openssl/ssl/priority_queue.c
Tomas Mraz 7ed6de997f Copyright year updates
Reviewed-by: Neil Horman <nhorman@openssl.org>
Release: yes
2024-09-05 09:35:49 +02:00

376 lines
9.1 KiB
C

/*
* Copyright 2022-2024 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License"). You may not use
* this file except in compliance with the License. You can obtain a copy
* in the file LICENSE in the source distribution or at
* https://www.openssl.org/source/license.html
*/
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <assert.h>
#include "internal/priority_queue.h"
#include "internal/safe_math.h"
#include "internal/numbers.h"
OSSL_SAFE_MATH_UNSIGNED(size_t, size_t)
/*
* Fundamental operations:
* Binary Heap Fibonacci Heap
* Get smallest O(1) O(1)
* Delete any O(log n) O(log n) average but worst O(n)
* Insert O(log n) O(1)
*
* Not supported:
* Merge two structures O(log n) O(1)
* Decrease key O(log n) O(1)
* Increase key O(log n) ?
*
* The Fibonacci heap is quite a bit more complicated to implement and has
* larger overhead in practice. We favour the binary heap here. A multi-way
* (ternary or quaternary) heap might elicit a performance advantage via better
* cache access patterns.
*/
struct pq_heap_st {
void *data; /* User supplied data pointer */
size_t index; /* Constant index in elements[] */
};
struct pq_elem_st {
size_t posn; /* Current index in heap[] or link in free list */
#ifndef NDEBUG
int used; /* Debug flag indicating that this is in use */
#endif
};
struct ossl_pqueue_st {
struct pq_heap_st *heap;
struct pq_elem_st *elements;
int (*compare)(const void *, const void *);
size_t htop; /* Highest used heap element */
size_t hmax; /* Allocated heap & element space */
size_t freelist; /* Index into elements[], start of free element list */
};
/*
* The initial and maximum number of elements in the heap.
*/
static const size_t min_nodes = 8;
static const size_t max_nodes =
SIZE_MAX / (sizeof(struct pq_heap_st) > sizeof(struct pq_elem_st)
? sizeof(struct pq_heap_st) : sizeof(struct pq_elem_st));
#ifndef NDEBUG
/* Some basic sanity checking of the data structure */
# define ASSERT_USED(pq, idx) \
assert(pq->elements[pq->heap[idx].index].used); \
assert(pq->elements[pq->heap[idx].index].posn == idx)
# define ASSERT_ELEM_USED(pq, elem) \
assert(pq->elements[elem].used)
#else
# define ASSERT_USED(pq, idx)
# define ASSERT_ELEM_USED(pq, elem)
#endif
/*
* Calculate the array growth based on the target size.
*
* The growth factor is a rational number and is defined by a numerator
* and a denominator. According to Andrew Koenig in his paper "Why Are
* Vectors Efficient?" from JOOP 11(5) 1998, this factor should be less
* than the golden ratio (1.618...).
*
* We use an expansion factor of 8 / 5 = 1.6
*/
static ossl_inline size_t compute_pqueue_growth(size_t target, size_t current)
{
int err = 0;
while (current < target) {
if (current >= max_nodes)
return 0;
current = safe_muldiv_size_t(current, 8, 5, &err);
if (err)
return 0;
if (current >= max_nodes)
current = max_nodes;
}
return current;
}
static ossl_inline void pqueue_swap_elem(OSSL_PQUEUE *pq, size_t i, size_t j)
{
struct pq_heap_st *h = pq->heap, t_h;
struct pq_elem_st *e = pq->elements;
ASSERT_USED(pq, i);
ASSERT_USED(pq, j);
t_h = h[i];
h[i] = h[j];
h[j] = t_h;
e[h[i].index].posn = i;
e[h[j].index].posn = j;
}
static ossl_inline void pqueue_move_elem(OSSL_PQUEUE *pq, size_t from, size_t to)
{
struct pq_heap_st *h = pq->heap;
struct pq_elem_st *e = pq->elements;
ASSERT_USED(pq, from);
h[to] = h[from];
e[h[to].index].posn = to;
}
/*
* Force the specified element to the front of the heap. This breaks
* the heap partial ordering pre-condition.
*/
static ossl_inline void pqueue_force_bottom(OSSL_PQUEUE *pq, size_t n)
{
ASSERT_USED(pq, n);
while (n > 0) {
const size_t p = (n - 1) / 2;
ASSERT_USED(pq, p);
pqueue_swap_elem(pq, n, p);
n = p;
}
}
/*
* Move an element down to its correct position to restore the partial
* order pre-condition.
*/
static ossl_inline void pqueue_move_down(OSSL_PQUEUE *pq, size_t n)
{
struct pq_heap_st *h = pq->heap;
ASSERT_USED(pq, n);
while (n > 0) {
const size_t p = (n - 1) / 2;
ASSERT_USED(pq, p);
if (pq->compare(h[n].data, h[p].data) >= 0)
break;
pqueue_swap_elem(pq, n, p);
n = p;
}
}
/*
* Move an element up to its correct position to restore the partial
* order pre-condition.
