D_MD4][0] * 4 * l0 / l1;
c[D_MD5][i] = c[D_MD5][0] * 4 * l0 / l1;
c[D_HMAC][i] = c[D_HMAC][0] * 4 * l0 / l1;
c[D_SHA1][i] = c[D_SHA1][0] * 4 * l0 / l1;
c[D_RMD160][i] = c[D_RMD160][0] * 4 * l0 / l1;
c[D_SHA256][i] = c[D_SHA256][0] * 4 * l0 / l1;
c[D_SHA512][i] = c[D_SHA512][0] * 4 * l0 / l1;
c[D_WHIRLPOOL][i] = c[D_WHIRLPOOL][0] * 4 * l0 / l1;
c[D_GHASH][i] = c[D_GHASH][0] * 4 * l0 / l1;
l0 = (long)lengths[i - 1];
c[D_RC4][i] = c[D_RC4][i - 1] * l0 / l1;
c[D_CBC_DES][i] = c[D_CBC_DES][i - 1] * l0 / l1;
c[D_EDE3_DES][i] = c[D_EDE3_DES][i - 1] * l0 / l1;
c[D_CBC_IDEA][i] = c[D_CBC_IDEA][i - 1] * l0 / l1;
c[D_CBC_SEED][i] = c[D_CBC_SEED][i - 1] * l0 / l1;
c[D_CBC_RC2][i] = c[D_CBC_RC2][i - 1] * l0 / l1;
c[D_CBC_RC5][i] = c[D_CBC_RC5][i - 1] * l0 / l1;
c[D_CBC_BF][i] = c[D_CBC_BF][i - 1] * l0 / l1;
c[D_CBC_CAST][i] = c[D_CBC_CAST][i - 1] * l0 / l1;
c[D_CBC_128_AES][i] = c[D_CBC_128_AES][i - 1] * l0 / l1;
c[D_CBC_192_AES][i] = c[D_CBC_192_AES][i - 1] * l0 / l1;
c[D_CBC_256_AES][i] = c[D_CBC_256_AES][i - 1] * l0 / l1;
c[D_CBC_128_CML][i] = c[D_CBC_128_CML][i - 1] * l0 / l1;
c[D_CBC_192_CML][i] = c[D_CBC_192_CML][i - 1] * l0 / l1;
c[D_CBC_256_CML][i] = c[D_CBC_256_CML][i - 1] * l0 / l1;
c[D_IGE_128_AES][i] = c[D_IGE_128_AES][i - 1] * l0 / l1;
c[D_IGE_192_AES][i] = c[D_IGE_192_AES][i - 1] * l0 / l1;
c[D_IGE_256_AES][i] = c[D_IGE_256_AES][i - 1] * l0 / l1;
}
# ifndef OPENSSL_NO_RSA
rsa_c[R_RSA_512][0] = count / 2000;
rsa_c[R_RSA_512][1] = count / 400;
for (i = 1; i < RSA_NUM; i++) {
rsa_c[i][0] = rsa_c[i - 1][0] / 8;
rsa_c[i][1] = rsa_c[i - 1][1] / 4;
if ((rsa_doit[i] <= 1) && (rsa_c[i][0] == 0))
rsa_doit[i] = 0;
else {
if (rsa_c[i][0] == 0) {
rsa_c[i][0] = 1;
rsa_c[i][1] = 20;
}
}
}
# endif
# ifndef OPENSSL_NO_DSA
dsa_c[R_DSA_512][0] = count / 1000;
dsa_c[R_DSA_512][1] = count / 1000 / 2;
for (i = 1; i < DSA_NUM; i++) {
dsa_c[i][0] = dsa_c[i - 1][0] / 4;
dsa_c[i][1] = dsa_c[i - 1][1] / 4;
if ((dsa_doit[i] <= 1) && (dsa_c[i][0] == 0))
dsa_doit[i] = 0;
else {
if (dsa_c[i] == 0) {
dsa_c[i][0] = 1;
dsa_c[i][1] = 1;
}
}
}
# endif
# ifndef OPENSSL_NO_EC
ecdsa_c[R_EC_P160][0] = count / 1000;
ecdsa_c[R_EC_P160][1] = count / 1000 / 2;
for (i = R_EC_P192; i <= R_EC_P521; i++) {
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0))
ecdsa_doit[i] = 0;
else {
if (ecdsa_c[i] == 0) {
ecdsa_c[i][0] = 1;
ecdsa_c[i][1] = 1;
}
}
}
ecdsa_c[R_EC_K163][0] = count / 1000;
ecdsa_c[R_EC_K163][1] = count / 1000 / 2;
for (i = R_EC_K233; i <= R_EC_K571; i++) {
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0))
ecdsa_doit[i] = 0;
else {
if (ecdsa_c[i] == 0) {
ecdsa_c[i][0] = 1;
ecdsa_c[i][1] = 1;
}
}
}
ecdsa_c[R_EC_B163][0] = count / 1000;
ecdsa_c[R_EC_B163][1] = count / 1000 / 2;
for (i = R_EC_B233; i <= R_EC_B571; i++) {
ecdsa_c[i][0] = ecdsa_c[i - 1][0] / 2;
ecdsa_c[i][1] = ecdsa_c[i - 1][1] / 2;
if ((ecdsa_doit[i] <= 1) && (ecdsa_c[i][0] == 0))
ecdsa_doit[i] = 0;
else {
if (ecdsa_c[i] == 0) {
ecdsa_c[i][0] = 1;
ecdsa_c[i][1] = 1;
}
}
}
ecdh_c[R_EC_P160][0] = count / 1000;
ecdh_c[R_EC_P160][1] = count / 1000;
for (i = R_EC_P192; i <= R_EC_P521; i++) {
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
ecdh_c[i][1] = ecdh_c[i - 1][1] / 2;
if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0))
ecdh_doit[i] = 0;
else {
if (ecdh_c[i] == 0) {
ecdh_c[i][0] = 1;
ecdh_c[i][1] = 1;
}
}
}
ecdh_c[R_EC_K163][0] = count / 1000;
ecdh_c[R_EC_K163][1] = count / 1000;
for (i = R_EC_K233; i <= R_EC_K571; i++) {
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
ecdh_c[i][1] = ecdh_c[i - 1][1] / 2;
if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0))
ecdh_doit[i] = 0;
else {
if (ecdh_c[i] == 0) {
ecdh_c[i][0] = 1;
ecdh_c[i][1] = 1;
}
}
}
ecdh_c[R_EC_B163][0] = count / 1000;
ecdh_c[R_EC_B163][1] = count / 1000;
for (i = R_EC_B233; i <= R_EC_B571; i++) {
ecdh_c[i][0] = ecdh_c[i - 1][0] / 2;
ecdh_c[i][1] = ecdh_c[i - 1][1] / 2;
if ((ecdh_doit[i] <= 1) && (ecdh_c[i][0] == 0))
ecdh_doit[i] = 0;
else {
if (ecdh_c[i] == 0) {
ecdh_c[i][0] = 1;
ecdh_c[i][1] = 1;
}
}
}
# endif
# else
/* not worth fixing */
# error "You cannot disable DES on systems without SIGALRM."
# endif /* OPENSSL_NO_DES */
#else
# ifndef _WIN32
signal(SIGALRM, sig_done);
# endif
#endif /* SIGALRM */
#ifndef OPENSSL_NO_MD2
if (doit[D_MD2]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_MD2], c[D_MD2][testnum], lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, EVP_Digest_MD2_loop, loopargs);
d = Time_F(STOP);
print_result(D_MD2, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_MDC2
if (doit[D_MDC2]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_MDC2], c[D_MDC2][testnum], lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, EVP_Digest_MDC2_loop, loopargs);
d = Time_F(STOP);
print_result(D_MDC2, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_MD4
if (doit[D_MD4]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_MD4], c[D_MD4][testnum], lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, EVP_Digest_MD4_loop, loopargs);
d = Time_F(STOP);
