/* * Copyright 1995-2023 The OpenSSL Project Authors. All Rights Reserved. * Copyright (c) 2002, Oracle and/or its affiliates. All rights reserved * Copyright 2005 Nokia. All rights reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include "ssl_local.h" #include "internal/e_os.h" #include #include #include #include #include #include #include #include #include #include #include "internal/cryptlib.h" #include "internal/nelem.h" #include "internal/refcount.h" #include "internal/ktls.h" #include "quic/quic_local.h" static int ssl_undefined_function_3(SSL_CONNECTION *sc, unsigned char *r, unsigned char *s, size_t t, size_t *u) { return ssl_undefined_function(SSL_CONNECTION_GET_SSL(sc)); } static int ssl_undefined_function_4(SSL_CONNECTION *sc, int r) { return ssl_undefined_function(SSL_CONNECTION_GET_SSL(sc)); } static size_t ssl_undefined_function_5(SSL_CONNECTION *sc, const char *r, size_t s, unsigned char *t) { return ssl_undefined_function(SSL_CONNECTION_GET_SSL(sc)); } static int ssl_undefined_function_6(int r) { return ssl_undefined_function(NULL); } static int ssl_undefined_function_7(SSL_CONNECTION *sc, unsigned char *r, size_t s, const char *t, size_t u, const unsigned char *v, size_t w, int x) { return ssl_undefined_function(SSL_CONNECTION_GET_SSL(sc)); } static int ssl_undefined_function_8(SSL_CONNECTION *sc) { return ssl_undefined_function(SSL_CONNECTION_GET_SSL(sc)); } SSL3_ENC_METHOD ssl3_undef_enc_method = { ssl_undefined_function_8, ssl_undefined_function_3, ssl_undefined_function_4, ssl_undefined_function_5, NULL, /* client_finished_label */ 0, /* client_finished_label_len */ NULL, /* server_finished_label */ 0, /* server_finished_label_len */ ssl_undefined_function_6, ssl_undefined_function_7, }; struct ssl_async_args { SSL *s; void *buf; size_t num; enum { READFUNC, WRITEFUNC, OTHERFUNC } type; union { int (*func_read) (SSL *, void *, size_t, size_t *); int (*func_write) (SSL *, const void *, size_t, size_t *); int (*func_other) (SSL *); } f; }; static const struct { uint8_t mtype; uint8_t ord; int nid; } dane_mds[] = { { DANETLS_MATCHING_FULL, 0, NID_undef }, { DANETLS_MATCHING_2256, 1, NID_sha256 }, { DANETLS_MATCHING_2512, 2, NID_sha512 }, }; static int dane_ctx_enable(struct dane_ctx_st *dctx) { const EVP_MD **mdevp; uint8_t *mdord; uint8_t mdmax = DANETLS_MATCHING_LAST; int n = ((int)mdmax) + 1; /* int to handle PrivMatch(255) */ size_t i; if (dctx->mdevp != NULL) return 1; mdevp = OPENSSL_zalloc(n * sizeof(*mdevp)); mdord = OPENSSL_zalloc(n * sizeof(*mdord)); if (mdord == NULL || mdevp == NULL) { OPENSSL_free(mdord); OPENSSL_free(mdevp); return 0; } /* Install default entries */ for (i = 0; i < OSSL_NELEM(dane_mds); ++i) { const EVP_MD *md; if (dane_mds[i].nid == NID_undef || (md = EVP_get_digestbynid(dane_mds[i].nid)) == NULL) continue; mdevp[dane_mds[i].mtype] = md; mdord[dane_mds[i].mtype] = dane_mds[i].ord; } dctx->mdevp = mdevp; dctx->mdord = mdord; dctx->mdmax = mdmax; return 1; } static void dane_ctx_final(struct dane_ctx_st *dctx) { OPENSSL_free(dctx->mdevp); dctx->mdevp = NULL; OPENSSL_free(dctx->mdord); dctx->mdord = NULL; dctx->mdmax = 0; } static void tlsa_free(danetls_record *t) { if (t == NULL) return; OPENSSL_free(t->data); EVP_PKEY_free(t->spki); OPENSSL_free(t); } static void dane_final(SSL_DANE *dane) { sk_danetls_record_pop_free(dane->trecs, tlsa_free); dane->trecs = NULL; OSSL_STACK_OF_X509_free(dane->certs); dane->certs = NULL; X509_free(dane->mcert); dane->mcert = NULL; dane->mtlsa = NULL; dane->mdpth = -1; dane->pdpth = -1; } /* * dane_copy - Copy dane configuration, sans verification state. */ static int ssl_dane_dup(SSL_CONNECTION *to, SSL_CONNECTION *from) { int num; int i; if (!DANETLS_ENABLED(&from->dane)) return 1; num = sk_danetls_record_num(from->dane.trecs); dane_final(&to->dane); to->dane.flags = from->dane.flags; to->dane.dctx = &SSL_CONNECTION_GET_CTX(to)->dane; to->dane.trecs = sk_danetls_record_new_reserve(NULL, num); if (to->dane.trecs == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB); return 0; } for (i = 0; i < num; ++i) { danetls_record *t = sk_danetls_record_value(from->dane.trecs, i); if (SSL_dane_tlsa_add(SSL_CONNECTION_GET_SSL(to), t->usage, t->selector, t->mtype, t->data, t->dlen) <= 0) return 0; } return 1; } static int dane_mtype_set(struct dane_ctx_st *dctx, const EVP_MD *md, uint8_t mtype, uint8_t ord) { int i; if (mtype == DANETLS_MATCHING_FULL && md != NULL) { ERR_raise(ERR_LIB_SSL, SSL_R_DANE_CANNOT_OVERRIDE_MTYPE_FULL); return 0; } if (mtype > dctx->mdmax) { const EVP_MD **mdevp; uint8_t *mdord; int n = ((int)mtype) + 1; mdevp = OPENSSL_realloc(dctx->mdevp, n * sizeof(*mdevp)); if (mdevp == NULL) return -1; dctx->mdevp = mdevp; mdord = OPENSSL_realloc(dctx->mdord, n * sizeof(*mdord)); if (mdord == NULL) return -1; dctx->mdord = mdord; /* Zero-fill any gaps */ for (i = dctx->mdmax + 1; i < mtype; ++i) { mdevp[i] = NULL; mdord[i] = 0; } dctx->mdmax = mtype; } dctx->mdevp[mtype] = md; /* Coerce ordinal of disabled matching types to 0 */ dctx->mdord[mtype] = (md == NULL) ? 0 : ord; return 1; } static const EVP_MD *tlsa_md_get(SSL_DANE *dane, uint8_t mtype) { if (mtype > dane->dctx->mdmax) return NULL; return dane->dctx->mdevp[mtype]; } static int dane_tlsa_add(SSL_DANE *dane, uint8_t usage, uint8_t selector, uint8_t mtype, const unsigned char *data, size_t dlen) { danetls_record *t; const EVP_MD *md = NULL; int ilen = (int)dlen; int i; int num; if (dane->trecs == NULL) { ERR_raise(ERR_LIB_SSL, SSL_R_DANE_NOT_ENABLED); return -1; } if (ilen < 0 || dlen != (size_t)ilen) { ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_DATA_LENGTH); return 0; } if (usage > DANETLS_USAGE_LAST) { ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_CERTIFICATE_USAGE); return 0; } if (selector > DANETLS_SELECTOR_LAST) { ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_SELECTOR); return 0; } if (mtype != DANETLS_MATCHING_FULL) { md = tlsa_md_get(dane, mtype); if (md == NULL) { ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_MATCHING_TYPE); return 0; } } if (md != NULL && dlen != (size_t)EVP_MD_get_size(md)) { ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_DIGEST_LENGTH); return 0; } if (!data) { ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_NULL_DATA); return 0; } if ((t = OPENSSL_zalloc(sizeof(*t))) == NULL) return -1; t->usage = usage; t->selector = selector; t->mtype = mtype; t->data = OPENSSL_malloc(dlen); if (t->data == NULL) { tlsa_free(t); return -1; } memcpy(t->data, data, dlen); t->dlen = dlen; /* Validate and cache full certificate or public key */ if (mtype == DANETLS_MATCHING_FULL) { const unsigned char *p = data; X509 *cert = NULL; EVP_PKEY *pkey = NULL; switch (selector) { case DANETLS_SELECTOR_CERT: if (!d2i_X509(&cert, &p, ilen) || p < data || dlen != (size_t)(p - data)) { X509_free(cert); tlsa_free(t); ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_CERTIFICATE); return 0; } if (X509_get0_pubkey(cert) == NULL) { X509_free(cert); tlsa_free(t); ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_CERTIFICATE); return 0; } if ((DANETLS_USAGE_BIT(usage) & DANETLS_TA_MASK) == 0) { /* * The Full(0) certificate decodes to a seemingly valid X.509 * object with a plausible key, so the TLSA record is well * formed. However, we don't actually need the certificate for * usages PKIX-EE(1) or DANE-EE(3), because at least the EE * certificate is always presented by the peer. We discard the * certificate, and just use the TLSA data as an opaque blob * for matching the raw presented DER octets. * * DO NOT FREE `t` here, it will be added to the TLSA record * list below! */ X509_free(cert); break; } /* * For usage DANE-TA(2), we support authentication via "2 0 0" TLSA * records that contain full certificates of trust-anchors that are * not present in the wire chain. For usage PKIX-TA(0), we augment * the chain with untrusted Full(0) certificates from DNS, in case * they are missing from the chain. */ if ((dane->certs == NULL && (dane->certs = sk_X509_new_null()) == NULL) || !sk_X509_push(dane->certs, cert)) { ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB); X509_free(cert); tlsa_free(t); return -1; } break; case DANETLS_SELECTOR_SPKI: if (!d2i_PUBKEY(&pkey, &p, ilen) || p < data || dlen != (size_t)(p - data)) { EVP_PKEY_free(pkey); tlsa_free(t); ERR_raise(ERR_LIB_SSL, SSL_R_DANE_TLSA_BAD_PUBLIC_KEY); return 0; } /* * For usage DANE-TA(2), we support authentication via "2 1 0" TLSA * records that contain full bare keys of trust-anchors that are * not present in the wire chain. */ if (usage == DANETLS_USAGE_DANE_TA) t->spki = pkey; else EVP_PKEY_free(pkey); break; } } /*- * Find the right insertion point for the new record. * * See crypto/x509/x509_vfy.c. We sort DANE-EE(3) records first, so that * they can be processed first, as they require no chain building, and no * expiration or hostname checks. Because DANE-EE(3) is numerically * largest, this is accomplished via descending sort by "usage". * * We also sort in descending order by matching ordinal to simplify * the implementation of digest agility in the verification code. * * The choice of order for the selector is not significant, so we * use the same descending order for consistency. */ num = sk_danetls_record_num(dane->trecs); for (i = 0; i < num; ++i) { danetls_record *rec = sk_danetls_record_value(dane->trecs, i); if (rec->usage > usage) continue; if (rec->usage < usage) break; if (rec->selector > selector) continue; if (rec->selector < selector) break; if (dane->dctx->mdord[rec->mtype] > dane->dctx->mdord[mtype]) continue; break; } if (!sk_danetls_record_insert(dane->trecs, t, i)) { tlsa_free(t); ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB); return -1; } dane->umask |= DANETLS_USAGE_BIT(usage); return 1; } /* * Return 0 if there is only one version configured and it was disabled * at configure time. Return 1 otherwise. */ static int ssl_check_allowed_versions(int min_version, int max_version) { int minisdtls = 0, maxisdtls = 0; /* Figure out if we're doing DTLS versions or TLS versions */ if (min_version == DTLS1_BAD_VER || min_version >> 8 == DTLS1_VERSION_MAJOR) minisdtls = 1; if (max_version == DTLS1_BAD_VER || max_version >> 8 == DTLS1_VERSION_MAJOR) maxisdtls = 1; /* A wildcard version of 0 could be DTLS or TLS. */ if ((minisdtls && !maxisdtls && max_version != 0) || (maxisdtls && !minisdtls && min_version != 0)) { /* Mixing DTLS and TLS versions will lead to sadness; deny it. */ return 0; } if (minisdtls || maxisdtls) { /* Do DTLS version checks. */ if (min_version == 0) /* Ignore DTLS1_BAD_VER */ min_version = DTLS1_VERSION; if (max_version == 0) max_version = DTLS1_2_VERSION; #ifdef OPENSSL_NO_DTLS1_2 if (max_version == DTLS1_2_VERSION) max_version = DTLS1_VERSION; #endif #ifdef OPENSSL_NO_DTLS1 if (min_version == DTLS1_VERSION) min_version = DTLS1_2_VERSION; #endif /* Done massaging versions; do the check. */ if (0 #ifdef OPENSSL_NO_DTLS1 || (DTLS_VERSION_GE(min_version, DTLS1_VERSION) && DTLS_VERSION_GE(DTLS1_VERSION, max_version)) #endif #ifdef OPENSSL_NO_DTLS1_2 || (DTLS_VERSION_GE(min_version, DTLS1_2_VERSION) && DTLS_VERSION_GE(DTLS1_2_VERSION, max_version)) #endif ) return 0; } else { /* Regular TLS version checks. */ if (min_version == 0) min_version = SSL3_VERSION; if (max_version == 0) max_version = TLS1_3_VERSION; #ifdef OPENSSL_NO_TLS1_3 if (max_version == TLS1_3_VERSION) max_version = TLS1_2_VERSION; #endif #ifdef OPENSSL_NO_TLS1_2 if (max_version == TLS1_2_VERSION) max_version = TLS1_1_VERSION; #endif #ifdef OPENSSL_NO_TLS1_1 if (max_version == TLS1_1_VERSION) max_version = TLS1_VERSION; #endif #ifdef OPENSSL_NO_TLS1 if (max_version == TLS1_VERSION) max_version = SSL3_VERSION; #endif #ifdef OPENSSL_NO_SSL3 if (min_version == SSL3_VERSION) min_version = TLS1_VERSION; #endif #ifdef OPENSSL_NO_TLS1 if (min_version == TLS1_VERSION) min_version = TLS1_1_VERSION; #endif #ifdef OPENSSL_NO_TLS1_1 if (min_version == TLS1_1_VERSION) min_version = TLS1_2_VERSION; #endif #ifdef OPENSSL_NO_TLS1_2 if (min_version == TLS1_2_VERSION) min_version = TLS1_3_VERSION; #endif /* Done massaging versions; do the check. */ if (0 #ifdef OPENSSL_NO_SSL3 || (min_version <= SSL3_VERSION && SSL3_VERSION <= max_version) #endif #ifdef OPENSSL_NO_TLS1 || (min_version <= TLS1_VERSION && TLS1_VERSION <= max_version) #endif #ifdef OPENSSL_NO_TLS1_1 || (min_version <= TLS1_1_VERSION && TLS1_1_VERSION <= max_version) #endif #ifdef OPENSSL_NO_TLS1_2 || (min_version <= TLS1_2_VERSION && TLS1_2_VERSION <= max_version) #endif #ifdef OPENSSL_NO_TLS1_3 || (min_version <= TLS1_3_VERSION && TLS1_3_VERSION <= max_version) #endif ) return 0; } return 1; } #if defined(__TANDEM) && defined(OPENSSL_VPROC) /* * Define a VPROC function for HP NonStop build ssl library. * This is used by platform version identification tools. * Do not inline this procedure or make it static. */ # define OPENSSL_VPROC_STRING_(x) x##_SSL # define OPENSSL_VPROC_STRING(x) OPENSSL_VPROC_STRING_(x) # define OPENSSL_VPROC_FUNC OPENSSL_VPROC_STRING(OPENSSL_VPROC) void OPENSSL_VPROC_FUNC(void) {} #endif static int clear_record_layer(SSL_CONNECTION *s) { int ret; /* We try and reset both record layers even if one fails */ ret = ssl_set_new_record_layer(s, SSL_CONNECTION_IS_DTLS(s) ? DTLS_ANY_VERSION : TLS_ANY_VERSION, OSSL_RECORD_DIRECTION_READ, OSSL_RECORD_PROTECTION_LEVEL_NONE, NULL, 0, NULL, 0, NULL, 0, NULL, 0, NULL, 0, NID_undef, NULL, NULL, NULL); ret &= ssl_set_new_record_layer(s, SSL_CONNECTION_IS_DTLS(s) ? DTLS_ANY_VERSION : TLS_ANY_VERSION, OSSL_RECORD_DIRECTION_WRITE, OSSL_RECORD_PROTECTION_LEVEL_NONE, NULL, 0, NULL, 0, NULL, 0, NULL, 0, NULL, 0, NID_undef, NULL, NULL, NULL); /* SSLfatal already called in the event of failure */ return ret; } int SSL_clear(SSL *s) { if (s->method == NULL) { ERR_raise(ERR_LIB_SSL, SSL_R_NO_METHOD_SPECIFIED); return 0; } return s->method->ssl_reset(s); } int ossl_ssl_connection_reset(SSL *s) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; if (ssl_clear_bad_session(sc)) { SSL_SESSION_free(sc->session); sc->session = NULL; } SSL_SESSION_free(sc->psksession); sc->psksession = NULL; OPENSSL_free(sc->psksession_id); sc->psksession_id = NULL; sc->psksession_id_len = 0; sc->hello_retry_request = SSL_HRR_NONE; sc->sent_tickets = 0; sc->error = 0; sc->hit = 0; sc->shutdown = 0; if (sc->renegotiate) { ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR); return 0; } ossl_statem_clear(sc); sc->version = s->method->version; sc->client_version = sc->version; sc->rwstate = SSL_NOTHING; BUF_MEM_free(sc->init_buf); sc->init_buf = NULL; sc->first_packet = 0; sc->key_update = SSL_KEY_UPDATE_NONE; memset(sc->ext.compress_certificate_from_peer, 0, sizeof(sc->ext.compress_certificate_from_peer)); sc->ext.compress_certificate_sent = 0; EVP_MD_CTX_free(sc->pha_dgst); sc->pha_dgst = NULL; /* Reset DANE verification result state */ sc->dane.mdpth = -1; sc->dane.pdpth = -1; X509_free(sc->dane.mcert); sc->dane.mcert = NULL; sc->dane.mtlsa = NULL; /* Clear the verification result peername */ X509_VERIFY_PARAM_move_peername(sc->param, NULL); /* Clear any shared connection state */ OPENSSL_free(sc->shared_sigalgs); sc->shared_sigalgs = NULL; sc->shared_sigalgslen = 0; /* * Check to see if we were changed into a different method, if so, revert * back. */ if (s->method != s->defltmeth) { s->method->ssl_deinit(s); s->method = s->defltmeth; if (!s->method->ssl_init(s)) return 0; } else { if (!s->method->ssl_clear(s)) return 0; } RECORD_LAYER_clear(&sc->rlayer); BIO_free(sc->rlayer.rrlnext); sc->rlayer.rrlnext = NULL; if (!clear_record_layer(sc)) return 0; return 1; } #ifndef OPENSSL_NO_DEPRECATED_3_0 /** Used to change an SSL_CTXs default SSL method type */ int SSL_CTX_set_ssl_version(SSL_CTX *ctx, const SSL_METHOD *meth) { STACK_OF(SSL_CIPHER) *sk; if (IS_QUIC_CTX(ctx)) { ERR_raise(ERR_LIB_SSL, SSL_R_WRONG_SSL_VERSION); return 0; } ctx->method = meth; if (!SSL_CTX_set_ciphersuites(ctx, OSSL_default_ciphersuites())) { ERR_raise(ERR_LIB_SSL, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS); return 0; } sk = ssl_create_cipher_list(ctx, ctx->tls13_ciphersuites, &(ctx->cipher_list), &(ctx->cipher_list_by_id), OSSL_default_cipher_list(), ctx->cert); if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= 0)) { ERR_raise(ERR_LIB_SSL, SSL_R_SSL_LIBRARY_HAS_NO_CIPHERS); return 0; } return 1; } #endif SSL *SSL_new(SSL_CTX *ctx) { if (ctx == NULL) { ERR_raise(ERR_LIB_SSL, SSL_R_NULL_SSL_CTX); return NULL; } if (ctx->method == NULL) { ERR_raise(ERR_LIB_SSL, SSL_R_SSL_CTX_HAS_NO_DEFAULT_SSL_VERSION); return NULL; } return ctx->method->ssl_new(ctx); } int ossl_ssl_init(SSL *ssl, SSL_CTX *ctx, const SSL_METHOD *method, int type) { ssl->type = type; ssl->lock = CRYPTO_THREAD_lock_new(); if (ssl->lock == NULL) return 0; if (!CRYPTO_NEW_REF(&ssl->references, 1)) { CRYPTO_THREAD_lock_free(ssl->lock); return 0; } if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL, ssl, &ssl->ex_data)) { CRYPTO_THREAD_lock_free(ssl->lock); CRYPTO_FREE_REF(&ssl->references); ssl->lock = NULL; return 0; } SSL_CTX_up_ref(ctx); ssl->ctx = ctx; ssl->defltmeth = ssl->method = method; return 1; } SSL *ossl_ssl_connection_new_int(SSL_CTX *ctx, const SSL_METHOD *method) { SSL_CONNECTION *s; SSL *ssl; s = OPENSSL_zalloc(sizeof(*s)); if (s == NULL) return NULL; ssl = &s->ssl; if (!ossl_ssl_init(ssl, ctx, method, SSL_TYPE_SSL_CONNECTION)) { OPENSSL_free(s); s = NULL; ssl = NULL; goto sslerr; } RECORD_LAYER_init(&s->rlayer, s); s->options = ctx->options; s->dane.flags = ctx->dane.flags; if (method->version == ctx->method->version) { s->min_proto_version = ctx->min_proto_version; s->max_proto_version = ctx->max_proto_version; } s->mode = ctx->mode; s->max_cert_list = ctx->max_cert_list; s->max_early_data = ctx->max_early_data; s->recv_max_early_data = ctx->recv_max_early_data; s->num_tickets = ctx->num_tickets; s->pha_enabled = ctx->pha_enabled; /* Shallow copy of the ciphersuites stack */ s->tls13_ciphersuites = sk_SSL_CIPHER_dup(ctx->tls13_ciphersuites); if (s->tls13_ciphersuites == NULL) goto cerr; /* * Earlier library versions used to copy the pointer to the CERT, not * its contents; only when setting new parameters for the per-SSL * copy, ssl_cert_new would be called (and the direct reference to * the per-SSL_CTX settings would be lost, but those still were * indirectly accessed for various purposes, and for that reason they * used to be known as s->ctx->default_cert). Now we don't look at the * SSL_CTX's CERT after having duplicated it once. */ s->cert = ssl_cert_dup(ctx->cert); if (s->cert == NULL) goto sslerr; RECORD_LAYER_set_read_ahead(&s->rlayer, ctx->read_ahead); s->msg_callback = ctx->msg_callback; s->msg_callback_arg = ctx->msg_callback_arg; s->verify_mode = ctx->verify_mode; s->not_resumable_session_cb = ctx->not_resumable_session_cb; s->rlayer.record_padding_cb = ctx->record_padding_cb; s->rlayer.record_padding_arg = ctx->record_padding_arg; s->rlayer.block_padding = ctx->block_padding; s->sid_ctx_length = ctx->sid_ctx_length; if (!ossl_assert(s->sid_ctx_length <= sizeof(s->sid_ctx))) goto err; memcpy(&s->sid_ctx, &ctx->sid_ctx, sizeof(s->sid_ctx)); s->verify_callback = ctx->default_verify_callback; s->generate_session_id = ctx->generate_session_id; s->param = X509_VERIFY_PARAM_new(); if (s->param == NULL) goto asn1err; X509_VERIFY_PARAM_inherit(s->param, ctx->param); s->quiet_shutdown = IS_QUIC_CTX(ctx) ? 0 : ctx->quiet_shutdown; if (!IS_QUIC_CTX(ctx)) s->ext.max_fragment_len_mode = ctx->ext.max_fragment_len_mode; s->max_send_fragment = ctx->max_send_fragment; s->split_send_fragment = ctx->split_send_fragment; s->max_pipelines = ctx->max_pipelines; s->rlayer.default_read_buf_len = ctx->default_read_buf_len; s->ext.debug_cb = 0; s->ext.debug_arg = NULL; s->ext.ticket_expected = 0; s->ext.status_type = ctx->ext.status_type; s->ext.status_expected = 0; s->ext.ocsp.ids = NULL; s->ext.ocsp.exts = NULL; s->ext.ocsp.resp = NULL; s->ext.ocsp.resp_len = 0; SSL_CTX_up_ref(ctx); s->session_ctx = ctx; if (ctx->ext.ecpointformats) { s->ext.ecpointformats = OPENSSL_memdup(ctx->ext.ecpointformats, ctx->ext.ecpointformats_len); if (!s->ext.ecpointformats) { s->ext.ecpointformats_len = 0; goto err; } s->ext.ecpointformats_len = ctx->ext.ecpointformats_len; } if (ctx->ext.supportedgroups) { s->ext.supportedgroups = OPENSSL_memdup(ctx->ext.supportedgroups, ctx->ext.supportedgroups_len * sizeof(*ctx->ext.supportedgroups)); if (!s->ext.supportedgroups) { s->ext.supportedgroups_len = 0; goto err; } s->ext.supportedgroups_len = ctx->ext.supportedgroups_len; } #ifndef OPENSSL_NO_NEXTPROTONEG s->ext.npn = NULL; #endif if (ctx->ext.alpn != NULL) { s->ext.alpn = OPENSSL_malloc(ctx->ext.alpn_len); if (s->ext.alpn == NULL) { s->ext.alpn_len = 0; goto err; } memcpy(s->ext.alpn, ctx->ext.alpn, ctx->ext.alpn_len); s->ext.alpn_len = ctx->ext.alpn_len; } s->verified_chain = NULL; s->verify_result = X509_V_OK; s->default_passwd_callback = ctx->default_passwd_callback; s->default_passwd_callback_userdata = ctx->default_passwd_callback_userdata; s->key_update = SSL_KEY_UPDATE_NONE; if (!IS_QUIC_CTX(ctx)) { s->allow_early_data_cb = ctx->allow_early_data_cb; s->allow_early_data_cb_data = ctx->allow_early_data_cb_data; } if (!method->ssl_init(ssl)) goto sslerr; s->server = (method->ssl_accept == ssl_undefined_function) ? 