openssl/test/helpers/ssltestlib.c
FdaSilvaYY 2bb83824bb ssl: rework "e_os.h" inclusions
- Remove e_os.h include from "ssl_local.h"
- Added e_os.h into the files that need it now.
- Move e_os.h to be the very first include

Reviewed-by: Paul Dale <ppzgs1@gmail.com>
Reviewed-by: Tomas Mraz <tomas@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/14344)
2024-09-05 17:02:51 +02:00

1488 lines
43 KiB
C

/*
* Copyright 2016-2024 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
/*
* We need access to the deprecated low level ENGINE APIs for legacy purposes
* when the deprecated calls are not hidden
*/
#ifndef OPENSSL_NO_DEPRECATED_3_0
# define OPENSSL_SUPPRESS_DEPRECATED
#endif
#include <string.h>
#include <openssl/engine.h>
#include "internal/e_os.h"
#include "internal/nelem.h"
#include "ssltestlib.h"
#include "../testutil.h"
#if (!defined(OPENSSL_NO_KTLS) || !defined(OPENSSL_NO_QUIC)) && !defined(OPENSSL_NO_POSIX_IO) && !defined(OPENSSL_NO_SOCK)
# define OSSL_USE_SOCKETS 1
# include "internal/e_winsock.h"
# include "internal/sockets.h"
# include <openssl/bio.h>
#endif
static int tls_dump_new(BIO *bi);
static int tls_dump_free(BIO *a);
static int tls_dump_read(BIO *b, char *out, int outl);
static int tls_dump_write(BIO *b, const char *in, int inl);
static long tls_dump_ctrl(BIO *b, int cmd, long num, void *ptr);
static int tls_dump_gets(BIO *bp, char *buf, int size);
static int tls_dump_puts(BIO *bp, const char *str);
/* Choose a sufficiently large type likely to be unused for this custom BIO */
#define BIO_TYPE_TLS_DUMP_FILTER (0x80 | BIO_TYPE_FILTER)
#define BIO_TYPE_MEMPACKET_TEST 0x81
#define BIO_TYPE_ALWAYS_RETRY 0x82
#define BIO_TYPE_MAYBE_RETRY (0x83 | BIO_TYPE_FILTER)
static BIO_METHOD *method_tls_dump = NULL;
static BIO_METHOD *meth_mem = NULL;
static BIO_METHOD *meth_always_retry = NULL;
static BIO_METHOD *meth_maybe_retry = NULL;
static int retry_err = -1;
/* Note: Not thread safe! */
const BIO_METHOD *bio_f_tls_dump_filter(void)
{
if (method_tls_dump == NULL) {
method_tls_dump = BIO_meth_new(BIO_TYPE_TLS_DUMP_FILTER,
"TLS dump filter");
if (method_tls_dump == NULL
|| !BIO_meth_set_write(method_tls_dump, tls_dump_write)
|| !BIO_meth_set_read(method_tls_dump, tls_dump_read)
|| !BIO_meth_set_puts(method_tls_dump, tls_dump_puts)
|| !BIO_meth_set_gets(method_tls_dump, tls_dump_gets)
|| !BIO_meth_set_ctrl(method_tls_dump, tls_dump_ctrl)
|| !BIO_meth_set_create(method_tls_dump, tls_dump_new)
|| !BIO_meth_set_destroy(method_tls_dump, tls_dump_free))
return NULL;
}
return method_tls_dump;
}
void bio_f_tls_dump_filter_free(void)
{
BIO_meth_free(method_tls_dump);
}
static int tls_dump_new(BIO *bio)
{
BIO_set_init(bio, 1);
return 1;
}
static int tls_dump_free(BIO *bio)
{
BIO_set_init(bio, 0);
return 1;
}
static void copy_flags(BIO *bio)
{
int flags;
BIO *next = BIO_next(bio);
flags = BIO_test_flags(next, BIO_FLAGS_SHOULD_RETRY | BIO_FLAGS_RWS);
BIO_clear_flags(bio, BIO_FLAGS_SHOULD_RETRY | BIO_FLAGS_RWS);
BIO_set_flags(bio, flags);
}
#define RECORD_CONTENT_TYPE 0
#define RECORD_VERSION_HI 1
#define RECORD_VERSION_LO 2
#define RECORD_EPOCH_HI 3
#define RECORD_EPOCH_LO 4
#define RECORD_SEQUENCE_START 5
#define RECORD_SEQUENCE_END 10
#define RECORD_LEN_HI 11
#define RECORD_LEN_LO 12
#define MSG_TYPE 0
#define MSG_LEN_HI 1
#define MSG_LEN_MID 2
#define MSG_LEN_LO 3
#define MSG_SEQ_HI 4
#define MSG_SEQ_LO 5
#define MSG_FRAG_OFF_HI 6
#define MSG_FRAG_OFF_MID 7
#define MSG_FRAG_OFF_LO 8
#define MSG_FRAG_LEN_HI 9
#define MSG_FRAG_LEN_MID 10
#define MSG_FRAG_LEN_LO 11
static void dump_data(const char *data, int len)
{
int rem, i, content, reclen, msglen, fragoff, fraglen, epoch;
unsigned char *rec;
printf("---- START OF PACKET ----\n");
rem = len;
rec = (unsigned char *)data;
while (rem > 0) {
if (rem != len)
printf("*\n");
printf("*---- START OF RECORD ----\n");
if (rem < DTLS1_RT_HEADER_LENGTH) {
printf("*---- RECORD TRUNCATED ----\n");
break;
}
content = rec[RECORD_CONTENT_TYPE];
printf("** Record Content-type: %d\n", content);