print_result(D_MD4, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_MD5
if (doit[D_MD5]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_MD5], c[D_MD5][testnum], lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, MD5_loop, loopargs);
d = Time_F(STOP);
print_result(D_MD5, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_MD5
if (doit[D_HMAC]) {
for (i = 0; i < loopargs_len; i++) {
loopargs[i].hctx = HMAC_CTX_new();
if (loopargs[i].hctx == NULL) {
BIO_printf(bio_err, "HMAC malloc failure, exiting...");
exit(1);
}
HMAC_Init_ex(loopargs[i].hctx, (unsigned char *)"This is a key...",
16, EVP_md5(), NULL);
}
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_HMAC], c[D_HMAC][testnum], lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, HMAC_loop, loopargs);
d = Time_F(STOP);
print_result(D_HMAC, testnum, count, d);
}
for (i = 0; i < loopargs_len; i++) {
HMAC_CTX_free(loopargs[i].hctx);
}
}
#endif
if (doit[D_SHA1]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_SHA1], c[D_SHA1][testnum], lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, SHA1_loop, loopargs);
d = Time_F(STOP);
print_result(D_SHA1, testnum, count, d);
}
}
if (doit[D_SHA256]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_SHA256], c[D_SHA256][testnum], lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, SHA256_loop, loopargs);
d = Time_F(STOP);
print_result(D_SHA256, testnum, count, d);
}
}
if (doit[D_SHA512]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_SHA512], c[D_SHA512][testnum], lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, SHA512_loop, loopargs);
d = Time_F(STOP);
print_result(D_SHA512, testnum, count, d);
}
}
#ifndef OPENSSL_NO_WHIRLPOOL
if (doit[D_WHIRLPOOL]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_WHIRLPOOL], c[D_WHIRLPOOL][testnum], lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, WHIRLPOOL_loop, loopargs);
d = Time_F(STOP);
print_result(D_WHIRLPOOL, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_RMD160
if (doit[D_RMD160]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_RMD160], c[D_RMD160][testnum], lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, EVP_Digest_RMD160_loop, loopargs);
d = Time_F(STOP);
print_result(D_RMD160, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_RC4
if (doit[D_RC4]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_RC4], c[D_RC4][testnum], lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, RC4_loop, loopargs);
d = Time_F(STOP);
print_result(D_RC4, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_DES
if (doit[D_CBC_DES]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_CBC_DES], c[D_CBC_DES][testnum], lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, DES_ncbc_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_CBC_DES, testnum, count, d);
}
}
if (doit[D_EDE3_DES]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_EDE3_DES], c[D_EDE3_DES][testnum], lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, DES_ede3_cbc_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_EDE3_DES, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_AES
if (doit[D_CBC_128_AES]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_CBC_128_AES], c[D_CBC_128_AES][testnum],
lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, AES_cbc_128_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_CBC_128_AES, testnum, count, d);
}
}
if (doit[D_CBC_192_AES]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_CBC_192_AES], c[D_CBC_192_AES][testnum],
lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, AES_cbc_192_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_CBC_192_AES, testnum, count, d);
}
}
if (doit[D_CBC_256_AES]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_CBC_256_AES], c[D_CBC_256_AES][testnum],
lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, AES_cbc_256_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_CBC_256_AES, testnum, count, d);
}
}
if (doit[D_IGE_128_AES]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_IGE_128_AES], c[D_IGE_128_AES][testnum],
lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, AES_ige_128_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_IGE_128_AES, testnum, count, d);
}
}
if (doit[D_IGE_192_AES]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_IGE_192_AES], c[D_IGE_192_AES][testnum],
lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, AES_ige_192_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_IGE_192_AES, testnum, count, d);
}
}
if (doit[D_IGE_256_AES]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_IGE_256_AES], c[D_IGE_256_AES][testnum],
lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, AES_ige_256_encrypt_loop, loopargs);
d = Time_F(STOP);
print_result(D_IGE_256_AES, testnum, count, d);
}
}
if (doit[D_GHASH]) {
for (i = 0; i < loopargs_len; i++) {
loopargs[i].gcm_ctx = CRYPTO_gcm128_new(&aes_ks1, (block128_f) AES_encrypt);
CRYPTO_gcm128_setiv(loopargs[i].gcm_ctx, (unsigned char *)"0123456789ab", 12);
}