0 : 1; if (!method->ssl_reset(ssl)) goto sslerr; #ifndef OPENSSL_NO_PSK s->psk_client_callback = ctx->psk_client_callback; s->psk_server_callback = ctx->psk_server_callback; #endif s->psk_find_session_cb = ctx->psk_find_session_cb; s->psk_use_session_cb = ctx->psk_use_session_cb; s->async_cb = ctx->async_cb; s->async_cb_arg = ctx->async_cb_arg; s->job = NULL; #ifndef OPENSSL_NO_COMP_ALG memcpy(s->cert_comp_prefs, ctx->cert_comp_prefs, sizeof(s->cert_comp_prefs)); #endif if (ctx->client_cert_type != NULL) { s->client_cert_type = OPENSSL_memdup(ctx->client_cert_type, ctx->client_cert_type_len); if (s->client_cert_type == NULL) goto sslerr; s->client_cert_type_len = ctx->client_cert_type_len; } if (ctx->server_cert_type != NULL) { s->server_cert_type = OPENSSL_memdup(ctx->server_cert_type, ctx->server_cert_type_len); if (s->server_cert_type == NULL) goto sslerr; s->server_cert_type_len = ctx->server_cert_type_len; } #ifndef OPENSSL_NO_CT if (!SSL_set_ct_validation_callback(ssl, ctx->ct_validation_callback, ctx->ct_validation_callback_arg)) goto sslerr; #endif s->ssl_pkey_num = SSL_PKEY_NUM + ctx->sigalg_list_len; return ssl; cerr: ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB); goto err; asn1err: ERR_raise(ERR_LIB_SSL, ERR_R_ASN1_LIB); goto err; sslerr: ERR_raise(ERR_LIB_SSL, ERR_R_SSL_LIB); err: SSL_free(ssl); return NULL; } SSL *ossl_ssl_connection_new(SSL_CTX *ctx) { return ossl_ssl_connection_new_int(ctx, ctx->method); } int SSL_is_dtls(const SSL *s) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); #ifndef OPENSSL_NO_QUIC if (s->type == SSL_TYPE_QUIC_CONNECTION || s->type == SSL_TYPE_QUIC_XSO) return 0; #endif if (sc == NULL) return 0; return SSL_CONNECTION_IS_DTLS(sc) ? 1 : 0; } int SSL_is_tls(const SSL *s) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); #ifndef OPENSSL_NO_QUIC if (s->type == SSL_TYPE_QUIC_CONNECTION || s->type == SSL_TYPE_QUIC_XSO) return 0; #endif if (sc == NULL) return 0; return SSL_CONNECTION_IS_DTLS(sc) ? 0 : 1; } int SSL_is_quic(const SSL *s) { #ifndef OPENSSL_NO_QUIC if (s->type == SSL_TYPE_QUIC_CONNECTION || s->type == SSL_TYPE_QUIC_XSO) return 1; #endif return 0; } int SSL_up_ref(SSL *s) { int i; if (CRYPTO_UP_REF(&s->references, &i) <= 0) return 0; REF_PRINT_COUNT("SSL", s); REF_ASSERT_ISNT(i < 2); return ((i > 1) ? 1 : 0); } int SSL_CTX_set_session_id_context(SSL_CTX *ctx, const unsigned char *sid_ctx, unsigned int sid_ctx_len) { if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) { ERR_raise(ERR_LIB_SSL, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); return 0; } ctx->sid_ctx_length = sid_ctx_len; memcpy(ctx->sid_ctx, sid_ctx, sid_ctx_len); return 1; } int SSL_set_session_id_context(SSL *ssl, const unsigned char *sid_ctx, unsigned int sid_ctx_len) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl); if (sc == NULL) return 0; if (sid_ctx_len > SSL_MAX_SID_CTX_LENGTH) { ERR_raise(ERR_LIB_SSL, SSL_R_SSL_SESSION_ID_CONTEXT_TOO_LONG); return 0; } sc->sid_ctx_length = sid_ctx_len; memcpy(sc->sid_ctx, sid_ctx, sid_ctx_len); return 1; } int SSL_CTX_set_generate_session_id(SSL_CTX *ctx, GEN_SESSION_CB cb) { if (!CRYPTO_THREAD_write_lock(ctx->lock)) return 0; ctx->generate_session_id = cb; CRYPTO_THREAD_unlock(ctx->lock); return 1; } int SSL_set_generate_session_id(SSL *ssl, GEN_SESSION_CB cb) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl); if (sc == NULL || !CRYPTO_THREAD_write_lock(ssl->lock)) return 0; sc->generate_session_id = cb; CRYPTO_THREAD_unlock(ssl->lock); return 1; } int SSL_has_matching_session_id(const SSL *ssl, const unsigned char *id, unsigned int id_len) { /* * A quick examination of SSL_SESSION_hash and SSL_SESSION_cmp shows how * we can "construct" a session to give us the desired check - i.e. to * find if there's a session in the hash table that would conflict with * any new session built out of this id/id_len and the ssl_version in use * by this SSL. */ SSL_SESSION r, *p; const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(ssl); if (sc == NULL || id_len > sizeof(r.session_id)) return 0; r.ssl_version = sc->version; r.session_id_length = id_len; memcpy(r.session_id, id, id_len); if (!CRYPTO_THREAD_read_lock(sc->session_ctx->lock)) return 0; p = lh_SSL_SESSION_retrieve(sc->session_ctx->sessions, &r); CRYPTO_THREAD_unlock(sc->session_ctx->lock); return (p != NULL); } int SSL_CTX_set_purpose(SSL_CTX *s, int purpose) { return X509_VERIFY_PARAM_set_purpose(s->param, purpose); } int SSL_set_purpose(SSL *s, int purpose) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; return X509_VERIFY_PARAM_set_purpose(sc->param, purpose); } int SSL_CTX_set_trust(SSL_CTX *s, int trust) { return X509_VERIFY_PARAM_set_trust(s->param, trust); } int SSL_set_trust(SSL *s, int trust) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; return X509_VERIFY_PARAM_set_trust(sc->param, trust); } int SSL_set1_host(SSL *s, const char *hostname) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; /* If a hostname is provided and parses as an IP address, * treat it as such. */ if (hostname != NULL && X509_VERIFY_PARAM_set1_ip_asc(sc->param, hostname) == 1) return 1; return X509_VERIFY_PARAM_set1_host(sc->param, hostname, 0); } int SSL_add1_host(SSL *s, const char *hostname) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; /* If a hostname is provided and parses as an IP address, * treat it as such. */ if (hostname) { ASN1_OCTET_STRING *ip; char *old_ip; ip = a2i_IPADDRESS(hostname); if (ip) { /* We didn't want it; only to check if it *is* an IP address */ ASN1_OCTET_STRING_free(ip); old_ip = X509_VERIFY_PARAM_get1_ip_asc(sc->param); if (old_ip) { OPENSSL_free(old_ip); /* There can be only one IP address */ return 0; } return X509_VERIFY_PARAM_set1_ip_asc(sc->param, hostname); } } return X509_VERIFY_PARAM_add1_host(sc->param, hostname, 0); } void SSL_set_hostflags(SSL *s, unsigned int flags) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return; X509_VERIFY_PARAM_set_hostflags(sc->param, flags); } const char *SSL_get0_peername(SSL *s) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return NULL; return X509_VERIFY_PARAM_get0_peername(sc->param); } int SSL_CTX_dane_enable(SSL_CTX *ctx) { return dane_ctx_enable(&ctx->dane); } unsigned long SSL_CTX_dane_set_flags(SSL_CTX *ctx, unsigned long flags) { unsigned long orig = ctx->dane.flags; ctx->dane.flags |= flags; return orig; } unsigned long SSL_CTX_dane_clear_flags(SSL_CTX *ctx, unsigned long flags) { unsigned long orig = ctx->dane.flags; ctx->dane.flags &= ~flags; return orig; } int SSL_dane_enable(SSL *s, const char *basedomain) { SSL_DANE *dane; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; dane = &sc->dane; if (s->ctx->dane.mdmax == 0) { ERR_raise(ERR_LIB_SSL, SSL_R_CONTEXT_NOT_DANE_ENABLED); return 0; } if (dane->trecs != NULL) { ERR_raise(ERR_LIB_SSL, SSL_R_DANE_ALREADY_ENABLED); return 0; } /* * Default SNI name. This rejects empty names, while set1_host below * accepts them and disables hostname checks. To avoid side-effects with * invalid input, set the SNI name first. */ if (sc->ext.hostname == NULL) { if (!SSL_set_tlsext_host_name(s, basedomain)) { ERR_raise(ERR_LIB_SSL, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN); return -1; } } /* Primary RFC6125 reference identifier */ if (!X509_VERIFY_PARAM_set1_host(sc->param, basedomain, 0)) { ERR_raise(ERR_LIB_SSL, SSL_R_ERROR_SETTING_TLSA_BASE_DOMAIN); return -1; } dane->mdpth = -1; dane->pdpth = -1; dane->dctx = &s->ctx->dane; dane->trecs = sk_danetls_record_new_null(); if (dane->trecs == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB); return -1; } return 1; } unsigned long SSL_dane_set_flags(SSL *ssl, unsigned long flags) { unsigned long orig; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl); if (sc == NULL) return 0; orig = sc->dane.flags; sc->dane.flags |= flags; return orig; } unsigned long SSL_dane_clear_flags(SSL *ssl, unsigned long flags) { unsigned long orig; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl); if (sc == NULL) return 0; orig = sc->dane.flags; sc->dane.flags &= ~flags; return orig; } int SSL_get0_dane_authority(SSL *s, X509 **mcert, EVP_PKEY **mspki) { SSL_DANE *dane; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return -1; dane = &sc->dane; if (!DANETLS_ENABLED(dane) || sc->verify_result != X509_V_OK) return -1; if (dane->mtlsa) { if (mcert) *mcert = dane->mcert; if (mspki) *mspki = (dane->mcert == NULL) ? dane->mtlsa->spki : NULL; } return dane->mdpth; } int SSL_get0_dane_tlsa(SSL *s, uint8_t *usage, uint8_t *selector, uint8_t *mtype, const unsigned char **data, size_t *dlen) { SSL_DANE *dane; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return -1; dane = &sc->dane; if (!DANETLS_ENABLED(dane) || sc->verify_result != X509_V_OK) return -1; if (dane->mtlsa) { if (usage) *usage = dane->mtlsa->usage; if (selector) *selector = dane->mtlsa->selector; if (mtype) *mtype = dane->mtlsa->mtype; if (data) *data = dane->mtlsa->data; if (dlen) *dlen = dane->mtlsa->dlen; } return dane->mdpth; } SSL_DANE *SSL_get0_dane(SSL *s) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return NULL; return &sc->dane; } int SSL_dane_tlsa_add(SSL *s, uint8_t usage, uint8_t selector, uint8_t mtype, const unsigned char *data, size_t dlen) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; return dane_tlsa_add(&sc->dane, usage, selector, mtype, data, dlen); } int SSL_CTX_dane_mtype_set(SSL_CTX *ctx, const EVP_MD *md, uint8_t mtype, uint8_t ord) { return dane_mtype_set(&ctx->dane, md, mtype, ord); } int SSL_CTX_set1_param(SSL_CTX *ctx, X509_VERIFY_PARAM *vpm) { return X509_VERIFY_PARAM_set1(ctx->param, vpm); } int SSL_set1_param(SSL *ssl, X509_VERIFY_PARAM *vpm) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl); if (sc == NULL) return 0; return X509_VERIFY_PARAM_set1(sc->param, vpm); } X509_VERIFY_PARAM *SSL_CTX_get0_param(SSL_CTX *ctx) { return ctx->param; } X509_VERIFY_PARAM *SSL_get0_param(SSL *ssl) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl); if (sc == NULL) return NULL; return sc->param; } void SSL_certs_clear(SSL *s) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return; ssl_cert_clear_certs(sc->cert); } void SSL_free(SSL *s) { int i; if (s == NULL) return; CRYPTO_DOWN_REF(&s->references, &i); REF_PRINT_COUNT("SSL", s); if (i > 0) return; REF_ASSERT_ISNT(i < 0); CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL, s, &s->ex_data); if (s->method != NULL) s->method->ssl_free(s); SSL_CTX_free(s->ctx); CRYPTO_THREAD_lock_free(s->lock); CRYPTO_FREE_REF(&s->references); OPENSSL_free(s); } void ossl_ssl_connection_free(SSL *ssl) { SSL_CONNECTION *s; s = SSL_CONNECTION_FROM_SSL_ONLY(ssl); if (s == NULL) return; X509_VERIFY_PARAM_free(s->param); dane_final(&s->dane); /* Ignore return value */ ssl_free_wbio_buffer(s); RECORD_LAYER_clear(&s->rlayer); BUF_MEM_free(s->init_buf); /* add extra stuff */ sk_SSL_CIPHER_free(s->cipher_list); sk_SSL_CIPHER_free(s->cipher_list_by_id); sk_SSL_CIPHER_free(s->tls13_ciphersuites); sk_SSL_CIPHER_free(s->peer_ciphers); /* Make the next call work :-) */ if (s->session != NULL) { ssl_clear_bad_session(s); SSL_SESSION_free(s->session); } SSL_SESSION_free(s->psksession); OPENSSL_free(s->psksession_id); ssl_cert_free(s->cert); OPENSSL_free(s->shared_sigalgs); /* Free up if allocated */ OPENSSL_free(s->ext.hostname); SSL_CTX_free(s->session_ctx); OPENSSL_free(s->ext.ecpointformats); OPENSSL_free(s->ext.peer_ecpointformats); OPENSSL_free(s->ext.supportedgroups); OPENSSL_free(s->ext.peer_supportedgroups); sk_X509_EXTENSION_pop_free(s->ext.ocsp.exts, X509_EXTENSION_free); #ifndef OPENSSL_NO_OCSP sk_OCSP_RESPID_pop_free(s->ext.ocsp.ids, OCSP_RESPID_free); #endif #ifndef OPENSSL_NO_CT