mirror of
https://github.com/openssl/openssl.git
synced 2025-01-07 17:53:38 +08:00
cac19d19e7
As per documentation, the RSA keys should not be smaller than 64bit (the documentation mentions something about a quirk in the prime generation algorithm). I am adding check into the code which used to be 16 for some reason. My primary motivation is to get rid of the last sentence in the documentation which suggest that typical keys have 1024 bits (instead updating it to the now default 2048). I *assume* that keys less than the 2048 bits (say 512) are used for education purposes. The 512 bits as the minimum have been suggested by Bernd Edlinger. Signed-off-by: Sebastian Andrzej Siewior <sebastian@breakpoint.cc> Reviewed-by: Bernd Edlinger <bernd.edlinger@hotmail.de> Reviewed-by: Tim Hudson <tjh@openssl.org> Reviewed-by: Richard Levitte <levitte@openssl.org> (Merged from https://github.com/openssl/openssl/pull/4547)
383 lines
12 KiB
C
383 lines
12 KiB
C
/*
|
|
* Copyright 1995-2017 The OpenSSL Project Authors. All Rights Reserved.
|
|
*
|
|
* Licensed under the OpenSSL license (the "License"). You may not use
|
|
* this file except in compliance with the License. You can obtain a copy
|
|
* in the file LICENSE in the source distribution or at
|
|
* https://www.openssl.org/source/license.html
|
|
*/
|
|
|
|
/*
|
|
* NB: these functions have been "upgraded", the deprecated versions (which
|
|
* are compatibility wrappers using these functions) are in rsa_depr.c. -
|
|
* Geoff
|
|
*/
|
|
|
|
#include <stdio.h>
|
|
#include <time.h>
|
|
#include "internal/cryptlib.h"
|
|
#include <openssl/bn.h>
|
|
#include "rsa_locl.h"
|
|
|
|
static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value,
|
|
BN_GENCB *cb);
|
|
|
|
/*
|
|
* NB: this wrapper would normally be placed in rsa_lib.c and the static
|
|
* implementation would probably be in rsa_eay.c. Nonetheless, is kept here
|
|
* so that we don't introduce a new linker dependency. Eg. any application
|
|
* that wasn't previously linking object code related to key-generation won't
|
|
* have to now just because key-generation is part of RSA_METHOD.
|
|
*/
|
|
int RSA_generate_key_ex(RSA *rsa, int bits, BIGNUM *e_value, BN_GENCB *cb)
|
|
{
|
|
if (rsa->meth->rsa_keygen != NULL)
|
|
return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
|
|
|
|
return RSA_generate_multi_prime_key(rsa, bits, RSA_DEFAULT_PRIME_NUM,
|
|
e_value, cb);
|
|
}
|
|
|
|
int RSA_generate_multi_prime_key(RSA *rsa, int bits, int primes,
|
|
BIGNUM *e_value, BN_GENCB *cb)
|
|
{
|
|
/* multi-prime is only supported with the builtin key generation */
|
|
if (rsa->meth->rsa_multi_prime_keygen != NULL) {
|
|
return rsa->meth->rsa_multi_prime_keygen(rsa, bits, primes,
|
|
e_value, cb);
|
|
} else if (rsa->meth->rsa_keygen != NULL) {
|
|
/*
|
|
* However, if rsa->meth implements only rsa_keygen, then we
|
|
* have to honour it in 2-prime case and assume that it wouldn't
|
|
* know what to do with multi-prime key generated by builtin
|
|
* subroutine...