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_GHASH], c[D_GHASH][testnum], lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, CRYPTO_gcm128_aad_loop, loopargs);
d = Time_F(STOP);
print_result(D_GHASH, testnum, count, d);
}
for (i = 0; i < loopargs_len; i++)
CRYPTO_gcm128_release(loopargs[i].gcm_ctx);
}
#endif
#ifndef OPENSSL_NO_CAMELLIA
if (doit[D_CBC_128_CML]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_CBC_128_CML], c[D_CBC_128_CML][testnum],
lengths[testnum]);
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported, exiting...");
exit(1);
}
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_128_CML][testnum]); count++)
Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(unsigned long)lengths[testnum], &camellia_ks1,
iv, CAMELLIA_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_128_CML, testnum, count, d);
}
}
if (doit[D_CBC_192_CML]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_CBC_192_CML], c[D_CBC_192_CML][testnum],
lengths[testnum]);
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported, exiting...");
exit(1);
}
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_192_CML][testnum]); count++)
Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(unsigned long)lengths[testnum], &camellia_ks2,
iv, CAMELLIA_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_192_CML, testnum, count, d);
}
}
if (doit[D_CBC_256_CML]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_CBC_256_CML], c[D_CBC_256_CML][testnum],
lengths[testnum]);
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported, exiting...");
exit(1);
}
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_256_CML][testnum]); count++)
Camellia_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(unsigned long)lengths[testnum], &camellia_ks3,
iv, CAMELLIA_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_256_CML, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_IDEA
if (doit[D_CBC_IDEA]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_CBC_IDEA], c[D_CBC_IDEA][testnum], lengths[testnum]);
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported, exiting...");
exit(1);
}
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_IDEA][testnum]); count++)
idea_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(unsigned long)lengths[testnum], &idea_ks,
iv, IDEA_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_IDEA, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_SEED
if (doit[D_CBC_SEED]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_CBC_SEED], c[D_CBC_SEED][testnum], lengths[testnum]);
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported, exiting...");
exit(1);
}
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_SEED][testnum]); count++)
SEED_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(unsigned long)lengths[testnum], &seed_ks, iv, 1);
d = Time_F(STOP);
print_result(D_CBC_SEED, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_RC2
if (doit[D_CBC_RC2]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_CBC_RC2], c[D_CBC_RC2][testnum], lengths[testnum]);
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported, exiting...");
exit(1);
}
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_RC2][testnum]); count++)
RC2_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(unsigned long)lengths[testnum], &rc2_ks,
iv, RC2_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_RC2, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_RC5
if (doit[D_CBC_RC5]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_CBC_RC5], c[D_CBC_RC5][testnum], lengths[testnum]);
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported, exiting...");
exit(1);
}
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_RC5][testnum]); count++)
RC5_32_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(unsigned long)lengths[testnum], &rc5_ks,
iv, RC5_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_RC5, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_BF
if (doit[D_CBC_BF]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_CBC_BF], c[D_CBC_BF][testnum], lengths[testnum]);
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported, exiting...");
exit(1);
}
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_BF][testnum]); count++)
BF_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(unsigned long)lengths[testnum], &bf_ks,
iv, BF_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_BF, testnum, count, d);
}
}
#endif
#ifndef OPENSSL_NO_CAST
if (doit[D_CBC_CAST]) {
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
print_message(names[D_CBC_CAST], c[D_CBC_CAST][testnum], lengths[testnum]);
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported, exiting...");
exit(1);
}
Time_F(START);
for (count = 0, run = 1; COND(c[D_CBC_CAST][testnum]); count++)
CAST_cbc_encrypt(loopargs[0].buf, loopargs[0].buf,
(unsigned long)lengths[testnum], &cast_ks,
iv, CAST_ENCRYPT);
d = Time_F(STOP);
print_result(D_CBC_CAST, testnum, count, d);
}
}
#endif
if (doit[D_EVP]) {
#ifdef EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK
if (multiblock && evp_cipher) {
if (!