printf("** Record Version: %02x%02x\n",
rec[RECORD_VERSION_HI], rec[RECORD_VERSION_LO]);
epoch = (rec[RECORD_EPOCH_HI] << 8) | rec[RECORD_EPOCH_LO];
printf("** Record Epoch: %d\n", epoch);
printf("** Record Sequence: ");
for (i = RECORD_SEQUENCE_START; i <= RECORD_SEQUENCE_END; i++)
printf("%02x", rec[i]);
reclen = (rec[RECORD_LEN_HI] << 8) | rec[RECORD_LEN_LO];
printf("\n** Record Length: %d\n", reclen);
/* Now look at message */
rec += DTLS1_RT_HEADER_LENGTH;
rem -= DTLS1_RT_HEADER_LENGTH;
if (content == SSL3_RT_HANDSHAKE) {
printf("**---- START OF HANDSHAKE MESSAGE FRAGMENT ----\n");
if (epoch > 0) {
printf("**---- HANDSHAKE MESSAGE FRAGMENT ENCRYPTED ----\n");
} else if (rem < DTLS1_HM_HEADER_LENGTH
|| reclen < DTLS1_HM_HEADER_LENGTH) {
printf("**---- HANDSHAKE MESSAGE FRAGMENT TRUNCATED ----\n");
} else {
printf("*** Message Type: %d\n", rec[MSG_TYPE]);
msglen = (rec[MSG_LEN_HI] << 16) | (rec[MSG_LEN_MID] << 8)
| rec[MSG_LEN_LO];
printf("*** Message Length: %d\n", msglen);
printf("*** Message sequence: %d\n",
(rec[MSG_SEQ_HI] << 8) | rec[MSG_SEQ_LO]);
fragoff = (rec[MSG_FRAG_OFF_HI] << 16)
| (rec[MSG_FRAG_OFF_MID] << 8)
| rec[MSG_FRAG_OFF_LO];
printf("*** Message Fragment offset: %d\n", fragoff);
fraglen = (rec[MSG_FRAG_LEN_HI] << 16)
| (rec[MSG_FRAG_LEN_MID] << 8)
| rec[MSG_FRAG_LEN_LO];
printf("*** Message Fragment len: %d\n", fraglen);
if (fragoff + fraglen > msglen)
printf("***---- HANDSHAKE MESSAGE FRAGMENT INVALID ----\n");
else if (reclen < fraglen)
printf("**---- HANDSHAKE MESSAGE FRAGMENT TRUNCATED ----\n");
else
printf("**---- END OF HANDSHAKE MESSAGE FRAGMENT ----\n");
}
}
if (rem < reclen) {
printf("*---- RECORD TRUNCATED ----\n");
rem = 0;
} else {
rec += reclen;
rem -= reclen;
printf("*---- END OF RECORD ----\n");
}
}
printf("---- END OF PACKET ----\n\n");
fflush(stdout);
}
static int tls_dump_read(BIO *bio, char *out, int outl)
{
int ret;
BIO *next = BIO_next(bio);
ret = BIO_read(next, out, outl);
copy_flags(bio);
if (ret > 0) {
dump_data(out, ret);
}
return ret;
}
static int tls_dump_write(BIO *bio, const char *in, int inl)
{
int ret;
BIO *next = BIO_next(bio);
ret = BIO_write(next, in, inl);
copy_flags(bio);
return ret;
}
static long tls_dump_ctrl(BIO *bio, int cmd, long num, void *ptr)
{
long ret;
BIO *next = BIO_next(bio);
if (next == NULL)
return 0;
switch (cmd) {
case BIO_CTRL_DUP:
ret = 0L;
break;
default:
ret = BIO_ctrl(next, cmd, num, ptr);
break;
}
return ret;
}
static int tls_dump_gets(BIO *bio, char *buf, int size)
{
/* We don't support this - not needed anyway */
return -1;
}
static int tls_dump_puts(BIO *bio, const char *str)
{
return tls_dump_write(bio, str, strlen(str));
}
struct mempacket_st {
unsigned char *data;
int len;
unsigned int num;
unsigned int type;
};
static void mempacket_free(MEMPACKET *pkt)
{
if (pkt->data != NULL)
OPENSSL_free(pkt->data);
OPENSSL_free(pkt);
}
typedef struct mempacket_test_ctx_st {
STACK_OF(MEMPACKET) *pkts;
uint16_t epoch;
unsigned int currrec;
unsigned int currpkt;
unsigned int lastpkt;
unsigned int injected;
unsigned int noinject;
unsigned int dropepoch;
int droprec;
int duprec;
} MEMPACKET_TEST_CTX;
static int mempacket_test_new(BIO *bi);
static int mempacket_test_free(BIO *a);
static int mempacket_test_read(BIO *b, char *out, int outl);
static int mempacket_test_write(BIO *b, const char *in, int inl);
static long mempacket_test_ctrl(BIO *b, int cmd, long num, void *ptr);
static int mempacket_test_gets(BIO *bp, char *buf, int size);
static int mempacket_test_puts(BIO *bp, const char *str);
const BIO_METHOD *bio_s_mempacket_test(void)
{
if (meth_mem == NULL) {
if (!TEST_ptr(meth_mem = BIO_meth_new(BIO_TYPE_MEMPACKET_TEST,
"Mem Packet Test"))
|| !TEST_true(BIO_meth_set_write(meth_mem, mempacket_test_write))
|| !TEST_true(BIO_meth_set_read(meth_mem, mempacket_test_read))
|| !TEST_true(BIO_meth_set_puts(meth_mem, mempacket_test_puts))
|| !TEST_true(BIO_meth_set_gets(meth_mem, mempacket_test_gets))
|| !TEST_true(BIO_meth_set_ctrl(meth_mem, mempacket_test_ctrl))