|
|
*/
|
|
if (primes == 2)
|
|
return rsa->meth->rsa_keygen(rsa, bits, e_value, cb);
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
return rsa_builtin_keygen(rsa, bits, primes, e_value, cb);
|
|
}
|
|
|
|
static int rsa_builtin_keygen(RSA *rsa, int bits, int primes, BIGNUM *e_value,
|
|
BN_GENCB *cb)
|
|
{
|
|
BIGNUM *r0 = NULL, *r1 = NULL, *r2 = NULL, *tmp, *prime;
|
|
int ok = -1, n = 0, bitsr[RSA_MAX_PRIME_NUM], bitse = 0;
|
|
int i = 0, quo = 0, rmd = 0, adj = 0, retries = 0;
|
|
RSA_PRIME_INFO *pinfo = NULL;
|
|
STACK_OF(RSA_PRIME_INFO) *prime_infos = NULL;
|
|
BN_CTX *ctx = NULL;
|
|
BN_ULONG bitst = 0;
|
|
|
|
if (bits < RSA_MIN_MODULUS_BITS) {
|
|
ok = 0; /* we set our own err */
|
|
RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, RSA_R_KEY_SIZE_TOO_SMALL);
|
|
goto err;
|
|
}
|
|
|
|
if (primes < RSA_DEFAULT_PRIME_NUM || primes > rsa_multip_cap(bits)) {
|
|
ok = 0; /* we set our own err */
|
|
RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, RSA_R_KEY_PRIME_NUM_INVALID);
|
|
goto err;
|
|
}
|
|
|
|
ctx = BN_CTX_new();
|
|
if (ctx == NULL)
|
|
goto err;
|
|
BN_CTX_start(ctx);
|
|
r0 = BN_CTX_get(ctx);
|
|
r1 = BN_CTX_get(ctx);
|
|
r2 = BN_CTX_get(ctx);
|
|
if (r2 == NULL)
|
|
goto err;
|
|
|
|
/* divide bits into 'primes' pieces evenly */
|
|
quo = bits / primes;
|
|
rmd = bits % primes;
|
|
|
|
for (i = 0; i < primes; i++)
|
|
bitsr[i] = (i < rmd) ? quo + 1 : quo;
|
|
|
|
/* We need the RSA components non-NULL */
|
|
if (!rsa->n && ((rsa->n = BN_new()) == NULL))
|
|
goto err;
|
|
if (!rsa->d && ((rsa->d = BN_secure_new()) == NULL))
|
|
goto err;
|
|
if (!rsa->e && ((rsa->e = BN_new()) == NULL))
|
|
goto err;
|
|
if (!rsa->p && ((rsa->p = BN_secure_new()) == NULL))
|
|
goto err;
|
|
if (!rsa->q && ((rsa->q = BN_secure_new()) == NULL))
|
|
goto err;
|
|
if (!rsa->dmp1 && ((rsa->dmp1 = BN_secure_new()) == NULL))
|
|
goto err;
|
|
if (!rsa->dmq1 && ((rsa->dmq1 = BN_secure_new()) == NULL))
|
|
goto err;
|
|
if (!rsa->iqmp && ((rsa->iqmp = BN_secure_new()) == NULL))
|
|
goto err;
|
|
|
|
/* initialize multi-prime components */
|
|
if (primes > RSA_DEFAULT_PRIME_NUM) {
|
|
rsa->version = RSA_ASN1_VERSION_MULTI;
|
|
prime_infos = sk_RSA_PRIME_INFO_new_reserve(NULL, primes - 2);
|
|
if (prime_infos == NULL)
|
|
goto err;
|
|
if (rsa->prime_infos != NULL) {
|
|
/* could this happen? */
|
|
sk_RSA_PRIME_INFO_pop_free(rsa->prime_infos, rsa_multip_info_free);
|
|
}
|
|
rsa->prime_infos = prime_infos;
|
|
|
|
/* prime_info from 2 to |primes| -1 */
|
|
for (i = 2; i < primes; i++) {
|
|
pinfo = rsa_multip_info_new();
|
|
if (pinfo == NULL)
|
|
goto err;
|
|
(void)sk_RSA_PRIME_INFO_push(prime_infos, pinfo);
|
|
}
|
|
}
|
|
|
|
if (BN_copy(rsa->e, e_value) == NULL)
|
|
goto err;
|
|
|
|
/* generate p, q and other primes (if any) */
|
|
for (i = 0; i < primes; i++) {
|
|
adj = 0;
|
|
retries = 0;
|
|
|
|
if (i == 0) {
|
|
prime = rsa->p;
|
|
} else if (i == 1) {
|
|
prime = rsa->q;
|
|
} else {
|
|
pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
|
|
prime = pinfo->r;
|
|
}
|
|
|
|
for (;;) {
|
|
redo:
|
|
if (!BN_generate_prime_ex(prime, bitsr[i] + adj, 0, NULL, NULL, cb))
|
|
goto err;
|
|
/*
|
|
* prime should not be equal to p, q, r_3...