*/
static ossl_inline void pqueue_move_up(OSSL_PQUEUE *pq, size_t n)
{
struct pq_heap_st *h = pq->heap;
size_t p = n * 2 + 1;
ASSERT_USED(pq, n);
if (pq->htop > p + 1) {
ASSERT_USED(pq, p);
ASSERT_USED(pq, p + 1);
if (pq->compare(h[p].data, h[p + 1].data) > 0)
p++;
}
while (pq->htop > p && pq->compare(h[p].data, h[n].data) < 0) {
ASSERT_USED(pq, p);
pqueue_swap_elem(pq, n, p);
n = p;
p = n * 2 + 1;
if (pq->htop > p + 1) {
ASSERT_USED(pq, p + 1);
if (pq->compare(h[p].data, h[p + 1].data) > 0)
p++;
}
}
}
int ossl_pqueue_push(OSSL_PQUEUE *pq, void *data, size_t *elem)
{
size_t n, m;
if (!ossl_pqueue_reserve(pq, 1))
return 0;
n = pq->htop++;
m = pq->freelist;
pq->freelist = pq->elements[m].posn;
pq->heap[n].data = data;
pq->heap[n].index = m;
pq->elements[m].posn = n;
#ifndef NDEBUG
pq->elements[m].used = 1;
#endif
pqueue_move_down(pq, n);
if (elem != NULL)
*elem = m;
return 1;
}
void *ossl_pqueue_peek(const OSSL_PQUEUE *pq)
{
if (pq->htop > 0) {
ASSERT_USED(pq, 0);
return pq->heap->data;
}
return NULL;
}
void *ossl_pqueue_pop(OSSL_PQUEUE *pq)
{
void *res;
size_t elem;
if (pq == NULL || pq->htop == 0)
return NULL;
ASSERT_USED(pq, 0);
res = pq->heap->data;
elem = pq->heap->index;
if (--pq->htop != 0) {
pqueue_move_elem(pq, pq->htop, 0);
pqueue_move_up(pq, 0);
}
pq->elements[elem].posn = pq->freelist;
pq->freelist = elem;
#ifndef NDEBUG
pq->elements[elem].used = 0;
#endif
return res;
}
void *ossl_pqueue_remove(OSSL_PQUEUE *pq, size_t elem)
{
size_t n;
if (pq == NULL || elem >= pq->hmax || pq->htop == 0)
return 0;
ASSERT_ELEM_USED(pq, elem);
n = pq->elements[elem].posn;
ASSERT_USED(pq, n);
if (n == pq->htop - 1) {
pq->elements[elem].posn = pq->freelist;
pq->freelist = elem;
#ifndef NDEBUG
pq->elements[elem].used = 0;
#endif
return pq->heap[--pq->htop].data;
}
if (n > 0)
pqueue_force_bottom(pq, n);
return ossl_pqueue_pop(pq);
}
static void pqueue_add_freelist(OSSL_PQUEUE *pq, size_t from)
{
struct pq_elem_st *e = pq->elements;
size_t i;
#ifndef NDEBUG
for (i = from; i < pq->hmax; i++)
e[i].used = 0;
#endif
e[from].posn = pq->freelist;
for (i = from + 1; i < pq->hmax; i++)
e[i].posn = i - 1;
pq->freelist = pq->hmax - 1;
}
int ossl_pqueue_reserve(OSSL_PQUEUE *pq, size_t n)
{
size_t new_max, cur_max;
struct pq_heap_st *h;
struct pq_elem_st *e;
if (pq == NULL)
return 0;
cur_max = pq->hmax;
if (pq->htop + n < cur_max)
return 1;
new_max = compute_pqueue_growth(n + cur_max, cur_max);
if (new_max == 0) {
ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR);
return 0;
}
h = OPENSSL_realloc(pq->heap, new_max * sizeof(*pq->heap));
if (h == NULL)
return 0;
pq->heap = h;
e = OPENSSL_realloc(pq->elements, new_max * sizeof(*pq->elements));
if (e == NULL)
return 0;
pq->elements = e;
pq->hmax = new_max;
pqueue_add_freelist(pq, cur_max);
return 1;
}
OSSL_PQUEUE *ossl_pqueue_new(int (*compare)(const void *, const void *))
{
OSSL_PQUEUE *pq;
if (compare == NULL)
return NULL;
pq = OPENSSL_malloc(sizeof(*pq));
if (pq == NULL)
return NULL;
pq->compare = compare;
pq->hmax = min_nodes;
pq->htop = 0;
pq->freelist = 0;
pq->heap = OPENSSL_malloc(sizeof(*pq->heap) * min_nodes);
pq->elements = OPENSSL_malloc(sizeof(*pq->elements) * min_nodes);
if (pq->heap == NULL || pq->elements == NULL) {
ossl_pqueue_free(pq);
return NULL;
}
pqueue_add_freelist(pq, 0);
return pq;
}
void ossl_pqueue_free(OSSL_PQUEUE *pq)
{
if (pq != NULL) {
OPENSSL_free(pq->heap);
OPENSSL_free(pq->elements);
OPENSSL_free(pq);
}
}
void ossl_pqueue_pop_free(OSSL_PQUEUE *pq, void (*freefunc)(void *))
{
size_t i;
if (pq != NULL) {
for (i = 0; i < pq->htop; i++)
(*freefunc)(pq->heap[i].data);
ossl_pqueue_free(pq);
}
}
size_t ossl_pqueue_num(const OSSL_PQUEUE *pq)
{
return pq != NULL ? pq->htop : 0;
}