|| !TEST_true(BIO_meth_set_create(meth_mem, mempacket_test_new))
|| !TEST_true(BIO_meth_set_destroy(meth_mem, mempacket_test_free)))
return NULL;
}
return meth_mem;
}
void bio_s_mempacket_test_free(void)
{
BIO_meth_free(meth_mem);
}
static int mempacket_test_new(BIO *bio)
{
MEMPACKET_TEST_CTX *ctx;
if (!TEST_ptr(ctx = OPENSSL_zalloc(sizeof(*ctx))))
return 0;
if (!TEST_ptr(ctx->pkts = sk_MEMPACKET_new_null())) {
OPENSSL_free(ctx);
return 0;
}
ctx->dropepoch = 0;
ctx->droprec = -1;
BIO_set_init(bio, 1);
BIO_set_data(bio, ctx);
return 1;
}
static int mempacket_test_free(BIO *bio)
{
MEMPACKET_TEST_CTX *ctx = BIO_get_data(bio);
sk_MEMPACKET_pop_free(ctx->pkts, mempacket_free);
OPENSSL_free(ctx);
BIO_set_data(bio, NULL);
BIO_set_init(bio, 0);
return 1;
}
/* Record Header values */
#define EPOCH_HI 3
#define EPOCH_LO 4
#define RECORD_SEQUENCE 10
#define RECORD_LEN_HI 11
#define RECORD_LEN_LO 12
#define STANDARD_PACKET 0
static int mempacket_test_read(BIO *bio, char *out, int outl)
{
MEMPACKET_TEST_CTX *ctx = BIO_get_data(bio);
MEMPACKET *thispkt;
unsigned char *rec;
int rem;
unsigned int seq, offset, len, epoch;
BIO_clear_retry_flags(bio);
if ((thispkt = sk_MEMPACKET_value(ctx->pkts, 0)) == NULL
|| thispkt->num != ctx->currpkt) {
/* Probably run out of data */
BIO_set_retry_read(bio);
return -1;
}
(void)sk_MEMPACKET_shift(ctx->pkts);
ctx->currpkt++;
if (outl > thispkt->len)
outl = thispkt->len;
if (thispkt->type != INJECT_PACKET_IGNORE_REC_SEQ
&& (ctx->injected || ctx->droprec >= 0)) {
/*
* Overwrite the record sequence number. We strictly number them in
* the order received. Since we are actually a reliable transport
* we know that there won't be any re-ordering. We overwrite to deal
* with any packets that have been injected
*/
for (rem = thispkt->len, rec = thispkt->data; rem > 0; rem -= len) {
if (rem < DTLS1_RT_HEADER_LENGTH)
return -1;
epoch = (rec[EPOCH_HI] << 8) | rec[EPOCH_LO];
if (epoch != ctx->epoch) {
ctx->epoch = epoch;
ctx->currrec = 0;
}
seq = ctx->currrec;
offset = 0;
do {
rec[RECORD_SEQUENCE - offset] = seq & 0xFF;
seq >>= 8;
offset++;
} while (seq > 0);
len = ((rec[RECORD_LEN_HI] << 8) | rec[RECORD_LEN_LO])
+ DTLS1_RT_HEADER_LENGTH;
if (rem < (int)len)
return -1;
if (ctx->droprec == (int)ctx->currrec && ctx->dropepoch == epoch) {
if (rem > (int)len)
memmove(rec, rec + len, rem - len);
outl -= len;
ctx->droprec = -1;
if (outl == 0)
BIO_set_retry_read(bio);
} else {
rec += len;
}
ctx->currrec++;
}
}
memcpy(out, thispkt->data, outl);
mempacket_free(thispkt);
return outl;
}
/*
* Look for records from different epochs in the last datagram and swap them
* around
*/
int mempacket_swap_epoch(BIO *bio)
{
MEMPACKET_TEST_CTX *ctx = BIO_get_data(bio);
MEMPACKET *thispkt;
int rem, len, prevlen = 0, pktnum;
unsigned char *rec, *prevrec = NULL, *tmp;
unsigned int epoch;
int numpkts = sk_MEMPACKET_num(ctx->pkts);
if (numpkts <= 0)
return 0;
/*
* If there are multiple packets we only look in the last one. This should
* always be the one where any epoch change occurs.
*/
thispkt = sk_MEMPACKET_value(ctx->pkts, numpkts - 1);
if (thispkt == NULL)
return 0;
for (rem = thispkt->len, rec = thispkt->data; rem > 0; rem -= len, rec += len) {
if (rem < DTLS1_RT_HEADER_LENGTH)
return 0;
epoch = (rec[EPOCH_HI] << 8) | rec[EPOCH_LO];
len = ((rec[RECORD_LEN_HI] << 8) | rec[RECORD_LEN_LO])
+ DTLS1_RT_HEADER_LENGTH;
if (rem < len)
return 0;
/* Assumes the epoch change does not happen on the first record */
if (epoch != ctx->epoch) {
if (prevrec == NULL)
return 0;
/*
* We found 2 records with different epochs. Take a copy of the
* earlier record
*/
tmp = OPENSSL_malloc(prevlen);
if (tmp == NULL)
return 0;
memcpy(tmp, prevrec, prevlen);
/*
* Move everything from this record onwards, including any trailing
* records, and overwrite the earlier record
*/
memmove(prevrec, rec, rem);
thispkt->len -= prevlen;
pktnum = thispkt->num;
/*
* Create a new packet for the earlier record that we took out and
* add it to the end of the packet list.