|
|
* (those primes prior to this one)
|
|
*/
|
|
{
|
|
int j;
|
|
|
|
for (j = 0; j < i; j++) {
|
|
BIGNUM *prev_prime;
|
|
|
|
if (j == 0)
|
|
prev_prime = rsa->p;
|
|
else if (j == 1)
|
|
prev_prime = rsa->q;
|
|
else
|
|
prev_prime = sk_RSA_PRIME_INFO_value(prime_infos,
|
|
j - 2)->r;
|
|
|
|
if (!BN_cmp(prime, prev_prime)) {
|
|
goto redo;
|
|
}
|
|
}
|
|
}
|
|
if (!BN_sub(r2, prime, BN_value_one()))
|
|
goto err;
|
|
if (!BN_gcd(r1, r2, rsa->e, ctx))
|
|
goto err;
|
|
if (BN_is_one(r1))
|
|
break;
|
|
if (!BN_GENCB_call(cb, 2, n++))
|
|
goto err;
|
|
}
|
|
|
|
bitse += bitsr[i];
|
|
|
|
/* calculate n immediately to see if it's sufficient */
|
|
if (i == 1) {
|
|
/* we get at least 2 primes */
|
|
if (!BN_mul(r1, rsa->p, rsa->q, ctx))
|
|
goto err;
|
|
} else if (i != 0) {
|
|
/* modulus n = p * q * r_3 * r_4 ... */
|
|
if (!BN_mul(r1, rsa->n, prime, ctx))
|
|
goto err;
|
|
} else {
|
|
/* i == 0, do nothing */
|
|
if (!BN_GENCB_call(cb, 3, i))
|
|
goto err;
|
|
continue;
|
|
}
|
|
/*
|
|
* if |r1|, product of factors so far, is not as long as expected
|
|
* (by checking the first 4 bits are less than 0x9 or greater than
|
|
* 0xF). If so, re-generate the last prime.
|
|
*
|
|
* NOTE: This actually can't happen in two-prime case, because of
|
|
* the way factors are generated.
|
|
*
|
|
* Besides, another consideration is, for multi-prime case, even the
|
|
* length modulus is as long as expected, the modulus could start at
|
|
* 0x8, which could be utilized to distinguish a multi-prime private
|
|
* key by using the modulus in a certificate. This is also covered
|
|
* by checking the length should not be less than 0x9.
|
|
*/
|
|
if (!BN_rshift(r2, r1, bitse - 4))
|
|
goto err;
|
|
bitst = BN_get_word(r2);
|
|
|
|
if (bitst < 0x9 || bitst > 0xF) {
|
|
/*
|
|
* For keys with more than 4 primes, we attempt longer factor to
|
|
* meet length requirement.
|
|
*
|
|
* Otherwise, we just re-generate the prime with the same length.
|
|
*
|
|
* This strategy has the following goals:
|
|
*
|
|
* 1. 1024-bit factors are effcient when using 3072 and 4096-bit key
|
|
* 2. stay the same logic with normal 2-prime key
|
|
*/
|
|
bitse -= bitsr[i];
|
|
if (!BN_GENCB_call(cb, 2, n++))
|
|
goto err;
|
|
if (primes > 4) {
|
|
if (bitst < 0x9)
|
|
adj++;
|
|
else
|
|
adj--;
|
|
} else if (retries == 4) {
|
|
/*
|
|
* re-generate all primes from scratch, mainly used
|
|
* in 4 prime case to avoid long loop. Max retry times
|
|
* is set to 4.
