openssl/fuzz/hashtable.c
Tomas Mraz 3c1713aeed fuzz/hashtable.c: rc == -1 on insert is OK when fuzzing
Reviewed-by: Matt Caswell <matt@openssl.org>
Reviewed-by: Neil Horman <nhorman@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/25273)
2024-08-22 14:52:43 +02:00

394 lines
9.5 KiB
C

/*
* Copyright 2024 The OpenSSL Project Authors. All Rights Reserved.
*
* Licensed under the Apache License 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
* https://www.openssl.org/source/license.html
* or in the file LICENSE in the source distribution.
*/
/*
* Test hashtable operation.
*/
#include <limits.h>
#include <openssl/err.h>
#include <openssl/bio.h>
#include <internal/common.h>
#include <internal/hashtable.h>
#include "fuzzer.h"
/*
* Make the key space very small here to make lookups
* easy to predict for the purposes of validation
* A two byte key gives us 65536 possible entries
* so we can allocate a flat table to compare to
*/
HT_START_KEY_DEFN(fuzzer_key)
HT_DEF_KEY_FIELD(fuzzkey, uint16_t)
HT_END_KEY_DEFN(FUZZER_KEY)
#define FZ_FLAG_ALLOCATED (1 << 0)
typedef struct fuzzer_value_st {
uint64_t flags;
uint64_t value;
} FUZZER_VALUE;
IMPLEMENT_HT_VALUE_TYPE_FNS(FUZZER_VALUE, fz, static)
static size_t skipped_values = 0;
static size_t inserts = 0;
static size_t replacements = 0;
static size_t deletes = 0;
static size_t flushes = 0;
static size_t lookups = 0;
static size_t foreaches = 0;
static size_t filters = 0;
static int valfound;
static FUZZER_VALUE *prediction_table = NULL;
static HT *fuzzer_table = NULL;
/*
* Operational values
*/
#define OP_INSERT 0
#define OP_DELETE 1
#define OP_LOOKUP 2
#define OP_FLUSH 3
#define OP_FOREACH 4
#define OP_FILTER 5
#define OP_END 6
#define OP_MASK 0x3f
#define INSERT_REPLACE_MASK 0x40
#define OPERATION(x) (((x) & OP_MASK) % OP_END)
#define IS_REPLACE(x) ((x) & INSERT_REPLACE_MASK)
static int table_iterator(HT_VALUE *v, void *arg)
{
uint16_t keyval = (*(uint16_t *)arg);
FUZZER_VALUE *f = ossl_ht_fz_FUZZER_VALUE_from_value(v);
if (f != NULL && f == &prediction_table[keyval]) {
valfound = 1;
return 0;
}
return 1;
}
static int filter_iterator(HT_VALUE *v, void *arg)
{
uint16_t keyval = (*(uint16_t *)arg);
FUZZER_VALUE *f = ossl_ht_fz_FUZZER_VALUE_from_value(v);
if (f != NULL && f == &prediction_table[keyval])
return 1;
return 0;
}
static void fuzz_free_cb(HT_VALUE *v)
{
FUZZER_VALUE *f = ossl_ht_fz_FUZZER_VALUE_from_value(v);
if (f != NULL)
f->flags &= ~FZ_FLAG_ALLOCATED;
}
int FuzzerInitialize(int *argc, char ***argv)
{
HT_CONFIG fuzz_conf = {NULL, fuzz_free_cb, NULL, 0, 1};
OPENSSL_init_crypto(OPENSSL_INIT_LOAD_CRYPTO_STRINGS, NULL);
ERR_clear_error();
prediction_table = OPENSSL_zalloc(sizeof(FUZZER_VALUE) * 65537);
if (prediction_table == NULL)
return -1;
fuzzer_table = ossl_ht_new(&fuzz_conf);
if (fuzzer_table == NULL) {
OPENSSL_free(prediction_table);
return -1;
}
return 0;
}
int FuzzerTestOneInput(const uint8_t *buf, size_t len)
{
uint8_t op_flags;
uint16_t keyval;
int rc;
int rc_prediction = 1;
size_t i;
FUZZER_VALUE *valptr, *lval;
FUZZER_KEY key;
HT_VALUE *v = NULL;
HT_VALUE tv;
HT_VALUE_LIST *htvlist;
/*
* We need at least 11 bytes to be able to do anything here
* 1 byte to detect the operation to perform, 2 bytes
* for the lookup key, and 8 bytes of value
*/
if (len < 11) {
skipped_values++;
return -1;
}
/*
* parse out our operation flags and key
*/
op_flags = buf[0];
memcpy(&keyval, &buf[1], sizeof(uint16_t));
/*
* Initialize our key
*/
HT_INIT_KEY(&key);
/*
* Now do our operation
*/
switch(OPERATION(op_flags)) {
case OP_INSERT:
valptr = &prediction_table[keyval];
/* reset our key */
HT_KEY_RESET(&key);
/* set the proper key value */
HT_SET_KEY_FIELD(&key, fuzzkey, keyval);
/* lock the table */
ossl_ht_write_lock(fuzzer_table);
/*
* If the value to insert is already allocated
* then we expect a conflict in the insert
* i.e. we predict a return code of 0 instead
* of 1. On replacement, we expect it to succeed
* always
*/