*/
thispkt = OPENSSL_malloc(sizeof(*thispkt));
if (thispkt == NULL) {
OPENSSL_free(tmp);
return 0;
}
thispkt->type = INJECT_PACKET;
thispkt->data = tmp;
thispkt->len = prevlen;
thispkt->num = pktnum + 1;
if (sk_MEMPACKET_insert(ctx->pkts, thispkt, numpkts) <= 0) {
OPENSSL_free(tmp);
OPENSSL_free(thispkt);
return 0;
}
return 1;
}
prevrec = rec;
prevlen = len;
}
return 0;
}
/* Move packet from position s to position d in the list (d < s) */
int mempacket_move_packet(BIO *bio, int d, int s)
{
MEMPACKET_TEST_CTX *ctx = BIO_get_data(bio);
MEMPACKET *thispkt;
int numpkts = sk_MEMPACKET_num(ctx->pkts);
int i;
if (d >= s)
return 0;
/* We need at least s + 1 packets to be able to swap them */
if (numpkts <= s)
return 0;
/* Get the packet at position s */
thispkt = sk_MEMPACKET_value(ctx->pkts, s);
if (thispkt == NULL)
return 0;
/* Remove and re-add it */
if (sk_MEMPACKET_delete(ctx->pkts, s) != thispkt)
return 0;
thispkt->num -= (s - d);
if (sk_MEMPACKET_insert(ctx->pkts, thispkt, d) <= 0)
return 0;
/* Increment the packet numbers for moved packets */
for (i = d + 1; i <= s; i++) {
thispkt = sk_MEMPACKET_value(ctx->pkts, i);
thispkt->num++;
}
return 1;
}
int mempacket_test_inject(BIO *bio, const char *in, int inl, int pktnum,
int type)
{
MEMPACKET_TEST_CTX *ctx = BIO_get_data(bio);
MEMPACKET *thispkt = NULL, *looppkt, *nextpkt, *allpkts[3];
int i, duprec;
const unsigned char *inu = (const unsigned char *)in;
size_t len = ((inu[RECORD_LEN_HI] << 8) | inu[RECORD_LEN_LO])
+ DTLS1_RT_HEADER_LENGTH;
if (ctx == NULL)
return -1;
if ((size_t)inl < len)
return -1;
if ((size_t)inl == len)
duprec = 0;
else
duprec = ctx->duprec > 0;
/* We don't support arbitrary injection when duplicating records */
if (duprec && pktnum != -1)
return -1;
/* We only allow injection before we've started writing any data */
if (pktnum >= 0) {
if (ctx->noinject)
return -1;
ctx->injected = 1;
} else {
ctx->noinject = 1;
}
for (i = 0; i < (duprec ? 3 : 1); i++) {
if (!TEST_ptr(allpkts[i] = OPENSSL_malloc(sizeof(*thispkt))))
goto err;
thispkt = allpkts[i];
if (!TEST_ptr(thispkt->data = OPENSSL_malloc(inl)))
goto err;
/*
* If we are duplicating the packet, we duplicate it three times. The
* first two times we drop the first record if there are more than one.
* In this way we know that libssl will not be able to make progress
* until it receives the last packet, and hence will be forced to
* buffer these records.
*/
if (duprec && i != 2) {
memcpy(thispkt->data, in + len, inl - len);
thispkt->len = inl - len;
} else {
memcpy(thispkt->data, in, inl);
thispkt->len = inl;
}
thispkt->num = (pktnum >= 0) ? (unsigned int)pktnum : ctx->lastpkt + i;
thispkt->type = type;
}
for (i = 0; i < sk_MEMPACKET_num(ctx->pkts); i++) {
if (!TEST_ptr(looppkt = sk_MEMPACKET_value(ctx->pkts, i)))
goto err;
/* Check if we found the right place to insert this packet */
if (looppkt->num > thispkt->num) {
if (sk_MEMPACKET_insert(ctx->pkts, thispkt, i) == 0)
goto err;
/* If we're doing up front injection then we're done */
if (pktnum >= 0)
return inl;
/*
* We need to do some accounting on lastpkt. We increment it first,
* but it might now equal the value of injected packets, so we need
* to skip over those
*/
ctx->lastpkt++;
do {
i++;
nextpkt = sk_MEMPACKET_value(ctx->pkts, i);
if (nextpkt != NULL && nextpkt->num == ctx->lastpkt)
ctx->lastpkt++;
else
return inl;
} while(1);
} else if (looppkt->num == thispkt->num) {
if (!ctx->noinject) {
/* We injected two packets with the same packet number! */
goto err;
}
ctx->lastpkt++;
thispkt->num++;
}
}
/*
* We didn't find any packets with a packet number equal to or greater than
* this one, so we just add it onto the end
*/
for (i = 0; i < (duprec ? 3 : 1); i++) {
thispkt = allpkts[i];
if (!sk_MEMPACKET_push(ctx->pkts, thispkt))
goto err;
if (pktnum < 0)
ctx->lastpkt++;
}
return inl;
err:
for (i = 0; i < (ctx->duprec > 0 ? 3 : 1); i++)
mempacket_free(allpkts[i]);
return -1;
}
static int mempacket_test_write(BIO *bio, const char *in, int inl)
{
return mempacket_test_inject(bio, in, inl, -1, STANDARD_PACKET);
}
static long mempacket_test_ctrl(BIO *bio, int cmd, long num, void *ptr)
{
long ret = 1;
MEMPACKET_TEST_CTX *ctx = BIO_get_data(bio);
MEMPACKET *thispkt;
switch (cmd) {
case BIO_CTRL_EOF:
ret = (long)(sk_MEMPACKET_num(ctx->pkts) == 0);
break;
case BIO_CTRL_GET_CLOSE:
ret = BIO_get_shutdown(bio);
break;
case BIO_CTRL_SET_CLOSE:
BIO_set_shutdown(bio, (int)num);
break;
case BIO_CTRL_WPENDING:
ret = 0L;
break;
case BIO_CTRL_PENDING:
thispkt = sk_MEMPACKET_value(ctx->pkts, 0);
if (thispkt == NULL)
ret = 0;
else
ret = thispkt->len;
break;
case BIO_CTRL_FLUSH:
ret = 1;
break;
case MEMPACKET_CTRL_SET_DROP_EPOCH:
ctx->dropepoch = (unsigned int)num;
break;
case MEMPACKET_CTRL_SET_DROP_REC:
ctx->droprec = (int)num;
break;
case MEMPACKET_CTRL_GET_DROP_REC:
ret = ctx->droprec;
break;