|
|
*/
|
|
i = -1;
|
|
bitse = 0;
|
|
continue;
|
|
}
|
|
retries++;
|
|
goto redo;
|
|
}
|
|
/* save product of primes for further use, for multi-prime only */
|
|
if (i > 1 && BN_copy(pinfo->pp, rsa->n) == NULL)
|
|
goto err;
|
|
if (BN_copy(rsa->n, r1) == NULL)
|
|
goto err;
|
|
if (!BN_GENCB_call(cb, 3, i))
|
|
goto err;
|
|
}
|
|
|
|
if (BN_cmp(rsa->p, rsa->q) < 0) {
|
|
tmp = rsa->p;
|
|
rsa->p = rsa->q;
|
|
rsa->q = tmp;
|
|
}
|
|
|
|
/* calculate d */
|
|
|
|
/* p - 1 */
|
|
if (!BN_sub(r1, rsa->p, BN_value_one()))
|
|
goto err;
|
|
/* q - 1 */
|
|
if (!BN_sub(r2, rsa->q, BN_value_one()))
|
|
goto err;
|
|
/* (p - 1)(q - 1) */
|
|
if (!BN_mul(r0, r1, r2, ctx))
|
|
goto err;
|
|
/* multi-prime */
|
|
for (i = 2; i < primes; i++) {
|
|
pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
|
|
/* save r_i - 1 to pinfo->d temporarily */
|
|
if (!BN_sub(pinfo->d, pinfo->r, BN_value_one()))
|
|
goto err;
|
|
if (!BN_mul(r0, r0, pinfo->d, ctx))
|
|
goto err;
|
|
}
|
|
|
|
{
|
|
BIGNUM *pr0 = BN_new();
|
|
|
|
if (pr0 == NULL)
|
|
goto err;
|
|
|
|
BN_with_flags(pr0, r0, BN_FLG_CONSTTIME);
|
|
if (!BN_mod_inverse(rsa->d, rsa->e, pr0, ctx)) {
|
|
BN_free(pr0);
|
|
goto err; /* d */
|
|
}
|
|
/* We MUST free pr0 before any further use of r0 */
|
|
BN_free(pr0);
|
|
}
|
|
|
|
{
|
|
BIGNUM *d = BN_new();
|
|
|
|
if (d == NULL)
|
|
goto err;
|
|
|
|
BN_with_flags(d, rsa->d, BN_FLG_CONSTTIME);
|
|
|
|
/* calculate d mod (p-1) and d mod (q - 1) */
|
|
if (!BN_mod(rsa->dmp1, d, r1, ctx)
|
|
|| !BN_mod(rsa->dmq1, d, r2, ctx)) {
|
|
BN_free(d);
|
|
goto err;
|
|
}
|
|
|
|
/* calculate CRT exponents */
|
|
for (i = 2; i < primes; i++) {
|
|
pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
|
|
/* pinfo->d == r_i - 1 */
|
|
if (!BN_mod(pinfo->d, d, pinfo->d, ctx)) {
|
|
BN_free(d);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/* We MUST free d before any further use of rsa->d */
|
|
BN_free(d);
|
|
}
|
|
|
|
{
|
|
BIGNUM *p = BN_new();
|
|
|
|
if (p == NULL)
|
|
goto err;
|
|
BN_with_flags(p, rsa->p, BN_FLG_CONSTTIME);
|
|
|
|
/* calculate inverse of q mod p */
|
|
if (!BN_mod_inverse(rsa->iqmp, rsa->q, p, ctx)) {
|
|
BN_free(p);
|
|
goto err;
|
|
}
|
|
|
|
/* calculate CRT coefficient for other primes */
|
|
for (i = 2; i < primes; i++) {
|
|
pinfo = sk_RSA_PRIME_INFO_value(prime_infos, i - 2);
|
|
BN_with_flags(p, pinfo->r, BN_FLG_CONSTTIME);
|
|
if (!BN_mod_inverse(pinfo->t, pinfo->pp, p, ctx)) {
|
|
BN_free(p);
|
|
goto err;
|
|
}
|
|
}
|
|
|
|
/* We MUST free p before any further use of rsa->p */
|
|
BN_free(p);
|
|
}
|
|
|
|
ok = 1;
|
|
err:
|
|
if (ok == -1) {
|
|
RSAerr(RSA_F_RSA_BUILTIN_KEYGEN, ERR_LIB_BN);
|
|
ok = 0;
|
|
}
|
|
if (ctx != NULL)
|
|
BN_CTX_end(ctx);
|
|
BN_CTX_free(ctx);
|
|
return ok;
|
|
}
|