if (valptr->flags & FZ_FLAG_ALLOCATED) {
if (!IS_REPLACE(op_flags))
rc_prediction = 0;
}
memcpy(&valptr->value, &buf[3], sizeof(uint64_t));
/*
* do the insert/replace
*/
if (IS_REPLACE(op_flags))
rc = ossl_ht_fz_FUZZER_VALUE_insert(fuzzer_table, TO_HT_KEY(&key),
valptr, &lval);
else
rc = ossl_ht_fz_FUZZER_VALUE_insert(fuzzer_table, TO_HT_KEY(&key),
valptr, NULL);
if (rc == -1)
/* failed to grow the hash table due to too many collisions */
break;
/*
* mark the entry as being allocated
*/
valptr->flags |= FZ_FLAG_ALLOCATED;
/*
* unlock the table
*/
ossl_ht_write_unlock(fuzzer_table);
/*
* Now check to make sure we did the right thing
*/
OPENSSL_assert(rc == rc_prediction);
/*
* successful insertion if there wasn't a conflict
*/
if (rc_prediction == 1)
IS_REPLACE(op_flags) ? replacements++ : inserts++;
break;
case OP_DELETE:
valptr = &prediction_table[keyval];
/* reset our key */
HT_KEY_RESET(&key);
/* set the proper key value */
HT_SET_KEY_FIELD(&key, fuzzkey, keyval);
/* lock the table */
ossl_ht_write_lock(fuzzer_table);
/*
* If the value to delete is not already allocated
* then we expect a miss in the delete
* i.e. we predict a return code of 0 instead
* of 1
*/
if (!(valptr->flags & FZ_FLAG_ALLOCATED))
rc_prediction = 0;
/*
* do the delete
*/
rc = ossl_ht_delete(fuzzer_table, TO_HT_KEY(&key));
/*
* unlock the table
*/
ossl_ht_write_unlock(fuzzer_table);
/*
* Now check to make sure we did the right thing
*/
OPENSSL_assert(rc == rc_prediction);
/*
* once the unlock is done, the table rcu will have synced
* meaning the free function has run, so we can confirm now
* that the valptr is no longer allocated
*/
OPENSSL_assert(!(valptr->flags & FZ_FLAG_ALLOCATED));
/*
* successful deletion if there wasn't a conflict
*/
if (rc_prediction == 1)
deletes++;
break;
case OP_LOOKUP:
valptr = &prediction_table[keyval];
lval = NULL;
/* reset our key */
HT_KEY_RESET(&key);
/* set the proper key value */
HT_SET_KEY_FIELD(&key, fuzzkey, keyval);
/* lock the table for reading */
ossl_ht_read_lock(fuzzer_table);
/*
* If the value to find is not already allocated
* then we expect a miss in the lookup
* i.e. we predict a return code of NULL instead
* of a pointer
*/
if (!(valptr->flags & FZ_FLAG_ALLOCATED))
valptr = NULL;
/*
* do the lookup
*/
lval = ossl_ht_fz_FUZZER_VALUE_get(fuzzer_table, TO_HT_KEY(&key), &v);
/*
* unlock the table
*/
ossl_ht_read_unlock(fuzzer_table);
/*
* Now check to make sure we did the right thing
*/
OPENSSL_assert(lval == valptr);
/*
* if we expect a positive lookup, make sure that
* we can use the _type and to_value functions
*/
if (valptr != NULL) {
OPENSSL_assert(ossl_ht_fz_FUZZER_VALUE_type(v) == 1);
v = ossl_ht_fz_FUZZER_VALUE_to_value(lval, &tv);
OPENSSL_assert(v->value == lval);
}
/*
* successful lookup if we didn't expect a miss
*/
if (valptr != NULL)
lookups++;
break;
case OP_FLUSH:
/*
* only flush the table rarely
*/
if ((flushes % 100000) != 1) {
skipped_values++;
flushes++;
return 0;
}
/*
* lock the table
*/
ossl_ht_write_lock(fuzzer_table);
ossl_ht_flush(fuzzer_table);
ossl_ht_write_unlock(fuzzer_table);
/*
* now check to make sure everything is free
*/
for (i = 0; i < USHRT_MAX; i++)
OPENSSL_assert((prediction_table[i].flags & FZ_FLAG_ALLOCATED) == 0);
/* good flush */
flushes++;
break;
case OP_FOREACH:
valfound = 0;
valptr = &prediction_table[keyval];
rc_prediction = 0;
if (valptr->flags & FZ_FLAG_ALLOCATED)
rc_prediction = 1;
ossl_ht_foreach_until(fuzzer_table, table_iterator, &keyval);
OPENSSL_assert(valfound == rc_prediction);
foreaches++;
break;
case OP_FILTER:
valptr = &prediction_table[keyval];
rc_prediction = 0;
if (valptr->flags & FZ_FLAG_ALLOCATED)
rc_prediction = 1;
htvlist = ossl_ht_filter(fuzzer_table, 1, filter_iterator, &keyval);
OPENSSL_assert(htvlist->list_len == (size_t)rc_prediction);
ossl_ht_value_list_free(htvlist);
filters++;
break;
default:
return -1;
}
return 0;
}
void FuzzerCleanup(void)
{
ossl_ht_free(fuzzer_table);
OPENSSL_free(prediction_table);
OPENSSL_cleanup();
}