case MEMPACKET_CTRL_SET_DUPLICATE_REC:
ctx->duprec = (int)num;
break;
case BIO_CTRL_RESET:
case BIO_CTRL_DUP:
case BIO_CTRL_PUSH:
case BIO_CTRL_POP:
default:
ret = 0;
break;
}
return ret;
}
static int mempacket_test_gets(BIO *bio, char *buf, int size)
{
/* We don't support this - not needed anyway */
return -1;
}
static int mempacket_test_puts(BIO *bio, const char *str)
{
return mempacket_test_write(bio, str, strlen(str));
}
static int always_retry_new(BIO *bi);
static int always_retry_free(BIO *a);
static int always_retry_read(BIO *b, char *out, int outl);
static int always_retry_write(BIO *b, const char *in, int inl);
static long always_retry_ctrl(BIO *b, int cmd, long num, void *ptr);
static int always_retry_gets(BIO *bp, char *buf, int size);
static int always_retry_puts(BIO *bp, const char *str);
const BIO_METHOD *bio_s_always_retry(void)
{
if (meth_always_retry == NULL) {
if (!TEST_ptr(meth_always_retry = BIO_meth_new(BIO_TYPE_ALWAYS_RETRY,
"Always Retry"))
|| !TEST_true(BIO_meth_set_write(meth_always_retry,
always_retry_write))
|| !TEST_true(BIO_meth_set_read(meth_always_retry,
always_retry_read))
|| !TEST_true(BIO_meth_set_puts(meth_always_retry,
always_retry_puts))
|| !TEST_true(BIO_meth_set_gets(meth_always_retry,
always_retry_gets))
|| !TEST_true(BIO_meth_set_ctrl(meth_always_retry,
always_retry_ctrl))
|| !TEST_true(BIO_meth_set_create(meth_always_retry,
always_retry_new))
|| !TEST_true(BIO_meth_set_destroy(meth_always_retry,
always_retry_free)))
return NULL;
}
return meth_always_retry;
}
void bio_s_always_retry_free(void)
{
BIO_meth_free(meth_always_retry);
}
static int always_retry_new(BIO *bio)
{
BIO_set_init(bio, 1);
return 1;
}
static int always_retry_free(BIO *bio)
{
BIO_set_data(bio, NULL);
BIO_set_init(bio, 0);
return 1;
}
void set_always_retry_err_val(int err)
{
retry_err = err;
}
static int always_retry_read(BIO *bio, char *out, int outl)
{
BIO_set_retry_read(bio);
return retry_err;
}
static int always_retry_write(BIO *bio, const char *in, int inl)
{
BIO_set_retry_write(bio);
return retry_err;
}
static long always_retry_ctrl(BIO *bio, int cmd, long num, void *ptr)
{
long ret = 1;
switch (cmd) {
case BIO_CTRL_FLUSH:
BIO_set_retry_write(bio);
/* fall through */
case BIO_CTRL_EOF:
case BIO_CTRL_RESET:
case BIO_CTRL_DUP:
case BIO_CTRL_PUSH:
case BIO_CTRL_POP:
default:
ret = 0;
break;
}
return ret;
}
static int always_retry_gets(BIO *bio, char *buf, int size)
{
BIO_set_retry_read(bio);
return retry_err;
}
static int always_retry_puts(BIO *bio, const char *str)
{
BIO_set_retry_write(bio);
return retry_err;
}
struct maybe_retry_data_st {
unsigned int retrycnt;
};
static int maybe_retry_new(BIO *bi);
static int maybe_retry_free(BIO *a);
static int maybe_retry_write(BIO *b, const char *in, int inl);
static long maybe_retry_ctrl(BIO *b, int cmd, long num, void *ptr);
const BIO_METHOD *bio_s_maybe_retry(void)
{
if (meth_maybe_retry == NULL) {
if (!TEST_ptr(meth_maybe_retry = BIO_meth_new(BIO_TYPE_MAYBE_RETRY,
"Maybe Retry"))
|| !TEST_true(BIO_meth_set_write(meth_maybe_retry,
maybe_retry_write))
|| !TEST_true(BIO_meth_set_ctrl(meth_maybe_retry,
maybe_retry_ctrl))
|| !TEST_true(BIO_meth_set_create(meth_maybe_retry,
maybe_retry_new))
|| !TEST_true(BIO_meth_set_destroy(meth_maybe_retry,
maybe_retry_free)))
return NULL;
}
return meth_maybe_retry;
}
void bio_s_maybe_retry_free(void)
{
BIO_meth_free(meth_maybe_retry);
}
static int maybe_retry_new(BIO *bio)
{
struct maybe_retry_data_st *data = OPENSSL_zalloc(sizeof(*data));
if (data == NULL)
return 0;
BIO_set_data(bio, data);
BIO_set_init(bio, 1);
return 1;
}
static int maybe_retry_free(BIO *bio)
{
struct maybe_retry_data_st *data = BIO_get_data(bio);
OPENSSL_free(data);
BIO_set_data(bio, NULL);
BIO_set_init(bio, 0);
return 1;
}
static int maybe_retry_write(BIO *bio, const char *in, int inl)
{
struct maybe_retry_data_st *data = BIO_get_data(bio);
if (data == NULL)
return -1;
if (data->retrycnt == 0) {
BIO_set_retry_write(bio);
return -1;
}
data->retrycnt--;
return BIO_write(BIO_next(bio), in, inl);
}
static long maybe_retry_ctrl(BIO *bio, int cmd, long num, void *ptr)
{
struct maybe_retry_data_st *data = BIO_get_data(bio);
if (data == NULL)
return 0;
switch (cmd) {
case MAYBE_RETRY_CTRL_SET_RETRY_AFTER_CNT:
data->retrycnt = num;
return 1;
case BIO_CTRL_FLUSH:
if (data->retrycnt == 0) {
BIO_set_retry_write(bio);
return -1;
}
data->retrycnt--;
/* fall through */
default:
return BIO_ctrl(BIO_next(bio), cmd, num, ptr);
}
}
int create_ssl_ctx_pair(OSSL_LIB_CTX *libctx, const SSL_METHOD *sm,
const SSL_METHOD *cm, int min_proto_version,
int max_proto_version, SSL_CTX **sctx, SSL_CTX **cctx,
char *certfile, char *privkeyfile)
{
SSL_CTX *serverctx = NULL;
SSL_CTX *clientctx = NULL;
if (sctx != NULL) {
if (*sctx != NULL)
serverctx = *sctx;
else if (!TEST_ptr(serverctx = SSL_CTX_new_ex(libctx, NULL, sm))