SCT_LIST_free(s->scts); OPENSSL_free(s->ext.scts); #endif OPENSSL_free(s->ext.ocsp.resp); OPENSSL_free(s->ext.alpn); OPENSSL_free(s->ext.tls13_cookie); if (s->clienthello != NULL) OPENSSL_free(s->clienthello->pre_proc_exts); OPENSSL_free(s->clienthello); OPENSSL_free(s->pha_context); EVP_MD_CTX_free(s->pha_dgst); sk_X509_NAME_pop_free(s->ca_names, X509_NAME_free); sk_X509_NAME_pop_free(s->client_ca_names, X509_NAME_free); OPENSSL_free(s->client_cert_type); OPENSSL_free(s->server_cert_type); OSSL_STACK_OF_X509_free(s->verified_chain); if (ssl->method != NULL) ssl->method->ssl_deinit(ssl); ASYNC_WAIT_CTX_free(s->waitctx); #if !defined(OPENSSL_NO_NEXTPROTONEG) OPENSSL_free(s->ext.npn); #endif #ifndef OPENSSL_NO_SRTP sk_SRTP_PROTECTION_PROFILE_free(s->srtp_profiles); #endif /* * We do this late. We want to ensure that any other references we held to * these BIOs are freed first *before* we call BIO_free_all(), because * BIO_free_all() will only free each BIO in the chain if the number of * references to the first BIO have dropped to 0 */ BIO_free_all(s->wbio); s->wbio = NULL; BIO_free_all(s->rbio); s->rbio = NULL; OPENSSL_free(s->s3.tmp.valid_flags); } void SSL_set0_rbio(SSL *s, BIO *rbio) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); #ifndef OPENSSL_NO_QUIC if (IS_QUIC(s)) { ossl_quic_conn_set0_net_rbio(s, rbio); return; } #endif if (sc == NULL) return; BIO_free_all(sc->rbio); sc->rbio = rbio; sc->rlayer.rrlmethod->set1_bio(sc->rlayer.rrl, sc->rbio); } void SSL_set0_wbio(SSL *s, BIO *wbio) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); #ifndef OPENSSL_NO_QUIC if (IS_QUIC(s)) { ossl_quic_conn_set0_net_wbio(s, wbio); return; } #endif if (sc == NULL) return; /* * If the output buffering BIO is still in place, remove it */ if (sc->bbio != NULL) sc->wbio = BIO_pop(sc->wbio); BIO_free_all(sc->wbio); sc->wbio = wbio; /* Re-attach |bbio| to the new |wbio|. */ if (sc->bbio != NULL) sc->wbio = BIO_push(sc->bbio, sc->wbio); sc->rlayer.wrlmethod->set1_bio(sc->rlayer.wrl, sc->wbio); } void SSL_set_bio(SSL *s, BIO *rbio, BIO *wbio) { /* * For historical reasons, this function has many different cases in * ownership handling. */ /* If nothing has changed, do nothing */ if (rbio == SSL_get_rbio(s) && wbio == SSL_get_wbio(s)) return; /* * If the two arguments are equal then one fewer reference is granted by the * caller than we want to take */ if (rbio != NULL && rbio == wbio) BIO_up_ref(rbio); /* * If only the wbio is changed only adopt one reference. */ if (rbio == SSL_get_rbio(s)) { SSL_set0_wbio(s, wbio); return; } /* * There is an asymmetry here for historical reasons. If only the rbio is * changed AND the rbio and wbio were originally different, then we only * adopt one reference. */ if (wbio == SSL_get_wbio(s) && SSL_get_rbio(s) != SSL_get_wbio(s)) { SSL_set0_rbio(s, rbio); return; } /* Otherwise, adopt both references. */ SSL_set0_rbio(s, rbio); SSL_set0_wbio(s, wbio); } BIO *SSL_get_rbio(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); #ifndef OPENSSL_NO_QUIC if (IS_QUIC(s)) return ossl_quic_conn_get_net_rbio(s); #endif if (sc == NULL) return NULL; return sc->rbio; } BIO *SSL_get_wbio(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); #ifndef OPENSSL_NO_QUIC if (IS_QUIC(s)) return ossl_quic_conn_get_net_wbio(s); #endif if (sc == NULL) return NULL; if (sc->bbio != NULL) { /* * If |bbio| is active, the true caller-configured BIO is its * |next_bio|. */ return BIO_next(sc->bbio); } return sc->wbio; } int SSL_get_fd(const SSL *s) { return SSL_get_rfd(s); } int SSL_get_rfd(const SSL *s) { int ret = -1; BIO *b, *r; b = SSL_get_rbio(s); r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR); if (r != NULL) BIO_get_fd(r, &ret); return ret; } int SSL_get_wfd(const SSL *s) { int ret = -1; BIO *b, *r; b = SSL_get_wbio(s); r = BIO_find_type(b, BIO_TYPE_DESCRIPTOR); if (r != NULL) BIO_get_fd(r, &ret); return ret; } #ifndef OPENSSL_NO_SOCK static const BIO_METHOD *fd_method(SSL *s) { #ifndef OPENSSL_NO_DGRAM if (IS_QUIC(s)) return BIO_s_datagram(); #endif return BIO_s_socket(); } int SSL_set_fd(SSL *s, int fd) { int ret = 0; BIO *bio = NULL; if (s->type == SSL_TYPE_QUIC_XSO) { ERR_raise(ERR_LIB_SSL, SSL_R_CONN_USE_ONLY); goto err; } bio = BIO_new(fd_method(s)); if (bio == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_BUF_LIB); goto err; } BIO_set_fd(bio, fd, BIO_NOCLOSE); SSL_set_bio(s, bio, bio); #ifndef OPENSSL_NO_KTLS /* * The new socket is created successfully regardless of ktls_enable. * ktls_enable doesn't change any functionality of the socket, except * changing the setsockopt to enable the processing of ktls_start. * Thus, it is not a problem to call it for non-TLS sockets. */ ktls_enable(fd); #endif /* OPENSSL_NO_KTLS */ ret = 1; err: return ret; } int SSL_set_wfd(SSL *s, int fd) { BIO *rbio = SSL_get_rbio(s); int desired_type = IS_QUIC(s) ? BIO_TYPE_DGRAM : BIO_TYPE_SOCKET; if (s->type == SSL_TYPE_QUIC_XSO) { ERR_raise(ERR_LIB_SSL, SSL_R_CONN_USE_ONLY); return 0; } if (rbio == NULL || BIO_method_type(rbio) != desired_type || (int)BIO_get_fd(rbio, NULL) != fd) { BIO *bio = BIO_new(fd_method(s)); if (bio == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_BUF_LIB); return 0; } BIO_set_fd(bio, fd, BIO_NOCLOSE); SSL_set0_wbio(s, bio); #ifndef OPENSSL_NO_KTLS /* * The new socket is created successfully regardless of ktls_enable. * ktls_enable doesn't change any functionality of the socket, except * changing the setsockopt to enable the processing of ktls_start. * Thus, it is not a problem to call it for non-TLS sockets. */ ktls_enable(fd); #endif /* OPENSSL_NO_KTLS */ } else { BIO_up_ref(rbio); SSL_set0_wbio(s, rbio); } return 1; } int SSL_set_rfd(SSL *s, int fd) { BIO *wbio = SSL_get_wbio(s); int desired_type = IS_QUIC(s) ? BIO_TYPE_DGRAM : BIO_TYPE_SOCKET; if (s->type == SSL_TYPE_QUIC_XSO) { ERR_raise(ERR_LIB_SSL, SSL_R_CONN_USE_ONLY); return 0; } if (wbio == NULL || BIO_method_type(wbio) != desired_type || ((int)BIO_get_fd(wbio, NULL) != fd)) { BIO *bio = BIO_new(fd_method(s)); if (bio == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_BUF_LIB); return 0; } BIO_set_fd(bio, fd, BIO_NOCLOSE); SSL_set0_rbio(s, bio); } else { BIO_up_ref(wbio); SSL_set0_rbio(s, wbio); } return 1; } #endif /* return length of latest Finished message we sent, copy to 'buf' */ size_t SSL_get_finished(const SSL *s, void *buf, size_t count) { size_t ret = 0; const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL) return 0; ret = sc->s3.tmp.finish_md_len; if (count > ret) count = ret; memcpy(buf, sc->s3.tmp.finish_md, count); return ret; } /* return length of latest Finished message we expected, copy to 'buf' */ size_t SSL_get_peer_finished(const SSL *s, void *buf, size_t count) { size_t ret = 0; const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL) return 0; ret = sc->s3.tmp.peer_finish_md_len; if (count > ret) count = ret; memcpy(buf, sc->s3.tmp.peer_finish_md, count); return ret; } int SSL_get_verify_mode(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL) return 0; return sc->verify_mode; } int SSL_get_verify_depth(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL) return 0; return X509_VERIFY_PARAM_get_depth(sc->param); } int (*SSL_get_verify_callback(const SSL *s)) (int, X509_STORE_CTX *) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL) return NULL; return sc->verify_callback; } int SSL_CTX_get_verify_mode(const SSL_CTX *ctx) { return ctx->verify_mode; } int SSL_CTX_get_verify_depth(const SSL_CTX *ctx) { return X509_VERIFY_PARAM_get_depth(ctx->param); } int (*SSL_CTX_get_verify_callback(const SSL_CTX *ctx)) (int, X509_STORE_CTX *) { return ctx->default_verify_callback; } void SSL_set_verify(SSL *s, int mode, int (*callback) (int ok, X509_STORE_CTX *ctx)) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return; sc->verify_mode = mode; if (callback != NULL) sc->verify_callback = callback; } void SSL_set_verify_depth(SSL *s, int depth) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return; X509_VERIFY_PARAM_set_depth(sc->param, depth); } void SSL_set_read_ahead(SSL *s, int yes) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL_ONLY(s); OSSL_PARAM options[2], *opts = options; if (sc == NULL) return; RECORD_LAYER_set_read_ahead(&sc->rlayer, yes); *opts++ = OSSL_PARAM_construct_int(OSSL_LIBSSL_RECORD_LAYER_PARAM_READ_AHEAD, &sc->rlayer.read_ahead); *opts = OSSL_PARAM_construct_end(); /* Ignore return value */ sc->rlayer.rrlmethod->set_options(sc->rlayer.rrl, options); } int SSL_get_read_ahead(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL_ONLY(s); if (sc == NULL) return 0; return RECORD_LAYER_get_read_ahead(&sc->rlayer); } int SSL_pending(const SSL *s) { size_t pending = s->method->ssl_pending(s); /* * SSL_pending cannot work properly if read-ahead is enabled * (SSL_[CTX_]ctrl(..., SSL_CTRL_SET_READ_AHEAD, 1, NULL)), and it is * impossible to fix since SSL_pending cannot report errors that may be * observed while scanning the new data. (Note that SSL_pending() is * often used as a boolean value, so we'd better not return -1.) * * SSL_pending also cannot work properly if the value >INT_MAX. In that case * we just return INT_MAX. */ return pending < INT_MAX ? (int)pending : INT_MAX; } int SSL_has_pending(const SSL *s) { /* * Similar to SSL_pending() but returns a 1 to indicate that we have * processed or unprocessed data available or 0 otherwise (as opposed to the * number of bytes available). Unlike SSL_pending() this will take into * account read_ahead data. A 1 return simply indicates that we have data. * That data may not result in any application data, or we may fail to parse * the records for some reason. */ const SSL_CONNECTION *sc; #ifndef OPENSSL_NO_QUIC if (IS_QUIC(s)) return ossl_quic_has_pending(s); #endif sc = SSL_CONNECTION_FROM_CONST_SSL(s); /* Check buffered app data if any first */ if (SSL_CONNECTION_IS_DTLS(sc)) { TLS_RECORD *rdata; pitem *item, *iter; iter = pqueue_iterator(sc->rlayer.d->buffered_app_data.q); while ((item = pqueue_next(&iter)) != NULL) { rdata = item->data; if (rdata->length > 0) return 1; } } if (RECORD_LAYER_processed_read_pending(&sc->rlayer)) return 1; return RECORD_LAYER_read_pending(&sc->rlayer); } X509 *SSL_get1_peer_certificate(const SSL *s) { X509 *r = SSL_get0_peer_certificate(s); if (r != NULL) X509_up_ref(r); return r; } X509 *SSL_get0_peer_certificate(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL) return NULL; if (sc->session == NULL) return NULL; else return sc->session->peer; } STACK_OF(X509) *SSL_get_peer_cert_chain(const SSL *s) { STACK_OF(X509) *r; const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL) return NULL; if (sc->session == NULL) r = NULL; else r = sc->session->peer_chain; /* * If we are a client, cert_chain includes the peer's own certificate; if * we are a server, it does not. */ return r; } /* * Now in theory, since the calling process own 't' it should be safe to * modify. We need to be able to read f without being hassled */ int SSL_copy_session_id(SSL *t, const SSL *f) { int