(EVP_CIPHER_flags(evp_cipher) &
EVP_CIPH_FLAG_TLS1_1_MULTIBLOCK)) {
BIO_printf(bio_err, "%s is not multi-block capable\n",
OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher)));
goto end;
}
if (async_jobs > 0) {
BIO_printf(bio_err, "Async mode is not supported, exiting...");
exit(1);
}
multiblock_speed(evp_cipher);
ret = 0;
goto end;
}
#endif
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
if (evp_cipher) {
names[D_EVP] = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher));
/*
* -O3 -fschedule-insns messes up an optimization here!
* names[D_EVP] somehow becomes NULL
*/
print_message(names[D_EVP], save_count, lengths[testnum]);
for (k = 0; k < loopargs_len; k++) {
loopargs[k].ctx = EVP_CIPHER_CTX_new();
if (decrypt)
EVP_DecryptInit_ex(loopargs[k].ctx, evp_cipher, NULL, key16, iv);
else
EVP_EncryptInit_ex(loopargs[k].ctx, evp_cipher, NULL, key16, iv);
EVP_CIPHER_CTX_set_padding(loopargs[k].ctx, 0);
}
Time_F(START);
count = run_benchmark(async_jobs, EVP_Update_loop, loopargs);
d = Time_F(STOP);
for (k = 0; k < loopargs_len; k++) {
EVP_CIPHER_CTX_free(loopargs[k].ctx);
}
}
if (evp_md) {
names[D_EVP] = OBJ_nid2ln(EVP_MD_type(evp_md));
print_message(names[D_EVP], save_count, lengths[testnum]);
Time_F(START);
count = run_benchmark(async_jobs, EVP_Digest_loop, loopargs);
d = Time_F(STOP);
}
print_result(D_EVP, testnum, count, d);
}
}
for (i = 0; i < loopargs_len; i++)
RAND_bytes(loopargs[i].buf, 36);
#ifndef OPENSSL_NO_RSA
for (testnum = 0; testnum < RSA_NUM; testnum++) {
int st = 0;
if (!rsa_doit[testnum])
continue;
for (i = 0; i < loopargs_len; i++) {
st = RSA_sign(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2,
loopargs[i].siglen, loopargs[i].rsa_key[testnum]);
if (st == 0)
break;
}
if (st == 0) {
BIO_printf(bio_err,
"RSA sign failure. No RSA sign will be done.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
pkey_print_message("private", "rsa",
rsa_c[testnum][0], rsa_bits[testnum], RSA_SECONDS);
/* RSA_blinding_on(rsa_key[testnum],NULL); */
Time_F(START);
count = run_benchmark(async_jobs, RSA_sign_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R1:%ld:%d:%.2f\n"
: "%ld %d bit private RSA's in %.2fs\n",
count, rsa_bits[testnum], d);
rsa_results[testnum][0] = d / (double)count;
rsa_count = count;
}
for (i = 0; i < loopargs_len; i++) {
st = RSA_verify(NID_md5_sha1, loopargs[i].buf, 36, loopargs[i].buf2,
*(loopargs[i].siglen), loopargs[i].rsa_key[testnum]);
if (st <= 0)
break;
}
if (st <= 0) {
BIO_printf(bio_err,
"RSA verify failure. No RSA verify will be done.\n");
ERR_print_errors(bio_err);
rsa_doit[testnum] = 0;
} else {
pkey_print_message("public", "rsa",
rsa_c[testnum][1], rsa_bits[testnum], RSA_SECONDS);
Time_F(START);
count = run_benchmark(async_jobs, RSA_verify_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R2:%ld:%d:%.2f\n"
: "%ld %d bit public RSA's in %.2fs\n",
count, rsa_bits[testnum], d);
rsa_results[testnum][1] = d / (double)count;
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
for (testnum++; testnum < RSA_NUM; testnum++)
rsa_doit[testnum] = 0;
}
}
#endif
for (i = 0; i < loopargs_len; i++)
RAND_bytes(loopargs[i].buf, 36);
#ifndef OPENSSL_NO_DSA
if (RAND_status() != 1) {
RAND_seed(rnd_seed, sizeof rnd_seed);
rnd_fake = 1;
}
for (testnum = 0; testnum < DSA_NUM; testnum++) {
int st = 0;
if (!dsa_doit[testnum])
continue;
/* DSA_generate_key(dsa_key[testnum]); */
/* DSA_sign_setup(dsa_key[testnum],NULL); */
for (i = 0; i < loopargs_len; i++) {
st = DSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2,
loopargs[i].siglen, loopargs[i].dsa_key[testnum]);
if (st == 0)
break;
}
if (st == 0) {
BIO_printf(bio_err,
"DSA sign failure. No DSA sign will be done.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
pkey_print_message("sign", "dsa",
dsa_c[testnum][0], dsa_bits[testnum], DSA_SECONDS);
Time_F(START);
count = run_benchmark(async_jobs, DSA_sign_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R3:%ld:%d:%.2f\n"
: "%ld %d bit DSA signs in %.2fs\n",
count, dsa_bits[testnum], d);
dsa_results[testnum][0] = d / (double)count;
rsa_count = count;
}