|| !TEST_true(SSL_CTX_set_options(serverctx,
SSL_OP_ALLOW_CLIENT_RENEGOTIATION)))
goto err;
}
if (cctx != NULL) {
if (*cctx != NULL)
clientctx = *cctx;
else if (!TEST_ptr(clientctx = SSL_CTX_new_ex(libctx, NULL, cm)))
goto err;
}
#if !defined(OPENSSL_NO_TLS1_3) \
&& defined(OPENSSL_NO_EC) \
&& defined(OPENSSL_NO_DH)
/*
* There are no usable built-in TLSv1.3 groups if ec and dh are both
* disabled
*/
if (max_proto_version == 0
&& (sm == TLS_server_method() || cm == TLS_client_method()))
max_proto_version = TLS1_2_VERSION;
#endif
if (serverctx != NULL
&& ((min_proto_version > 0
&& !TEST_true(SSL_CTX_set_min_proto_version(serverctx,
min_proto_version)))
|| (max_proto_version > 0
&& !TEST_true(SSL_CTX_set_max_proto_version(serverctx,
max_proto_version)))))
goto err;
if (clientctx != NULL
&& ((min_proto_version > 0
&& !TEST_true(SSL_CTX_set_min_proto_version(clientctx,
min_proto_version)))
|| (max_proto_version > 0
&& !TEST_true(SSL_CTX_set_max_proto_version(clientctx,
max_proto_version)))))
goto err;
if (serverctx != NULL && certfile != NULL && privkeyfile != NULL) {
if (!TEST_int_eq(SSL_CTX_use_certificate_file(serverctx, certfile,
SSL_FILETYPE_PEM), 1)
|| !TEST_int_eq(SSL_CTX_use_PrivateKey_file(serverctx,
privkeyfile,
SSL_FILETYPE_PEM), 1)
|| !TEST_int_eq(SSL_CTX_check_private_key(serverctx), 1))
goto err;
}
if (sctx != NULL)
*sctx = serverctx;
if (cctx != NULL)
*cctx = clientctx;
return 1;
err:
if (sctx != NULL && *sctx == NULL)
SSL_CTX_free(serverctx);
if (cctx != NULL && *cctx == NULL)
SSL_CTX_free(clientctx);
return 0;
}
#define MAXLOOPS 1000000
#if defined(OSSL_USE_SOCKETS)
int wait_until_sock_readable(int sock)
{
fd_set readfds;
struct timeval timeout;
int width;
width = sock + 1;
FD_ZERO(&readfds);
openssl_fdset(sock, &readfds);
timeout.tv_sec = 10; /* give up after 10 seconds */
timeout.tv_usec = 0;
select(width, &readfds, NULL, NULL, &timeout);
return FD_ISSET(sock, &readfds);
}
int create_test_sockets(int *cfdp, int *sfdp, int socktype, BIO_ADDR *saddr)
{
struct sockaddr_in sin;
const char *host = "127.0.0.1";
int cfd_connected = 0, ret = 0;
socklen_t slen = sizeof(sin);
int afd = -1, cfd = -1, sfd = -1;
memset ((char *) &sin, 0, sizeof(sin));
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = inet_addr(host);
afd = BIO_socket(AF_INET, socktype,
socktype == SOCK_STREAM ? IPPROTO_TCP : IPPROTO_UDP, 0);
if (afd == INVALID_SOCKET)
return 0;
if (bind(afd, (struct sockaddr*)&sin, sizeof(sin)) < 0)
goto out;
if (getsockname(afd, (struct sockaddr*)&sin, &slen) < 0)
goto out;
if (saddr != NULL
&& !BIO_ADDR_rawmake(saddr, sin.sin_family, &sin.sin_addr,
sizeof(sin.sin_addr), sin.sin_port))
goto out;
if (socktype == SOCK_STREAM && listen(afd, 1) < 0)
goto out;
cfd = BIO_socket(AF_INET, socktype,
socktype == SOCK_STREAM ? IPPROTO_TCP : IPPROTO_UDP, 0);
if (cfd == INVALID_SOCKET)
goto out;
if (!BIO_socket_nbio(afd, 1))
goto out;
/*
* If a DGRAM socket then we don't call "accept" or "connect" - so act like
* we already called them.
*/
if (socktype == SOCK_DGRAM) {
cfd_connected = 1;
sfd = afd;
afd = -1;
}
while (sfd == -1 || !cfd_connected) {
sfd = accept(afd, NULL, 0);
if (sfd == -1 && errno != EAGAIN)
goto out;
if (!cfd_connected && connect(cfd, (struct sockaddr*)&sin, sizeof(sin)) < 0)
goto out;
else
cfd_connected = 1;
}
if (!BIO_socket_nbio(cfd, 1) || !BIO_socket_nbio(sfd, 1))
goto out;
ret = 1;
*cfdp = cfd;
*sfdp = sfd;
goto success;
out:
if (cfd != -1)
close(cfd);
if (sfd != -1)
close(sfd);
success:
if (afd != -1)
close(afd);
return ret;
}
int create_ssl_objects2(SSL_CTX *serverctx, SSL_CTX *clientctx, SSL **sssl,
SSL **cssl, int sfd, int cfd)
{
SSL *serverssl = NULL, *clientssl = NULL;
BIO *s_to_c_bio = NULL, *c_to_s_bio = NULL;
BIO_POLL_DESCRIPTOR rdesc = {0}, wdesc = {0};
if (*sssl != NULL)
serverssl = *sssl;
else if (!TEST_ptr(serverssl = SSL_new(serverctx)))
goto error;
if (*cssl != NULL)
clientssl = *cssl;
else if (!TEST_ptr(clientssl = SSL_new(clientctx)))
goto error;
if (!TEST_ptr(s_to_c_bio = BIO_new_socket(sfd, BIO_NOCLOSE))
|| !TEST_ptr(c_to_s_bio = BIO_new_socket(cfd, BIO_NOCLOSE)))
goto error;
if (!TEST_false(SSL_get_rpoll_descriptor(clientssl, &rdesc)
|| !TEST_false(SSL_get_wpoll_descriptor(clientssl, &wdesc))))
goto error;
SSL_set_bio(clientssl, c_to_s_bio, c_to_s_bio);
SSL_set_bio(serverssl, s_to_c_bio, s_to_c_bio);
if (!TEST_true(SSL_get_rpoll_descriptor(clientssl, &rdesc))
|| !TEST_true(SSL_get_wpoll_descriptor(clientssl, &wdesc))
|| !TEST_int_eq(rdesc.type, BIO_POLL_DESCRIPTOR_TYPE_SOCK_FD)
|| !TEST_int_eq(wdesc.type, BIO_POLL_DESCRIPTOR_TYPE_SOCK_FD)
|| !TEST_int_eq(rdesc.value.fd, cfd)
|| !TEST_int_eq(wdesc.value.fd, cfd))
goto error;
if (!TEST_true(SSL_get_rpoll_descriptor(serverssl, &rdesc))
|| !TEST_true(SSL_get_wpoll_descriptor(serverssl, &wdesc))
|| !TEST_int_eq(rdesc.type, BIO_POLL_DESCRIPTOR_TYPE_SOCK_FD)