i; /* TODO(QUIC FUTURE): Not allowed for QUIC currently. */ SSL_CONNECTION *tsc = SSL_CONNECTION_FROM_SSL_ONLY(t); const SSL_CONNECTION *fsc = SSL_CONNECTION_FROM_CONST_SSL_ONLY(f); if (tsc == NULL || fsc == NULL) return 0; /* Do we need to do SSL locking? */ if (!SSL_set_session(t, SSL_get_session(f))) { return 0; } /* * what if we are setup for one protocol version but want to talk another */ if (t->method != f->method) { t->method->ssl_deinit(t); t->method = f->method; if (t->method->ssl_init(t) == 0) return 0; } CRYPTO_UP_REF(&fsc->cert->references, &i); ssl_cert_free(tsc->cert); tsc->cert = fsc->cert; if (!SSL_set_session_id_context(t, fsc->sid_ctx, (int)fsc->sid_ctx_length)) { return 0; } return 1; } /* Fix this so it checks all the valid key/cert options */ int SSL_CTX_check_private_key(const SSL_CTX *ctx) { if ((ctx == NULL) || (ctx->cert->key->x509 == NULL)) { ERR_raise(ERR_LIB_SSL, SSL_R_NO_CERTIFICATE_ASSIGNED); return 0; } if (ctx->cert->key->privatekey == NULL) { ERR_raise(ERR_LIB_SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED); return 0; } return X509_check_private_key (ctx->cert->key->x509, ctx->cert->key->privatekey); } /* Fix this function so that it takes an optional type parameter */ int SSL_check_private_key(const SSL *ssl) { const SSL_CONNECTION *sc; if ((sc = SSL_CONNECTION_FROM_CONST_SSL(ssl)) == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_PASSED_NULL_PARAMETER); return 0; } if (sc->cert->key->x509 == NULL) { ERR_raise(ERR_LIB_SSL, SSL_R_NO_CERTIFICATE_ASSIGNED); return 0; } if (sc->cert->key->privatekey == NULL) { ERR_raise(ERR_LIB_SSL, SSL_R_NO_PRIVATE_KEY_ASSIGNED); return 0; } return X509_check_private_key(sc->cert->key->x509, sc->cert->key->privatekey); } int SSL_waiting_for_async(SSL *s) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; if (sc->job) return 1; return 0; } int SSL_get_all_async_fds(SSL *s, OSSL_ASYNC_FD *fds, size_t *numfds) { ASYNC_WAIT_CTX *ctx; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; if ((ctx = sc->waitctx) == NULL) return 0; return ASYNC_WAIT_CTX_get_all_fds(ctx, fds, numfds); } int SSL_get_changed_async_fds(SSL *s, OSSL_ASYNC_FD *addfd, size_t *numaddfds, OSSL_ASYNC_FD *delfd, size_t *numdelfds) { ASYNC_WAIT_CTX *ctx; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; if ((ctx = sc->waitctx) == NULL) return 0; return ASYNC_WAIT_CTX_get_changed_fds(ctx, addfd, numaddfds, delfd, numdelfds); } int SSL_CTX_set_async_callback(SSL_CTX *ctx, SSL_async_callback_fn callback) { ctx->async_cb = callback; return 1; } int SSL_CTX_set_async_callback_arg(SSL_CTX *ctx, void *arg) { ctx->async_cb_arg = arg; return 1; } int SSL_set_async_callback(SSL *s, SSL_async_callback_fn callback) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; sc->async_cb = callback; return 1; } int SSL_set_async_callback_arg(SSL *s, void *arg) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; sc->async_cb_arg = arg; return 1; } int SSL_get_async_status(SSL *s, int *status) { ASYNC_WAIT_CTX *ctx; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; if ((ctx = sc->waitctx) == NULL) return 0; *status = ASYNC_WAIT_CTX_get_status(ctx); return 1; } int SSL_accept(SSL *s) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); #ifndef OPENSSL_NO_QUIC if (IS_QUIC(s)) return s->method->ssl_accept(s); #endif if (sc == NULL) return 0; if (sc->handshake_func == NULL) { /* Not properly initialized yet */ SSL_set_accept_state(s); } return SSL_do_handshake(s); } int SSL_connect(SSL *s) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); #ifndef OPENSSL_NO_QUIC if (IS_QUIC(s)) return s->method->ssl_connect(s); #endif if (sc == NULL) return 0; if (sc->handshake_func == NULL) { /* Not properly initialized yet */ SSL_set_connect_state(s); } return SSL_do_handshake(s); } long SSL_get_default_timeout(const SSL *s) { return (long int)ossl_time2seconds(s->method->get_timeout()); } static int ssl_async_wait_ctx_cb(void *arg) { SSL *s = (SSL *)arg; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; return sc->async_cb(s, sc->async_cb_arg); } static int ssl_start_async_job(SSL *s, struct ssl_async_args *args, int (*func) (void *)) { int ret; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; if (sc->waitctx == NULL) { sc->waitctx = ASYNC_WAIT_CTX_new(); if (sc->waitctx == NULL) return -1; if (sc->async_cb != NULL && !ASYNC_WAIT_CTX_set_callback (sc->waitctx, ssl_async_wait_ctx_cb, s)) return -1; } sc->rwstate = SSL_NOTHING; switch (ASYNC_start_job(&sc->job, sc->waitctx, &ret, func, args, sizeof(struct ssl_async_args))) { case ASYNC_ERR: sc->rwstate = SSL_NOTHING; ERR_raise(ERR_LIB_SSL, SSL_R_FAILED_TO_INIT_ASYNC); return -1; case ASYNC_PAUSE: sc->rwstate = SSL_ASYNC_PAUSED; return -1; case ASYNC_NO_JOBS: sc->rwstate = SSL_ASYNC_NO_JOBS; return -1; case ASYNC_FINISH: sc->job = NULL; return ret; default: sc->rwstate = SSL_NOTHING; ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR); /* Shouldn't happen */ return -1; } } static int ssl_io_intern(void *vargs) { struct ssl_async_args *args; SSL *s; void *buf; size_t num; SSL_CONNECTION *sc; args = (struct ssl_async_args *)vargs; s = args->s; buf = args->buf; num = args->num; if ((sc = SSL_CONNECTION_FROM_SSL(s)) == NULL) return -1; switch (args->type) { case READFUNC: return args->f.func_read(s, buf, num, &sc->asyncrw); case WRITEFUNC: return args->f.func_write(s, buf, num, &sc->asyncrw); case OTHERFUNC: return args->f.func_other(s); } return -1; } int ssl_read_internal(SSL *s, void *buf, size_t num, size_t *readbytes) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); #ifndef OPENSSL_NO_QUIC if (IS_QUIC(s)) return s->method->ssl_read(s, buf, num, readbytes); #endif if (sc == NULL) return -1; if (sc->handshake_func == NULL) { ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED); return -1; } if (sc->shutdown & SSL_RECEIVED_SHUTDOWN) { sc->rwstate = SSL_NOTHING; return 0; } if (sc->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY || sc->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY) { ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } /* * If we are a client and haven't received the ServerHello etc then we * better do that */ ossl_statem_check_finish_init(sc, 0); if ((sc->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { struct ssl_async_args args; int ret; args.s = s; args.buf = buf; args.num = num; args.type = READFUNC; args.f.func_read = s->method->ssl_read; ret = ssl_start_async_job(s, &args, ssl_io_intern); *readbytes = sc->asyncrw; return ret; } else { return s->method->ssl_read(s, buf, num, readbytes); } } int SSL_read(SSL *s, void *buf, int num) { int ret; size_t readbytes; if (num < 0) { ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH); return -1; } ret = ssl_read_internal(s, buf, (size_t)num, &readbytes); /* * The cast is safe here because ret should be <= INT_MAX because num is * <= INT_MAX */ if (ret > 0) ret = (int)readbytes; return ret; } int SSL_read_ex(SSL *s, void *buf, size_t num, size_t *readbytes) { int ret = ssl_read_internal(s, buf, num, readbytes); if (ret < 0) ret = 0; return ret; } int SSL_read_early_data(SSL *s, void *buf, size_t num, size_t *readbytes) { int ret; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL_ONLY(s); /* TODO(QUIC 0RTT): 0-RTT support */ if (sc == NULL || !sc->server) { ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return SSL_READ_EARLY_DATA_ERROR; } switch (sc->early_data_state) { case SSL_EARLY_DATA_NONE: if (!SSL_in_before(s)) { ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return SSL_READ_EARLY_DATA_ERROR; } /* fall through */ case SSL_EARLY_DATA_ACCEPT_RETRY: sc->early_data_state = SSL_EARLY_DATA_ACCEPTING; ret = SSL_accept(s); if (ret <= 0) { /* NBIO or error */ sc->early_data_state = SSL_EARLY_DATA_ACCEPT_RETRY; return SSL_READ_EARLY_DATA_ERROR; } /* fall through */ case SSL_EARLY_DATA_READ_RETRY: if (sc->ext.early_data == SSL_EARLY_DATA_ACCEPTED) { sc->early_data_state = SSL_EARLY_DATA_READING; ret = SSL_read_ex(s, buf, num, readbytes); /* * State machine will update early_data_state to * SSL_EARLY_DATA_FINISHED_READING if we get an EndOfEarlyData * message */ if (ret > 0 || (ret <= 0 && sc->early_data_state != SSL_EARLY_DATA_FINISHED_READING)) { sc->early_data_state = SSL_EARLY_DATA_READ_RETRY; return ret > 0 ? SSL_READ_EARLY_DATA_SUCCESS : SSL_READ_EARLY_DATA_ERROR; } } else { sc->early_data_state = SSL_EARLY_DATA_FINISHED_READING; } *readbytes = 0; return SSL_READ_EARLY_DATA_FINISH; default: ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return SSL_READ_EARLY_DATA_ERROR; } } int SSL_get_early_data_status(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL_ONLY(s); /* TODO(QUIC 0RTT): 0-RTT support */ if (sc == NULL) return 0; return sc->ext.early_data; } static int ssl_peek_internal(SSL *s, void *buf, size_t num, size_t *readbytes) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); #ifndef OPENSSL_NO_QUIC if (IS_QUIC(s)) return s->method->ssl_peek(s, buf, num, readbytes); #endif if (sc == NULL) return 0; if (sc->handshake_func == NULL) { ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED); return -1; } if (sc->shutdown & SSL_RECEIVED_SHUTDOWN) { return 0; } if ((sc->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { struct ssl_async_args args; int ret; args.s = s; args.buf = buf; args.num = num; args.type = READFUNC; args.f.func_read = s->method->ssl_peek; ret = ssl_start_async_job(s, &args, ssl_io_intern); *readbytes = sc->asyncrw; return ret; } else { return s->method->ssl_peek(s, buf, num, readbytes); } } int SSL_peek(SSL *s, void *buf, int num) { int ret; size_t readbytes; if (num < 0) { ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH); return -1; } ret = ssl_peek_internal(s, buf, (size_t)num, &readbytes); /* * The cast is safe here because ret should be <= INT_MAX because num is * <= INT_MAX */ if (ret > 0) ret = (int)readbytes; return ret; } int SSL_peek_ex(SSL *s, void *buf, size_t num, size_t *readbytes) { int ret = ssl_peek_internal(s, buf, num, readbytes); if (ret < 0) ret = 0; return ret; } int ssl_write_internal(SSL *s, const void *buf, size_t num, uint64_t flags, size_t *written) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); #ifndef OPENSSL_NO_QUIC if (IS_QUIC(s)) return ossl_quic_write_flags(s, buf, num, flags, written); #endif if (sc == NULL) return 0; if (sc->handshake_func == NULL) { ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED); return -1; } if (sc->shutdown & SSL_SENT_SHUTDOWN) { sc->rwstate = SSL_NOTHING; ERR_raise(ERR_LIB_SSL, SSL_R_PROTOCOL_IS_SHUTDOWN); return -1; } if (flags != 0) { ERR_raise(ERR_LIB_SSL, SSL_R_UNSUPPORTED_WRITE_FLAG); return -1; } if (sc->early_data_state == SSL_EARLY_DATA_CONNECT_RETRY || sc->early_data_state == SSL_EARLY_DATA_ACCEPT_RETRY || sc->early_data_state == SSL_EARLY_DATA_READ_RETRY) { ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } /* If we are a client and haven't sent the Finished we better do that */ ossl_statem_check_finish_init(sc, 1); if ((sc->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { int ret; struct ssl_async_args args; args.s = s; args.buf = (void *)buf; args.num = num; args.type = WRITEFUNC; args.f.func_write = s->method->ssl_write; ret = ssl_start_async_job(s, &args, ssl_io_intern); *written = sc->asyncrw; return ret; } else { return s->method->ssl_write(s, buf, num, written); } } ossl_ssize_t SSL_sendfile(SSL *s, int fd, off_t offset, size_t size, int flags) { ossl_ssize_t ret; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL_ONLY(s); if (sc == NULL) return 0; if (sc->handshake_func == NULL) { ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED); return -1; } if (sc->shutdown & SSL_SENT_SHUTDOWN) { sc->rwstate = SSL_NOTHING; ERR_raise(ERR_LIB_SSL, SSL_R_PROTOCOL_IS_SHUTDOWN); return -1; } if (!BIO_get_ktls_send(sc->wbio)) { ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED); return -1; } /* If we have an alert to send, lets send it */ if (sc->s3.alert_dispatch > 0) { ret = (ossl_ssize_t)s->method->ssl_dispatch_alert(s); if (ret <= 0) { /* SSLfatal() already called if appropriate */ return ret; } /* if it went, fall through and send more stuff */ } sc->rwstate = SSL_WRITING; if (BIO_flush(sc->wbio) <= 0) { if (!BIO_should_retry(sc->wbio)) { sc->rwstate = SSL_NOTHING; } else { #ifdef EAGAIN set_sys_error(EAGAIN); #endif } return -1; } #ifdef OPENSSL_NO_KTLS ERR_raise_data(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR, "can't call ktls_sendfile(), ktls disabled"); return -1; #else ret = ktls_sendfile(SSL_get_wfd(s), fd, offset, size, flags); if (ret < 0) { #if defined(EAGAIN) && defined(EINTR) && defined(EBUSY) if ((get_last_sys_error() == EAGAIN) || (get_last_sys_error() == EINTR) || (get_last_sys_error() == EBUSY)) BIO_set_retry_write(sc->wbio); else #endif ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED); return ret; } sc->rwstate = SSL_NOTHING; return ret; #endif } int SSL_write(SSL *s, const void *buf, int num) { int ret; size_t written; if (num < 0) { ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH); return -1; } ret = ssl_write_internal(s, buf, (size_t)num, 0, &written); /* * The cast is safe here because ret should be <= INT_MAX because num is * <= INT_MAX */ if (ret > 0) ret = (int)written; return ret; } int SSL_write_ex(SSL *s, const void *buf, size_t num, size_t *written) { return SSL_write_ex2(s, buf, num, 0, written); } int SSL_write_ex2(SSL *s, const void *buf, size_t num, uint64_t flags, size_t *written) { int ret = ssl_write_internal(s, buf, num, flags, written); if (ret < 0) ret = 0; return ret; } int SSL_write_early_data(SSL *s, const void *buf, size_t num, size_t *written) { int ret, early_data_state; size_t writtmp; uint32_t partialwrite; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL_ONLY(s); /* TODO(QUIC 0RTT): This will need special handling for QUIC */ if (sc == NULL) return 0; switch (sc->early_data_state) { case SSL_EARLY_DATA_NONE: if (sc->server || !SSL_in_before(s) || ((sc->session == NULL || sc->session->ext.max_early_data == 0) && (sc->psk_use_session_cb == NULL))) { ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } /* fall through */ case SSL_EARLY_DATA_CONNECT_RETRY: sc->early_data_state = SSL_EARLY_DATA_CONNECTING; ret = SSL_connect(s); if (ret <= 0) { /* NBIO or error */ sc->early_data_state = SSL_EARLY_DATA_CONNECT_RETRY; return 0; } /* fall through */ case SSL_EARLY_DATA_WRITE_RETRY: sc->early_data_state = SSL_EARLY_DATA_WRITING; /* * We disable partial write for early data because we don't keep track * of how many bytes we've written between the SSL_write_ex() call and * the flush if the flush needs to be retried) */ partialwrite = sc->mode & SSL_MODE_ENABLE_PARTIAL_WRITE; sc->mode &= ~SSL_MODE_ENABLE_PARTIAL_WRITE; ret = SSL_write_ex(s, buf, num, &writtmp); sc->mode |= partialwrite; if (!ret) { sc->early_data_state = SSL_EARLY_DATA_WRITE_RETRY; return ret; } sc->early_data_state = SSL_EARLY_DATA_WRITE_FLUSH; /* fall through */ case SSL_EARLY_DATA_WRITE_FLUSH: /* The buffering BIO is still in place so we need to flush it */ if (statem_flush(sc) != 1) return 0; *written = num; sc->early_data_state = SSL_EARLY_DATA_WRITE_RETRY; return 1; case SSL_EARLY_DATA_FINISHED_READING: case SSL_EARLY_DATA_READ_RETRY: early_data_state = sc->early_data_state; /* We are a server writing to an unauthenticated client */ sc->early_data_state = SSL_EARLY_DATA_UNAUTH_WRITING; ret = SSL_write_ex(s, buf, num, written); /* The buffering BIO is still in place */ if (ret) (void)BIO_flush(sc->wbio); sc->early_data_state = early_data_state; return ret; default: ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } } int SSL_shutdown(SSL *s) { /* * Note that this function behaves differently from what one might * expect. Return values are 0 for no success (yet), 1 for success; but * calling it once is usually not enough, even if blocking I/O is used * (see ssl3_shutdown). */ SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); #ifndef OPENSSL_NO_QUIC if (IS_QUIC(s)) return ossl_quic_conn_shutdown(s, 0, NULL, 0); #endif if (sc == NULL) return -1; if (sc->handshake_func == NULL) { ERR_raise(ERR_LIB_SSL, SSL_R_UNINITIALIZED); return -1; } if (!SSL_in_init(s)) { if ((sc->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { struct ssl_async_args args; memset(&args, 0, sizeof(args)); args.s = s; args.type = OTHERFUNC; args.f.func_other = s->method->ssl_shutdown; return ssl_start_async_job(s, &args, ssl_io_intern); } else { return s->method->ssl_shutdown(s); } } else { ERR_raise(ERR_LIB_SSL, SSL_R_SHUTDOWN_WHILE_IN_INIT); return -1; } } int SSL_key_update(SSL *s, int updatetype) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); #ifndef OPENSSL_NO_QUIC if (IS_QUIC(s)) return ossl_quic_key_update(s, updatetype); #endif if (sc == NULL) return 0; if (!SSL_CONNECTION_IS_TLS13(sc)) { ERR_raise(ERR_LIB_SSL, SSL_R_WRONG_SSL_VERSION); return 0; } if (updatetype != SSL_KEY_UPDATE_NOT_REQUESTED && updatetype != SSL_KEY_UPDATE_REQUESTED) { ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_KEY_UPDATE_TYPE); return 0; } if (!SSL_is_init_finished(s)) { ERR_raise(ERR_LIB_SSL, SSL_R_STILL_IN_INIT); return 0; } if (RECORD_LAYER_write_pending(&sc->rlayer)) { ERR_raise(ERR_LIB_SSL, SSL_R_BAD_WRITE_RETRY); return 0; } ossl_statem_set_in_init(sc, 1); sc->key_update = updatetype; return 1; } int SSL_get_key_update_type(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); #ifndef OPENSSL_NO_QUIC if (IS_QUIC(s)) return ossl_quic_get_key_update_type(s); #endif if (sc == NULL) return 0; return sc->key_update; } /* * Can we accept a renegotiation request? If yes, set the flag and * return 1 if yes. If not, raise error and return 0. */ static int can_renegotiate(const SSL_CONNECTION *sc) { if (SSL_CONNECTION_IS_TLS13(sc)) { ERR_raise(ERR_LIB_SSL, SSL_R_WRONG_SSL_VERSION); return 0; } if ((sc->options & SSL_OP_NO_RENEGOTIATION) != 0) { ERR_raise(ERR_LIB_SSL, SSL_R_NO_RENEGOTIATION); return 0; } return 1; } int SSL_renegotiate(SSL *s) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL_ONLY(s); if (sc == NULL) return 0; if (!can_renegotiate(sc)) return 0; sc->renegotiate = 1; sc->new_session = 1; return s->method->ssl_renegotiate(s); } int SSL_renegotiate_abbreviated(SSL *s) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL_ONLY(s); if (sc == NULL) return 0; if (!can_renegotiate(sc)) return 0; sc->renegotiate = 1; sc->new_session = 0; return s->method->ssl_renegotiate(s); } int SSL_renegotiate_pending(const SSL *s) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL_ONLY(s); if (sc == NULL) return 0; /* * becomes true when negotiation is requested; false again once a * handshake has finished */ return (sc->renegotiate != 0); } int SSL_new_session_ticket(SSL *s) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; /* If we are in init because we're sending tickets, okay to send more. */ if ((SSL_in_init(s) && sc->ext.extra_tickets_expected == 0) || SSL_IS_FIRST_HANDSHAKE(sc) || !sc->server || !SSL_CONNECTION_IS_TLS13(sc)) return 0; sc->ext.extra_tickets_expected++; if (!RECORD_LAYER_write_pending(&sc->rlayer) && !SSL_in_init(s)) ossl_statem_set_in_init(sc, 1); return 1; } long SSL_ctrl(SSL *s, int cmd, long larg, void *parg) { return ossl_ctrl_internal(s, cmd, larg, parg, /*no_quic=*/0); } long ossl_ctrl_internal(SSL *s, int cmd, long larg, void *parg, int no_quic) { long l; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; /* * Routing of ctrl calls for QUIC is a little counterintuitive: * * - Firstly (no_quic=0), we pass the ctrl directly to our QUIC * implementation in case it wants to handle the ctrl specially. * * - If our QUIC implementation does not care about the ctrl, it * will reenter this function with no_quic=1 and we will try to handle * it directly using the QCSO SSL object stub (not the handshake layer * SSL object). This is important for e.g. the version configuration * ctrls below, which must use s->defltmeth (and not sc->defltmeth). * * - If we don't handle a ctrl here specially, then processing is * redirected to the handshake layer SSL object. */ if (!no_quic && IS_QUIC(s)) return s->method->ssl_ctrl(s, cmd, larg, parg); switch (cmd) { case SSL_CTRL_GET_READ_AHEAD: return RECORD_LAYER_get_read_ahead(&sc->rlayer); case SSL_CTRL_SET_READ_AHEAD: l = RECORD_LAYER_get_read_ahead(&sc->rlayer); RECORD_LAYER_set_read_ahead(&sc->rlayer, larg); return l; case SSL_CTRL_MODE: { OSSL_PARAM options[2], *opts = options; sc->mode |= larg; *opts++ = OSSL_PARAM_construct_uint32(OSSL_LIBSSL_RECORD_LAYER_PARAM_MODE, &sc->mode); *opts = OSSL_PARAM_construct_end(); /* Ignore return value */ sc->rlayer.rrlmethod->set_options(sc->rlayer.rrl, options); return sc->mode; } case SSL_CTRL_CLEAR_MODE: return (sc->mode &= ~larg); case SSL_CTRL_GET_MAX_CERT_LIST: return (long)sc->max_cert_list; case SSL_CTRL_SET_MAX_CERT_LIST: if (larg < 0) return 0; l = (long)sc->max_cert_list; sc->max_cert_list = (size_t)larg; return l; case SSL_CTRL_SET_MAX_SEND_FRAGMENT: if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH) return 0; #ifndef OPENSSL_NO_KTLS if (sc->wbio != NULL && BIO_get_ktls_send(sc->wbio)) return 0; #endif /* OPENSSL_NO_KTLS */ sc->max_send_fragment = larg; if (sc->max_send_fragment < sc->split_send_fragment) sc->split_send_fragment = sc->max_send_fragment; sc->rlayer.wrlmethod->set_max_frag_len(sc->rlayer.wrl, larg); return 1; case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT: if ((size_t)larg > sc->max_send_fragment || larg == 0) return 0; sc->split_send_fragment = larg; return 1; case SSL_CTRL_SET_MAX_PIPELINES: if (larg < 1 || larg > SSL_MAX_PIPELINES) return 0; sc->max_pipelines = larg; if (sc->rlayer.rrlmethod->set_max_pipelines != NULL) sc->rlayer.rrlmethod->set_max_pipelines(sc->rlayer.rrl, (size_t)larg); return 1; case SSL_CTRL_GET_RI_SUPPORT: return sc->s3.send_connection_binding; case SSL_CTRL_SET_RETRY_VERIFY: sc->rwstate = SSL_RETRY_VERIFY; return 1; case SSL_CTRL_CERT_FLAGS: return (sc->cert->cert_flags |= larg); case SSL_CTRL_CLEAR_CERT_FLAGS: return (sc->cert->cert_flags &= ~larg); case SSL_CTRL_GET_RAW_CIPHERLIST: if (parg) { if (sc->s3.tmp.ciphers_raw == NULL) return 0; *(unsigned char **)parg = sc->s3.tmp.ciphers_raw; return (int)sc->s3.tmp.ciphers_rawlen; } else { return TLS_CIPHER_LEN; } case SSL_CTRL_GET_EXTMS_SUPPORT: if (!sc->session || SSL_in_init(s) || ossl_statem_get_in_handshake(sc)) return -1; if (sc->session->flags & SSL_SESS_FLAG_EXTMS) return 1; else return 0; case SSL_CTRL_SET_MIN_PROTO_VERSION: return ssl_check_allowed_versions(larg, sc->max_proto_version) && ssl_set_version_bound(s->defltmeth->version, (int)larg, &sc->min_proto_version); case SSL_CTRL_GET_MIN_PROTO_VERSION: return sc->min_proto_version; case SSL_CTRL_SET_MAX_PROTO_VERSION: return ssl_check_allowed_versions(sc->min_proto_version, larg) && ssl_set_version_bound(s->defltmeth->version, (int)larg, &sc->max_proto_version); case SSL_CTRL_GET_MAX_PROTO_VERSION: return sc->max_proto_version; default: if (IS_QUIC(s)) return SSL_ctrl((SSL *)sc, cmd, larg, parg); else return s->method->ssl_ctrl(s, cmd, larg, parg); } } long SSL_callback_ctrl(SSL *s, int cmd, void (*fp) (void)) { return s->method->ssl_callback_ctrl(s, cmd, fp); } LHASH_OF(SSL_SESSION) *SSL_CTX_sessions(SSL_CTX *ctx) { return ctx->sessions; } static int ssl_tsan_load(SSL_CTX *ctx, TSAN_QUALIFIER int *stat) { int res = 0; if (ssl_tsan_lock(ctx)) { res = tsan_load(stat); ssl_tsan_unlock(ctx); } return res; } long SSL_CTX_ctrl(SSL_CTX *ctx, int cmd, long larg, void *parg) { long l; /* For some cases with ctx == NULL perform syntax checks */ if (ctx == NULL) { switch (cmd) { case SSL_CTRL_SET_GROUPS_LIST: return tls1_set_groups_list(ctx, NULL, NULL, parg); case SSL_CTRL_SET_SIGALGS_LIST: case SSL_CTRL_SET_CLIENT_SIGALGS_LIST: return tls1_set_sigalgs_list(NULL, parg, 0); default: return 0; } } switch (cmd) { case SSL_CTRL_GET_READ_AHEAD: return ctx->read_ahead; case SSL_CTRL_SET_READ_AHEAD: l = ctx->read_ahead; ctx->read_ahead = larg; return l; case SSL_CTRL_SET_MSG_CALLBACK_ARG: ctx->msg_callback_arg = parg; return 1; case SSL_CTRL_GET_MAX_CERT_LIST: return (long)ctx->max_cert_list; case SSL_CTRL_SET_MAX_CERT_LIST: if (larg < 0) return 0; l = (long)ctx->max_cert_list; ctx->max_cert_list = (size_t)larg; return l; case SSL_CTRL_SET_SESS_CACHE_SIZE: if (larg < 0) return 0; l = (long)ctx->session_cache_size; ctx->session_cache_size = (size_t)larg; return l; case SSL_CTRL_GET_SESS_CACHE_SIZE: return (long)ctx->session_cache_size; case SSL_CTRL_SET_SESS_CACHE_MODE: l = ctx->session_cache_mode; ctx->session_cache_mode = larg; return l; case SSL_CTRL_GET_SESS_CACHE_MODE: return ctx->session_cache_mode; case SSL_CTRL_SESS_NUMBER: return lh_SSL_SESSION_num_items(ctx->sessions); case SSL_CTRL_SESS_CONNECT: return ssl_tsan_load(ctx, &ctx->stats.sess_connect); case SSL_CTRL_SESS_CONNECT_GOOD: return ssl_tsan_load(ctx, &ctx->stats.sess_connect_good); case SSL_CTRL_SESS_CONNECT_RENEGOTIATE: return ssl_tsan_load(ctx, &ctx->stats.sess_connect_renegotiate); case SSL_CTRL_SESS_ACCEPT: return ssl_tsan_load(ctx, &ctx->stats.sess_accept); case SSL_CTRL_SESS_ACCEPT_GOOD: return ssl_tsan_load(ctx, &ctx->stats.sess_accept_good); case SSL_CTRL_SESS_ACCEPT_RENEGOTIATE: return ssl_tsan_load(ctx, &ctx->stats.sess_accept_renegotiate); case SSL_CTRL_SESS_HIT: return ssl_tsan_load(ctx, &ctx->stats.sess_hit); case SSL_CTRL_SESS_CB_HIT: return ssl_tsan_load(ctx, &ctx->stats.sess_cb_hit); case SSL_CTRL_SESS_MISSES: return ssl_tsan_load(ctx, &ctx->stats.sess_miss); case SSL_CTRL_SESS_TIMEOUTS: return ssl_tsan_load(ctx, &ctx->stats.sess_timeout); case SSL_CTRL_SESS_CACHE_FULL: return ssl_tsan_load(ctx, &ctx->stats.sess_cache_full); case SSL_CTRL_MODE: return (ctx->mode |= larg); case SSL_CTRL_CLEAR_MODE: return (ctx->mode &= ~larg); case SSL_CTRL_SET_MAX_SEND_FRAGMENT: if (larg < 512 || larg > SSL3_RT_MAX_PLAIN_LENGTH) return 0; ctx->max_send_fragment = larg; if (ctx->max_send_fragment < ctx->split_send_fragment) ctx->split_send_fragment = ctx->max_send_fragment; return 1; case SSL_CTRL_SET_SPLIT_SEND_FRAGMENT: if ((size_t)larg > ctx->max_send_fragment || larg == 0) return 0; ctx->split_send_fragment = larg; return 1; case SSL_CTRL_SET_MAX_PIPELINES: if (larg < 1 || larg > SSL_MAX_PIPELINES) return 0; ctx->max_pipelines = larg; return 1; case SSL_CTRL_CERT_FLAGS: return (ctx->cert->cert_flags |= larg); case SSL_CTRL_CLEAR_CERT_FLAGS: return (ctx->cert->cert_flags &= ~larg); case SSL_CTRL_SET_MIN_PROTO_VERSION: return ssl_check_allowed_versions(larg, ctx->max_proto_version) && ssl_set_version_bound(ctx->method->version, (int)larg, &ctx->min_proto_version); case SSL_CTRL_GET_MIN_PROTO_VERSION: return ctx->min_proto_version; case SSL_CTRL_SET_MAX_PROTO_VERSION: return ssl_check_allowed_versions(ctx->min_proto_version, larg) && ssl_set_version_bound(ctx->method->version, (int)larg, &ctx->max_proto_version); case SSL_CTRL_GET_MAX_PROTO_VERSION: return ctx->max_proto_version; default: return ctx->method->ssl_ctx_ctrl(ctx, cmd, larg, parg); } } long SSL_CTX_callback_ctrl(SSL_CTX *ctx, int cmd, void (*fp) (void)) { switch (cmd) { case SSL_CTRL_SET_MSG_CALLBACK: ctx->msg_callback = (void (*) (int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg))(fp); return 1; default: return ctx->method->ssl_ctx_callback_ctrl(ctx, cmd, fp); } } int ssl_cipher_id_cmp(const SSL_CIPHER *a, const SSL_CIPHER *b) { if (a->id > b->id) return 1; if (a->id < b->id) return -1; return 0; } int ssl_cipher_ptr_id_cmp(const SSL_CIPHER *const *ap, const SSL_CIPHER *const *bp) { if ((*ap)->id > (*bp)->id) return 1; if ((*ap)->id < (*bp)->id) return -1; return 0; } /* * return a STACK of the ciphers available for the SSL and in order of * preference */ STACK_OF(SSL_CIPHER) *SSL_get_ciphers(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc != NULL) { if (sc->cipher_list != NULL) { return sc->cipher_list; } else if ((s->ctx != NULL) && (s->ctx->cipher_list != NULL)) { return s->ctx->cipher_list; } } return NULL; } STACK_OF(SSL_CIPHER) *SSL_get_client_ciphers(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL || !sc->server) return NULL; return sc->peer_ciphers; } STACK_OF(SSL_CIPHER) *SSL_get1_supported_ciphers(SSL *s) { STACK_OF(SSL_CIPHER) *sk = NULL, *ciphers; int i; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return NULL; ciphers = SSL_get_ciphers(s); if (!ciphers) return NULL; if (!ssl_set_client_disabled(sc)) return NULL; for (i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) { const SSL_CIPHER *c = sk_SSL_CIPHER_value(ciphers, i); if (!ssl_cipher_disabled(sc, c, SSL_SECOP_CIPHER_SUPPORTED, 0)) { if (!sk) sk = sk_SSL_CIPHER_new_null(); if (!sk) return NULL; if (!sk_SSL_CIPHER_push(sk, c)) { sk_SSL_CIPHER_free(sk); return NULL; } } } return sk; } /** return a STACK of the ciphers available for the SSL and in order of * algorithm id */ STACK_OF(SSL_CIPHER) *ssl_get_ciphers_by_id(SSL_CONNECTION *s) { if (s != NULL) { if (s->cipher_list_by_id != NULL) return s->cipher_list_by_id; else if (s->ssl.ctx != NULL && s->ssl.ctx->cipher_list_by_id != NULL) return s->ssl.ctx->cipher_list_by_id; } return NULL; } /** The old interface to get the same thing as SSL_get_ciphers() */ const char *SSL_get_cipher_list(const SSL *s, int n) { const SSL_CIPHER *c; STACK_OF(SSL_CIPHER) *sk; if (s == NULL) return NULL; sk = SSL_get_ciphers(s); if ((sk == NULL) || (sk_SSL_CIPHER_num(sk) <= n)) return NULL; c = sk_SSL_CIPHER_value(sk, n); if (c == NULL) return NULL; return c->name; } /** return a STACK of the ciphers available for the SSL_CTX and in order of * preference */ STACK_OF(SSL_CIPHER) *SSL_CTX_get_ciphers(const SSL_CTX *ctx) { if (ctx != NULL) return ctx->cipher_list; return NULL; } /* * Distinguish between ciphers controlled by set_ciphersuite() and * set_cipher_list() when counting. */ static int cipher_list_tls12_num(STACK_OF(SSL_CIPHER) *sk) { int i, num = 0; const SSL_CIPHER *c; if (sk == NULL) return 0; for (i = 0; i < sk_SSL_CIPHER_num(sk); ++i) { c = sk_SSL_CIPHER_value(sk, i); if (c->min_tls >= TLS1_3_VERSION) continue; num++; } return num; } /** specify the ciphers to be used by default by the SSL_CTX */ int SSL_CTX_set_cipher_list(SSL_CTX *ctx, const char *str) { STACK_OF(SSL_CIPHER) *sk; sk = ssl_create_cipher_list(ctx, ctx->tls13_ciphersuites, &ctx->cipher_list, &ctx->cipher_list_by_id, str, ctx->cert); /* * ssl_create_cipher_list may return an empty stack if it was unable to * find a cipher matching the given rule string (for example if the rule * string specifies a cipher which has been disabled). This is not an * error as far as ssl_create_cipher_list is concerned, and hence * ctx->cipher_list and ctx->cipher_list_by_id has been updated. */ if (sk == NULL) return 0; else if (cipher_list_tls12_num(sk) == 0) { ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH); return 0; } return 1; } /** specify the ciphers to be used by the SSL */ int SSL_set_cipher_list(SSL *s, const char *str) { STACK_OF(SSL_CIPHER) *sk; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; sk = ssl_create_cipher_list(s->ctx, sc->tls13_ciphersuites, &sc->cipher_list, &sc->cipher_list_by_id, str, sc->cert); /* see comment in SSL_CTX_set_cipher_list */ if (sk == NULL) return 0; else if (cipher_list_tls12_num(sk) == 0) { ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHER_MATCH); return 0; } return 1; } char *SSL_get_shared_ciphers(const SSL *s, char *buf, int size) { char *p; STACK_OF(SSL_CIPHER) *clntsk, *srvrsk; const SSL_CIPHER *c; int i; const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL) return NULL; if (!sc->server || sc->peer_ciphers == NULL || size < 2) return NULL; p = buf; clntsk = sc->peer_ciphers; srvrsk = SSL_get_ciphers(s); if (clntsk == NULL || srvrsk == NULL) return NULL; if (sk_SSL_CIPHER_num(clntsk) == 0 || sk_SSL_CIPHER_num(srvrsk) == 0) return NULL; for (i = 0; i < sk_SSL_CIPHER_num(clntsk); i++) { int n; c = sk_SSL_CIPHER_value(clntsk, i); if (sk_SSL_CIPHER_find(srvrsk, c) < 0) continue; n = OPENSSL_strnlen(c->name, size); if (n >= size) { if (p != buf) --p; *p = '\0'; return buf; } memcpy(p, c->name, n); p += n; *(p++) = ':'; size -= n + 1; } p[-1] = '\0'; return buf; } /** * Return the requested servername (SNI) value. Note that the behaviour varies * depending on: * - whether this is called by the client or the server, * - if we are before or during/after the handshake, * - if a resumption or normal handshake is being attempted/has occurred * - whether we have negotiated TLSv1.2 (or below) or TLSv1.3 * * Note that only the host_name type is defined (RFC 3546). */ const char *SSL_get_servername(const SSL *s, const int type) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); int server; if (sc == NULL) return NULL; /* * If we don't know if we are the client or the server yet then we assume * client. */ server = sc->handshake_func == NULL ? 