for (i = 0; i < loopargs_len; i++) {
st = DSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2,
*(loopargs[i].siglen), loopargs[i].dsa_key[testnum]);
if (st <= 0)
break;
}
if (st <= 0) {
BIO_printf(bio_err,
"DSA verify failure. No DSA verify will be done.\n");
ERR_print_errors(bio_err);
dsa_doit[testnum] = 0;
} else {
pkey_print_message("verify", "dsa",
dsa_c[testnum][1], dsa_bits[testnum], DSA_SECONDS);
Time_F(START);
count = run_benchmark(async_jobs, DSA_verify_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R4:%ld:%d:%.2f\n"
: "%ld %d bit DSA verify in %.2fs\n",
count, dsa_bits[testnum], d);
dsa_results[testnum][1] = d / (double)count;
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
for (testnum++; testnum < DSA_NUM; testnum++)
dsa_doit[testnum] = 0;
}
}
if (rnd_fake)
RAND_cleanup();
#endif
#ifndef OPENSSL_NO_EC
if (RAND_status() != 1) {
RAND_seed(rnd_seed, sizeof rnd_seed);
rnd_fake = 1;
}
for (testnum = 0; testnum < EC_NUM; testnum++) {
int st = 1;
if (!ecdsa_doit[testnum])
continue; /* Ignore Curve */
for (i = 0; i < loopargs_len; i++) {
loopargs[i].ecdsa[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]);
if (loopargs[i].ecdsa[testnum] == NULL) {
st = 0;
break;
}
}
if (st == 0) {
BIO_printf(bio_err, "ECDSA failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
for (i = 0; i < loopargs_len; i++) {
EC_KEY_precompute_mult(loopargs[i].ecdsa[testnum], NULL);
/* Perform ECDSA signature test */
EC_KEY_generate_key(loopargs[i].ecdsa[testnum]);
st = ECDSA_sign(0, loopargs[i].buf, 20, loopargs[i].buf2,
loopargs[i].siglen, loopargs[i].ecdsa[testnum]);
if (st == 0)
break;
}
if (st == 0) {
BIO_printf(bio_err,
"ECDSA sign failure. No ECDSA sign will be done.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
pkey_print_message("sign", "ecdsa",
ecdsa_c[testnum][0],
test_curves_bits[testnum], ECDSA_SECONDS);
Time_F(START);
count = run_benchmark(async_jobs, ECDSA_sign_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R5:%ld:%d:%.2f\n" :
"%ld %d bit ECDSA signs in %.2fs \n",
count, test_curves_bits[testnum], d);
ecdsa_results[testnum][0] = d / (double)count;
rsa_count = count;
}
/* Perform ECDSA verification test */
for (i = 0; i < loopargs_len; i++) {
st = ECDSA_verify(0, loopargs[i].buf, 20, loopargs[i].buf2,
*(loopargs[i].siglen), loopargs[i].ecdsa[testnum]);
if (st != 1)
break;
}
if (st != 1) {
BIO_printf(bio_err,
"ECDSA verify failure. No ECDSA verify will be done.\n");
ERR_print_errors(bio_err);
ecdsa_doit[testnum] = 0;
} else {
pkey_print_message("verify", "ecdsa",
ecdsa_c[testnum][1],
test_curves_bits[testnum], ECDSA_SECONDS);
Time_F(START);
count = run_benchmark(async_jobs, ECDSA_verify_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R6:%ld:%d:%.2f\n"
: "%ld %d bit ECDSA verify in %.2fs\n",
count, test_curves_bits[testnum], d);
ecdsa_results[testnum][1] = d / (double)count;
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
for (testnum++; testnum < EC_NUM; testnum++)
ecdsa_doit[testnum] = 0;
}
}
}
if (rnd_fake)
RAND_cleanup();
#endif
#ifndef OPENSSL_NO_EC
if (RAND_status() != 1) {
RAND_seed(rnd_seed, sizeof rnd_seed);
rnd_fake = 1;
}
for (testnum = 0; testnum < EC_NUM; testnum++) {
if (!ecdh_doit[testnum])
continue;
for (i = 0; i < loopargs_len; i++) {
loopargs[i].ecdh_a[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]);
loopargs[i].ecdh_b[testnum] = EC_KEY_new_by_curve_name(test_curves[testnum]);
if (loopargs[i].ecdh_a[testnum] == NULL ||
loopargs[i].ecdh_b[testnum] == NULL) {
ecdh_checks = 0;
break;
}
}
if (ecdh_checks == 0) {
BIO_printf(bio_err, "ECDH failure.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
} else {
for (i = 0; i < loopargs_len; i++) {
/* generate two ECDH key pairs */
if (!EC_KEY_generate_key(loopargs[i].ecdh_a[testnum]) ||
!EC_KEY_generate_key(loopargs[i].ecdh_b[testnum])) {
BIO_printf(bio_err, "ECDH key generation failure.\n");
ERR_print_errors(bio_err);
ecdh_checks = 0;
rsa_count = 1;
} else {
/*
* If field size is not more than 24 octets, then use SHA-1
* hash of result; otherwise, use result (see section 4.8 of
* draft-ietf-tls-ecc-03.txt).