|| !TEST_int_eq(wdesc.type, BIO_POLL_DESCRIPTOR_TYPE_SOCK_FD)
|| !TEST_int_eq(rdesc.value.fd, sfd)
|| !TEST_int_eq(wdesc.value.fd, sfd))
goto error;
*sssl = serverssl;
*cssl = clientssl;
return 1;
error:
SSL_free(serverssl);
SSL_free(clientssl);
BIO_free(s_to_c_bio);
BIO_free(c_to_s_bio);
return 0;
}
#else
int wait_until_sock_readable(int sock)
{
return 0;
}
#endif /* defined(OSSL_USE_SOCKETS) */
/*
* NOTE: Transfers control of the BIOs - this function will free them on error
*/
int create_ssl_objects(SSL_CTX *serverctx, SSL_CTX *clientctx, SSL **sssl,
SSL **cssl, BIO *s_to_c_fbio, BIO *c_to_s_fbio)
{
SSL *serverssl = NULL, *clientssl = NULL;
BIO *s_to_c_bio = NULL, *c_to_s_bio = NULL;
if (*sssl != NULL)
serverssl = *sssl;
else if (!TEST_ptr(serverssl = SSL_new(serverctx)))
goto error;
if (*cssl != NULL)
clientssl = *cssl;
else if (!TEST_ptr(clientssl = SSL_new(clientctx)))
goto error;
if (SSL_is_dtls(clientssl)) {
if (!TEST_ptr(s_to_c_bio = BIO_new(bio_s_mempacket_test()))
|| !TEST_ptr(c_to_s_bio = BIO_new(bio_s_mempacket_test())))
goto error;
} else {
if (!TEST_ptr(s_to_c_bio = BIO_new(BIO_s_mem()))
|| !TEST_ptr(c_to_s_bio = BIO_new(BIO_s_mem())))
goto error;
}
if (s_to_c_fbio != NULL
&& !TEST_ptr(s_to_c_bio = BIO_push(s_to_c_fbio, s_to_c_bio)))
goto error;
if (c_to_s_fbio != NULL
&& !TEST_ptr(c_to_s_bio = BIO_push(c_to_s_fbio, c_to_s_bio)))
goto error;
/* Set Non-blocking IO behaviour */
BIO_set_mem_eof_return(s_to_c_bio, -1);
BIO_set_mem_eof_return(c_to_s_bio, -1);
/* Up ref these as we are passing them to two SSL objects */
SSL_set_bio(serverssl, c_to_s_bio, s_to_c_bio);
BIO_up_ref(s_to_c_bio);
BIO_up_ref(c_to_s_bio);
SSL_set_bio(clientssl, s_to_c_bio, c_to_s_bio);
*sssl = serverssl;
*cssl = clientssl;
return 1;
error:
SSL_free(serverssl);
SSL_free(clientssl);
BIO_free(s_to_c_bio);
BIO_free(c_to_s_bio);
BIO_free(s_to_c_fbio);
BIO_free(c_to_s_fbio);
return 0;
}
/*
* Create an SSL connection, but does not read any post-handshake
* NewSessionTicket messages.
* If |read| is set and we're using DTLS then we will attempt to SSL_read on
* the connection once we've completed one half of it, to ensure any retransmits
* get triggered.
* We stop the connection attempt (and return a failure value) if either peer
* has SSL_get_error() return the value in the |want| parameter. The connection
* attempt could be restarted by a subsequent call to this function.
*/
int create_bare_ssl_connection(SSL *serverssl, SSL *clientssl, int want,
int read, int listen)
{
int retc = -1, rets = -1, err, abortctr = 0, ret = 0;
int clienterr = 0, servererr = 0;
int isdtls = SSL_is_dtls(serverssl);
#ifndef OPENSSL_NO_SOCK
BIO_ADDR *peer = NULL;
if (listen) {
if (!isdtls) {
TEST_error("DTLSv1_listen requested for non-DTLS object\n");
return 0;
}
peer = BIO_ADDR_new();
if (!TEST_ptr(peer))
return 0;
}
#else
if (listen) {
TEST_error("DTLSv1_listen requested in a no-sock build\n");
return 0;
}
#endif
do {
err = SSL_ERROR_WANT_WRITE;
while (!clienterr && retc <= 0 && err == SSL_ERROR_WANT_WRITE) {
retc = SSL_connect(clientssl);
if (retc <= 0)
err = SSL_get_error(clientssl, retc);
}
if (!clienterr && retc <= 0 && err != SSL_ERROR_WANT_READ) {
TEST_info("SSL_connect() failed %d, %d", retc, err);
if (want != SSL_ERROR_SSL)
TEST_openssl_errors();
clienterr = 1;
}
if (want != SSL_ERROR_NONE && err == want)
goto err;
err = SSL_ERROR_WANT_WRITE;
while (!servererr && rets <= 0 && err == SSL_ERROR_WANT_WRITE) {
#ifndef OPENSSL_NO_SOCK
if (listen) {
rets = DTLSv1_listen(serverssl, peer);
if (rets < 0) {
err = SSL_ERROR_SSL;
} else if (rets == 0) {
err = SSL_ERROR_WANT_READ;
} else {
/* Success - stop listening and call SSL_accept from now on */
listen = 0;
rets = 0;
}
} else
#endif
{
rets = SSL_accept(serverssl);
if (rets <= 0)
err = SSL_get_error(serverssl, rets);
}
}
if (!servererr && rets <= 0
&& err != SSL_ERROR_WANT_READ
&& err != SSL_ERROR_WANT_X509_LOOKUP) {
TEST_info("SSL_accept() failed %d, %d", rets, err);
if (want != SSL_ERROR_SSL)
TEST_openssl_errors();
servererr = 1;
}
if (want != SSL_ERROR_NONE && err == want)
goto err;
if (clienterr && servererr)
goto err;
if (isdtls && read) {
unsigned char buf[20];
/* Trigger any retransmits that may be appropriate */
if (rets > 0 && retc <= 0) {
if (SSL_read(serverssl, buf, sizeof(buf)) > 0) {
/* We don't expect this to succeed! */
TEST_info("Unexpected SSL_read() success!");
goto err;
}
}
if (retc > 0 && rets <= 0) {
if (SSL_read(clientssl, buf, sizeof(buf)) > 0) {
/* We don't expect this to succeed! */
TEST_info("Unexpected SSL_read() success!");
goto err;
}
}
}
if (++abortctr == MAXLOOPS) {
TEST_info("No progress made");
goto err;
}
if (isdtls && abortctr <= 50 && (abortctr % 10) == 0) {
/*
* It looks like we're just spinning. Pause for a short period to
* give the DTLS timer a chance to do something. We only do this for
* the first few times to prevent hangs.