*/
int field_size;
field_size =
EC_GROUP_get_degree(EC_KEY_get0_group(loopargs[i].ecdh_a[testnum]));
if (field_size <= 24 * 8) {
outlen = KDF1_SHA1_len;
kdf = KDF1_SHA1;
} else {
outlen = (field_size + 7) / 8;
kdf = NULL;
}
secret_size_a =
ECDH_compute_key(loopargs[i].secret_a, outlen,
EC_KEY_get0_public_key(loopargs[i].ecdh_b[testnum]),
loopargs[i].ecdh_a[testnum], kdf);
secret_size_b =
ECDH_compute_key(loopargs[i].secret_b, outlen,
EC_KEY_get0_public_key(loopargs[i].ecdh_a[testnum]),
loopargs[i].ecdh_b[testnum], kdf);
if (secret_size_a != secret_size_b)
ecdh_checks = 0;
else
ecdh_checks = 1;
for (secret_idx = 0; (secret_idx < secret_size_a)
&& (ecdh_checks == 1); secret_idx++) {
if (loopargs[i].secret_a[secret_idx] != loopargs[i].secret_b[secret_idx])
ecdh_checks = 0;
}
if (ecdh_checks == 0) {
BIO_printf(bio_err, "ECDH computations don't match.\n");
ERR_print_errors(bio_err);
rsa_count = 1;
break;
}
}
if (ecdh_checks != 0) {
pkey_print_message("", "ecdh",
ecdh_c[testnum][0],
test_curves_bits[testnum], ECDH_SECONDS);
Time_F(START);
count = run_benchmark(async_jobs, ECDH_compute_key_loop, loopargs);
d = Time_F(STOP);
BIO_printf(bio_err,
mr ? "+R7:%ld:%d:%.2f\n" :
"%ld %d-bit ECDH ops in %.2fs\n", count,
test_curves_bits[testnum], d);
ecdh_results[testnum][0] = d / (double)count;
rsa_count = count;
}
}
}
if (rsa_count <= 1) {
/* if longer than 10s, don't do any more */
for (testnum++; testnum < EC_NUM; testnum++)
ecdh_doit[testnum] = 0;
}
}
if (rnd_fake)
RAND_cleanup();
#endif
#ifndef NO_FORK
show_res:
#endif
if (!mr) {
printf("%s\n", OpenSSL_version(OPENSSL_VERSION));
printf("%s\n", OpenSSL_version(OPENSSL_BUILT_ON));
printf("options:");
printf("%s ", BN_options());
#ifndef OPENSSL_NO_MD2
printf("%s ", MD2_options());
#endif
#ifndef OPENSSL_NO_RC4
printf("%s ", RC4_options());
#endif
#ifndef OPENSSL_NO_DES
printf("%s ", DES_options());
#endif
#ifndef OPENSSL_NO_AES
printf("%s ", AES_options());
#endif
#ifndef OPENSSL_NO_IDEA
printf("%s ", idea_options());
#endif
#ifndef OPENSSL_NO_BF
printf("%s ", BF_options());
#endif
printf("\n%s\n", OpenSSL_version(OPENSSL_CFLAGS));
}
if (pr_header) {
if (mr)
printf("+H");
else {
printf
("The 'numbers' are in 1000s of bytes per second processed.\n");
printf("type ");
}
for (testnum = 0; testnum < SIZE_NUM; testnum++)
printf(mr ? ":%d" : "%7d bytes", lengths[testnum]);
printf("\n");
}
for (k = 0; k < ALGOR_NUM; k++) {
if (!doit[k])
continue;
if (mr)
printf("+F:%d:%s", k, names[k]);
else
printf("%-13s", names[k]);
for (testnum = 0; testnum < SIZE_NUM; testnum++) {
if (results[k][testnum] > 10000 && !mr)
printf(" %11.2fk", results[k][testnum] / 1e3);
else
printf(mr ? ":%.2f" : " %11.2f ", results[k][testnum]);
}
printf("\n");
}
#ifndef OPENSSL_NO_RSA
testnum = 1;
for (k = 0; k < RSA_NUM; k++) {
if (!rsa_doit[k])
continue;
if (testnum && !mr) {
printf("%18ssign verify sign/s verify/s\n", " ");
testnum = 0;
}
if (mr)
printf("+F2:%u:%u:%f:%f\n",
k, rsa_bits[k], rsa_results[k][0], rsa_results[k][1]);
else
printf("rsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
rsa_bits[k], rsa_results[k][0], rsa_results[k][1],
1.0 / rsa_results[k][0], 1.0 / rsa_results[k][1]);
}
#endif
#ifndef OPENSSL_NO_DSA
testnum = 1;
for (k = 0; k < DSA_NUM; k++) {
if (!dsa_doit[k])
continue;
if (testnum && !mr) {
printf("%18ssign verify sign/s verify/s\n", " ");
testnum = 0;
}
if (mr)
printf("+F3:%u:%u:%f:%f\n",
k, dsa_bits[k], dsa_results[k][0], dsa_results[k][1]);
else
printf("dsa %4u bits %8.6fs %8.6fs %8.1f %8.1f\n",
dsa_bits[k], dsa_results[k][0], dsa_results[k][1],
1.0 / dsa_results[k][0], 1.0 / dsa_results[k][1]);
}
#endif
#ifndef OPENSSL_NO_EC
testnum = 1;
for (k = 0; k < EC_NUM; k++) {
if (!ecdsa_doit[k])
continue;
if (testnum && !mr) {
printf("%30ssign verify sign/s verify/s\n", " ");
testnum = 0;
}
if (mr)
printf("+F4:%u:%u:%f:%f\n",
k, test_curves_bits[k],
ecdsa_results[k][0], ecdsa_results[k][1]);
else
printf("%4u bit ecdsa (%s) %8.4fs %8.4fs %8.1f %8.1f\n",
test_curves_bits[k],
test_curves_names[k],
ecdsa_results[k][0], ecdsa_results[k][1],
1.0 / ecdsa_results[k][0], 1.0 / ecdsa_results[k][1]);
}
#endif
#ifndef OPENSSL_NO_EC
testnum = 1;
for (k = 0; k < EC_NUM; k++) {
if (!ecdh_doit[k])
continue;
if (testnum && !mr) {
printf("%30sop op/s\n", " ");
testnum = 0;
}
if (mr)
printf("+F5:%u:%u:%f:%f\n",
k, test_curves_bits[k],
ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
else
printf("%4u bit ecdh (%s) %8.4fs %8.1f\n",
test_curves_bits[k],
test_curves_names[k],
ecdh_results[k][0], 1.0 / ecdh_results[k][0]);
}
#endif
ret = 0;
end:
ERR_print_errors(bio_err);
for (i = 0; i < loopargs_len; i++) {
if (loopargs[i].buf_malloc != NULL)
OPENSSL_free(loopargs[i].buf_malloc);
if (loopargs[i].buf2_malloc != NULL)
OPENSSL_free(loopargs[i].buf2_malloc);
if (loopargs[i].siglen != NULL)
OPENSSL_free(loopargs[i].siglen);
}
if (loopargs != NULL)
OPENSSL_free(loopargs);
#ifndef OPENSSL_NO_RSA
for (i = 0; i < loopargs_len; i++) {
for (k = 0; k < RSA_NUM; k++)
RSA_free(loopargs[i].rsa_key[k]);
}
#endif
#ifndef OPENSSL_NO_DSA
for (i = 0; i < loopargs_len; i++) {
for (k = 0; k < DSA_NUM; k++)
DSA_free(loopargs[i].dsa_key[k]);
}
#endif
#ifndef OPENSSL_NO_EC
for (i = 0; i < loopargs_len; i++) {
for (k = 0; k < EC_NUM; k++) {
EC_KEY_free(loopargs[i].ecdsa[k]);
EC_KEY_free(loopargs[i].ecdh_a[k]);
EC_KEY_free(loopargs[i].ecdh_b[k]);
}
if (loopargs[i].secret_a)
OPENSSL_free(loopargs[i].secret_a);
if (loopargs[i].secret_b)
OPENSSL_free(loopargs[i].secret_b);
}
#endif
if (async_jobs > 0)
ASYNC_cleanup_thread();
return (ret);
}
static void print_message(const char *s, long num, int length)
{
#ifdef SIGALRM
BIO_printf(bio_err,
mr ? "+DT:%s:%d:%d\n"
: "Doing %s for %ds on %d size blocks: ", s, SECONDS, length);
(void)BIO_flush(bio_err);
alarm(SECONDS);
#else
BIO_printf(bio_err,
mr ? "+DN:%s:%ld:%d\n"
: "Doing %s %ld times on %d size blocks: ", s, num, length);
(void)BIO_flush(bio_err);
#endif
}
static void pkey_print_message(const char *str, const char *str2, long num,
int bits, int tm)
{
#ifdef SIGALRM
BIO_printf(bio_err,
mr ? "+DTP:%d:%s:%s:%d\n"
: "Doing %d bit %s %s's for %ds: ", bits, str, str2, tm);
(void)BIO_flush(bio_err);
alarm(tm);
#else
BIO_printf(bio_err,
mr ? "+DNP:%ld:%d:%s:%s\n"
: "Doing %ld %d bit %s %s's: ", num, bits, str, str2);
(void)BIO_flush(bio_err);
#endif
}
static void print_result(int alg, int run_no, int count, double time_used)
{
BIO_printf(bio_err,
mr ? "+R:%d:%s:%f\n"
: "%d %s's in %.2fs\n", count, names[alg], time_used);
results[alg][run_no] = ((double)count) / time_used * lengths[run_no];
}
#ifndef NO_FORK
static char *sstrsep(char **string, const char *delim)
{
char isdelim[256];
char *token = *string;
if (**string == 0)
return NULL;
memset(isdelim, 0, sizeof isdelim);
isdelim[0] = 1;
while (*delim) {
isdelim[(unsigned char)(*delim)] = 1;
delim++;
}
while (!isdelim[(unsigned char)(**string)]) {
(*string)++;
}
if (**string) {
**string = 0;
(*string)++;
}
return token;
}
static int do_multi(int multi)
{
int n;
int fd[2];
int *fds;
static char sep[] = ":";
fds = malloc(sizeof(*fds) * multi);
for (n = 0; n < multi; ++n) {
if (pipe(fd) == -1) {
BIO_printf(bio_err, "pipe failure\n");
exit(1);
}
fflush(stdout);
(void)BIO_flush(bio_err);
if (fork()) {
close(fd[1]);
fds[n] = fd[0];
} else {
close(fd[0]);
close(1);
if (dup(fd[1]) == -1) {
BIO_printf(bio_err, "dup failed\n");
exit(1);
}
close(fd[1]);
mr = 1;
usertime = 0;
free(fds);
return 0;
}
printf("Forked child %d\n", n);
}
/* for now, assume the pipe is long enough to take all the output */
for (n = 0; n < multi; ++n) {
FILE *f;
char buf[1024];
char *p;
f = fdopen(fds[n], "r");
while (fgets(buf, sizeof buf, f)) {
p = strchr(buf, '\n');
if (p)
*p = '\0';
if (buf[0] != '+') {
BIO_printf(bio_err, "Don't understand line '%s' from child %d\n",
buf, n);
continue;
}
printf("Got: %s from %d\n", buf, n);
if (strncmp(buf, "+F:", 3) == 0) {
int alg;
int j;
p = buf + 3;
alg = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
for (j = 0; j < SIZE_NUM; ++j)
results[alg][j] += atof(sstrsep(&p, sep));