*/
OSSL_sleep(50);
}
} while (retc <=0 || rets <= 0);
ret = 1;
err:
#ifndef OPENSSL_NO_SOCK
BIO_ADDR_free(peer);
#endif
return ret;
}
/*
* Create an SSL connection including any post handshake NewSessionTicket
* messages.
*/
int create_ssl_connection(SSL *serverssl, SSL *clientssl, int want)
{
int i;
unsigned char buf;
size_t readbytes;
if (!create_bare_ssl_connection(serverssl, clientssl, want, 1, 0))
return 0;
/*
* We attempt to read some data on the client side which we expect to fail.
* This will ensure we have received the NewSessionTicket in TLSv1.3 where
* appropriate. We do this twice because there are 2 NewSessionTickets.
*/
for (i = 0; i < 2; i++) {
if (SSL_read_ex(clientssl, &buf, sizeof(buf), &readbytes) > 0) {
if (!TEST_ulong_eq(readbytes, 0))
return 0;
} else if (!TEST_int_eq(SSL_get_error(clientssl, 0),
SSL_ERROR_WANT_READ)) {
return 0;
}
}
return 1;
}
void shutdown_ssl_connection(SSL *serverssl, SSL *clientssl)
{
SSL_shutdown(clientssl);
SSL_shutdown(serverssl);
SSL_free(serverssl);
SSL_free(clientssl);
}
SSL_SESSION *create_a_psk(SSL *ssl, size_t mdsize)
{
const SSL_CIPHER *cipher = NULL;
const unsigned char key[SHA384_DIGEST_LENGTH] = {
0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a,
0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15,
0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x20,
0x21, 0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29, 0x2a, 0x2b,
0x2c, 0x2d, 0x2e, 0x2f
};
SSL_SESSION *sess = NULL;
if (mdsize == SHA384_DIGEST_LENGTH) {
cipher = SSL_CIPHER_find(ssl, TLS13_AES_256_GCM_SHA384_BYTES);
} else if (mdsize == SHA256_DIGEST_LENGTH) {
/*
* Any ciphersuite using SHA256 will do - it will be compatible with
* the actual ciphersuite selected as long as it too is based on SHA256
*/
cipher = SSL_CIPHER_find(ssl, TLS13_AES_128_GCM_SHA256_BYTES);
} else {
/* Should not happen */
return NULL;
}
sess = SSL_SESSION_new();
if (!TEST_ptr(sess)
|| !TEST_ptr(cipher)
|| !TEST_true(SSL_SESSION_set1_master_key(sess, key, mdsize))
|| !TEST_true(SSL_SESSION_set_cipher(sess, cipher))
|| !TEST_true(
SSL_SESSION_set_protocol_version(sess,
TLS1_3_VERSION))) {
SSL_SESSION_free(sess);
return NULL;
}
return sess;
}
#define NUM_EXTRA_CERTS 40
int ssl_ctx_add_large_cert_chain(OSSL_LIB_CTX *libctx, SSL_CTX *sctx,
const char *cert_file)
{
BIO *certbio = NULL;
X509 *chaincert = NULL;
int certlen;
int ret = 0;
int i;
if (!TEST_ptr(certbio = BIO_new_file(cert_file, "r")))
goto end;
if (!TEST_ptr(chaincert = X509_new_ex(libctx, NULL)))
goto end;
if (PEM_read_bio_X509(certbio, &chaincert, NULL, NULL) == NULL)
goto end;
BIO_free(certbio);
certbio = NULL;
/*
* We assume the supplied certificate is big enough so that if we add
* NUM_EXTRA_CERTS it will make the overall message large enough. The
* default buffer size is requested to be 16k, but due to the way BUF_MEM
* works, it ends up allocating a little over 21k (16 * 4/3). So, in this
* test we need to have a message larger than that.
*/
certlen = i2d_X509(chaincert, NULL);
OPENSSL_assert(certlen * NUM_EXTRA_CERTS >
(SSL3_RT_MAX_PLAIN_LENGTH * 4) / 3);
for (i = 0; i < NUM_EXTRA_CERTS; i++) {
if (!X509_up_ref(chaincert))
goto end;
if (!SSL_CTX_add_extra_chain_cert(sctx, chaincert)) {
X509_free(chaincert);
goto end;
}
}
ret = 1;
end:
BIO_free(certbio);
X509_free(chaincert);
return ret;
}
ENGINE *load_dasync(void)
{
#if !defined(OPENSSL_NO_TLS1_2) && !defined(OPENSSL_NO_DYNAMIC_ENGINE)
ENGINE *e;
if (!TEST_ptr(e = ENGINE_by_id("dasync")))
return NULL;
if (!TEST_true(ENGINE_init(e))) {
ENGINE_free(e);
return NULL;
}
if (!TEST_true(ENGINE_register_ciphers(e))) {
ENGINE_free(e);
return NULL;
}
return e;
#else
return NULL;
#endif
}