} else if (strncmp(buf, "+F2:", 4) == 0) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
if (n)
rsa_results[k][0] = 1 / (1 / rsa_results[k][0] + 1 / d);
else
rsa_results[k][0] = d;
d = atof(sstrsep(&p, sep));
if (n)
rsa_results[k][1] = 1 / (1 / rsa_results[k][1] + 1 / d);
else
rsa_results[k][1] = d;
}
# ifndef OPENSSL_NO_DSA
else if (strncmp(buf, "+F3:", 4) == 0) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
if (n)
dsa_results[k][0] = 1 / (1 / dsa_results[k][0] + 1 / d);
else
dsa_results[k][0] = d;
d = atof(sstrsep(&p, sep));
if (n)
dsa_results[k][1] = 1 / (1 / dsa_results[k][1] + 1 / d);
else
dsa_results[k][1] = d;
}
# endif
# ifndef OPENSSL_NO_EC
else if (strncmp(buf, "+F4:", 4) == 0) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
if (n)
ecdsa_results[k][0] =
1 / (1 / ecdsa_results[k][0] + 1 / d);
else
ecdsa_results[k][0] = d;
d = atof(sstrsep(&p, sep));
if (n)
ecdsa_results[k][1] =
1 / (1 / ecdsa_results[k][1] + 1 / d);
else
ecdsa_results[k][1] = d;
}
# endif
# ifndef OPENSSL_NO_EC
else if (strncmp(buf, "+F5:", 4) == 0) {
int k;
double d;
p = buf + 4;
k = atoi(sstrsep(&p, sep));
sstrsep(&p, sep);
d = atof(sstrsep(&p, sep));
if (n)
ecdh_results[k][0] = 1 / (1 / ecdh_results[k][0] + 1 / d);
else
ecdh_results[k][0] = d;
}
# endif
else if (strncmp(buf, "+H:", 3) == 0) {
;
} else
BIO_printf(bio_err, "Unknown type '%s' from child %d\n", buf, n);
}
fclose(f);
}
free(fds);
return 1;
}
#endif
static void multiblock_speed(const EVP_CIPHER *evp_cipher)
{
static int mblengths[] =
{ 8 * 1024, 2 * 8 * 1024, 4 * 8 * 1024, 8 * 8 * 1024, 8 * 16 * 1024 };
int j, count, num = OSSL_NELEM(mblengths);
const char *alg_name;
unsigned char *inp, *out, no_key[32], no_iv[16];
EVP_CIPHER_CTX *ctx;
double d = 0.0;
inp = app_malloc(mblengths[num - 1], "multiblock input buffer");
out = app_malloc(mblengths[num - 1] + 1024, "multiblock output buffer");
ctx = EVP_CIPHER_CTX_new();
EVP_EncryptInit_ex(ctx, evp_cipher, NULL, no_key, no_iv);
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_SET_MAC_KEY, sizeof(no_key),
no_key);
alg_name = OBJ_nid2ln(EVP_CIPHER_nid(evp_cipher));
for (j = 0; j < num; j++) {
print_message(alg_name, 0, mblengths[j]);
Time_F(START);
for (count = 0, run = 1; run && count < 0x7fffffff; count++) {
unsigned char aad[EVP_AEAD_TLS1_AAD_LEN];
EVP_CTRL_TLS1_1_MULTIBLOCK_PARAM mb_param;
size_t len = mblengths[j];
int packlen;
memset(aad, 0, 8); /* avoid uninitialized values */
aad[8] = 23; /* SSL3_RT_APPLICATION_DATA */
aad[9] = 3; /* version */
aad[10] = 2;
aad[11] = 0; /* length */
aad[12] = 0;
mb_param.out = NULL;
mb_param.inp = aad;
mb_param.len = len;
mb_param.interleave = 8;
packlen = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_AAD,
sizeof(mb_param), &mb_param);
if (packlen > 0) {
mb_param.out = out;
mb_param.inp = inp;
mb_param.len = len;
EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_TLS1_1_MULTIBLOCK_ENCRYPT,
sizeof(mb_param), &mb_param);
} else {
int pad;
RAND_bytes(out, 16);
len += 16;
aad[11] = len >> 8;
aad[12] = len;
pad = EVP_CIPHER_CTX_ctrl(ctx, EVP_CTRL_AEAD_TLS1_AAD,
EVP_AEAD_TLS1_AAD_LEN, aad);
EVP_Cipher(ctx, out, inp, len + pad);
}
}
d = Time_F(STOP);
BIO_printf(bio_err, mr ? "+R:%d:%s:%f\n"
: "%d %s's in %.2fs\n", count, "evp", d);
results[D_EVP][j] = ((double)count) / d * mblengths[j];
}
if (mr) {
fprintf(stdout, "+H");
for (j = 0; j < num; j++)
fprintf(stdout, ":%d", mblengths[j]);
fprintf(stdout, "\n");
fprintf(stdout, "+F:%d:%s", D_EVP, alg_name);
for (j = 0; j < num; j++)
fprintf(stdout, ":%.2f", results[D_EVP][j]);
fprintf(stdout, "\n");
} else {
fprintf(stdout,
"The 'numbers' are in 1000s of bytes per second processed.\n");
fprintf(stdout, "type ");
for (j = 0; j < num; j++)
fprintf(stdout, "%7d bytes", mblengths[j]);
fprintf(stdout, "\n");
fprintf(stdout, "%-24s", alg_name);
for (j = 0; j < num; j++) {
if (results[D_EVP][j] > 10000)
fprintf(stdout, " %11.2fk", results[D_EVP][j] / 1e3);
else
fprintf(stdout, " %11.2f ", results[D_EVP][j]);
}
fprintf(stdout, "\n");
}
OPENSSL_free(inp);
OPENSSL_free(out);
EVP_CIPHER_CTX_free(ctx);
}