0 : sc->server; if (type != TLSEXT_NAMETYPE_host_name) return NULL; if (server) { /** * Server side * In TLSv1.3 on the server SNI is not associated with the session * but in TLSv1.2 or below it is. * * Before the handshake: * - return NULL * * During/after the handshake (TLSv1.2 or below resumption occurred): * - If a servername was accepted by the server in the original * handshake then it will return that servername, or NULL otherwise. * * During/after the handshake (TLSv1.2 or below resumption did not occur): * - The function will return the servername requested by the client in * this handshake or NULL if none was requested. */ if (sc->hit && !SSL_CONNECTION_IS_TLS13(sc)) return sc->session->ext.hostname; } else { /** * Client side * * Before the handshake: * - If a servername has been set via a call to * SSL_set_tlsext_host_name() then it will return that servername * - If one has not been set, but a TLSv1.2 resumption is being * attempted and the session from the original handshake had a * servername accepted by the server then it will return that * servername * - Otherwise it returns NULL * * During/after the handshake (TLSv1.2 or below resumption occurred): * - If the session from the original handshake had a servername accepted * by the server then it will return that servername. * - Otherwise it returns the servername set via * SSL_set_tlsext_host_name() (or NULL if it was not called). * * During/after the handshake (TLSv1.2 or below resumption did not occur): * - It will return the servername set via SSL_set_tlsext_host_name() * (or NULL if it was not called). */ if (SSL_in_before(s)) { if (sc->ext.hostname == NULL && sc->session != NULL && sc->session->ssl_version != TLS1_3_VERSION) return sc->session->ext.hostname; } else { if (!SSL_CONNECTION_IS_TLS13(sc) && sc->hit && sc->session->ext.hostname != NULL) return sc->session->ext.hostname; } } return sc->ext.hostname; } int SSL_get_servername_type(const SSL *s) { if (SSL_get_servername(s, TLSEXT_NAMETYPE_host_name) != NULL) return TLSEXT_NAMETYPE_host_name; return -1; } /* * SSL_select_next_proto implements the standard protocol selection. It is * expected that this function is called from the callback set by * SSL_CTX_set_next_proto_select_cb. The protocol data is assumed to be a * vector of 8-bit, length prefixed byte strings. The length byte itself is * not included in the length. A byte string of length 0 is invalid. No byte * string may be truncated. The current, but experimental algorithm for * selecting the protocol is: 1) If the server doesn't support NPN then this * is indicated to the callback. In this case, the client application has to * abort the connection or have a default application level protocol. 2) If * the server supports NPN, but advertises an empty list then the client * selects the first protocol in its list, but indicates via the API that this * fallback case was enacted. 3) Otherwise, the client finds the first * protocol in the server's list that it supports and selects this protocol. * This is because it's assumed that the server has better information about * which protocol a client should use. 4) If the client doesn't support any * of the server's advertised protocols, then this is treated the same as * case 2. It returns either OPENSSL_NPN_NEGOTIATED if a common protocol was * found, or OPENSSL_NPN_NO_OVERLAP if the fallback case was reached. */ int SSL_select_next_proto(unsigned char **out, unsigned char *outlen, const unsigned char *server, unsigned int server_len, const unsigned char *client, unsigned int client_len) { unsigned int i, j; const unsigned char *result; int status = OPENSSL_NPN_UNSUPPORTED; /* * For each protocol in server preference order, see if we support it. */ for (i = 0; i < server_len;) { for (j = 0; j < client_len;) { if (server[i] == client[j] && memcmp(&server[i + 1], &client[j + 1], server[i]) == 0) { /* We found a match */ result = &server[i]; status = OPENSSL_NPN_NEGOTIATED; goto found; } j += client[j]; j++; } i += server[i]; i++; } /* There's no overlap between our protocols and the server's list. */ result = client; status = OPENSSL_NPN_NO_OVERLAP; found: *out = (unsigned char *)result + 1; *outlen = result[0]; return status; } #ifndef OPENSSL_NO_NEXTPROTONEG /* * SSL_get0_next_proto_negotiated sets *data and *len to point to the * client's requested protocol for this connection and returns 0. If the * client didn't request any protocol, then *data is set to NULL. Note that * the client can request any protocol it chooses. The value returned from * this function need not be a member of the list of supported protocols * provided by the callback. */ void SSL_get0_next_proto_negotiated(const SSL *s, const unsigned char **data, unsigned *len) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL) { /* We have no other way to indicate error */ *data = NULL; *len = 0; return; } *data = sc->ext.npn; if (*data == NULL) { *len = 0; } else { *len = (unsigned int)sc->ext.npn_len; } } /* * SSL_CTX_set_npn_advertised_cb sets a callback that is called when * a TLS server needs a list of supported protocols for Next Protocol * Negotiation. The returned list must be in wire format. The list is * returned by setting |out| to point to it and |outlen| to its length. This * memory will not be modified, but one should assume that the SSL* keeps a * reference to it. The callback should return SSL_TLSEXT_ERR_OK if it * wishes to advertise. Otherwise, no such extension will be included in the * ServerHello. */ void SSL_CTX_set_npn_advertised_cb(SSL_CTX *ctx, SSL_CTX_npn_advertised_cb_func cb, void *arg) { if (IS_QUIC_CTX(ctx)) /* NPN not allowed for QUIC */ return; ctx->ext.npn_advertised_cb = cb; ctx->ext.npn_advertised_cb_arg = arg; } /* * SSL_CTX_set_next_proto_select_cb sets a callback that is called when a * client needs to select a protocol from the server's provided list. |out| * must be set to point to the selected protocol (which may be within |in|). * The length of the protocol name must be written into |outlen|. The * server's advertised protocols are provided in |in| and |inlen|. The * callback can assume that |in| is syntactically valid. The client must * select a protocol. It is fatal to the connection if this callback returns * a value other than SSL_TLSEXT_ERR_OK. */ void SSL_CTX_set_npn_select_cb(SSL_CTX *ctx, SSL_CTX_npn_select_cb_func cb, void *arg) { if (IS_QUIC_CTX(ctx)) /* NPN not allowed for QUIC */ return; ctx->ext.npn_select_cb = cb; ctx->ext.npn_select_cb_arg = arg; } #endif static int alpn_value_ok(const unsigned char *protos, unsigned int protos_len) { unsigned int idx; if (protos_len < 2 || protos == NULL) return 0; for (idx = 0; idx < protos_len; idx += protos[idx] + 1) { if (protos[idx] == 0) return 0; } return idx == protos_len; } /* * SSL_CTX_set_alpn_protos sets the ALPN protocol list on |ctx| to |protos|. * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit * length-prefixed strings). Returns 0 on success. */ int SSL_CTX_set_alpn_protos(SSL_CTX *ctx, const unsigned char *protos, unsigned int protos_len) { unsigned char *alpn; if (protos_len == 0 || protos == NULL) { OPENSSL_free(ctx->ext.alpn); ctx->ext.alpn = NULL; ctx->ext.alpn_len = 0; return 0; } /* Not valid per RFC */ if (!alpn_value_ok(protos, protos_len)) return 1; alpn = OPENSSL_memdup(protos, protos_len); if (alpn == NULL) return 1; OPENSSL_free(ctx->ext.alpn); ctx->ext.alpn = alpn; ctx->ext.alpn_len = protos_len; return 0; } /* * SSL_set_alpn_protos sets the ALPN protocol list on |ssl| to |protos|. * |protos| must be in wire-format (i.e. a series of non-empty, 8-bit * length-prefixed strings). Returns 0 on success. */ int SSL_set_alpn_protos(SSL *ssl, const unsigned char *protos, unsigned int protos_len) { unsigned char *alpn; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl); if (sc == NULL) return 1; if (protos_len == 0 || protos == NULL) { OPENSSL_free(sc->ext.alpn); sc->ext.alpn = NULL; sc->ext.alpn_len = 0; return 0; } /* Not valid per RFC */ if (!alpn_value_ok(protos, protos_len)) return 1; alpn = OPENSSL_memdup(protos, protos_len); if (alpn == NULL) return 1; OPENSSL_free(sc->ext.alpn); sc->ext.alpn = alpn; sc->ext.alpn_len = protos_len; return 0; } /* * SSL_CTX_set_alpn_select_cb sets a callback function on |ctx| that is * called during ClientHello processing in order to select an ALPN protocol * from the client's list of offered protocols. */ void SSL_CTX_set_alpn_select_cb(SSL_CTX *ctx, SSL_CTX_alpn_select_cb_func cb, void *arg) { ctx->ext.alpn_select_cb = cb; ctx->ext.alpn_select_cb_arg = arg; } /* * SSL_get0_alpn_selected gets the selected ALPN protocol (if any) from |ssl|. * On return it sets |*data| to point to |*len| bytes of protocol name * (not including the leading length-prefix byte). If the server didn't * respond with a negotiated protocol then |*len| will be zero. */ void SSL_get0_alpn_selected(const SSL *ssl, const unsigned char **data, unsigned int *len) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(ssl); if (sc == NULL) { /* We have no other way to indicate error */ *data = NULL; *len = 0; return; } *data = sc->s3.alpn_selected; if (*data == NULL) *len = 0; else *len = (unsigned int)sc->s3.alpn_selected_len; } int SSL_export_keying_material(SSL *s, unsigned char *out, size_t olen, const char *label, size_t llen, const unsigned char *context, size_t contextlen, int use_context) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return -1; if (sc->session == NULL || (sc->version < TLS1_VERSION && sc->version != DTLS1_BAD_VER)) return -1; return s->method->ssl3_enc->export_keying_material(sc, out, olen, label, llen, context, contextlen, use_context); } int SSL_export_keying_material_early(SSL *s, unsigned char *out, size_t olen, const char *label, size_t llen, const unsigned char *context, size_t contextlen) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return -1; if (sc->version != TLS1_3_VERSION) return 0; return tls13_export_keying_material_early(sc, out, olen, label, llen, context, contextlen); } static unsigned long ssl_session_hash(const SSL_SESSION *a) { const unsigned char *session_id = a->session_id; unsigned long l; unsigned char tmp_storage[4]; if (a->session_id_length < sizeof(tmp_storage)) { memset(tmp_storage, 0, sizeof(tmp_storage)); memcpy(tmp_storage, a->session_id, a->session_id_length); session_id = tmp_storage; } l = (unsigned long) ((unsigned long)session_id[0]) | ((unsigned long)session_id[1] << 8L) | ((unsigned long)session_id[2] << 16L) | ((unsigned long)session_id[3] << 24L); return l; } /* * NB: If this function (or indeed the hash function which uses a sort of * coarser function than this one) is changed, ensure * SSL_CTX_has_matching_session_id() is checked accordingly. It relies on * being able to construct an SSL_SESSION that will collide with any existing * session with a matching session ID. */ static int ssl_session_cmp(const SSL_SESSION *a, const SSL_SESSION *b) { if (a->ssl_version != b->ssl_version) return 1; if (a->session_id_length != b->session_id_length) return 1; return memcmp(a->session_id, b->session_id, a->session_id_length); } /* * These wrapper functions should remain rather than redeclaring * SSL_SESSION_hash and SSL_SESSION_cmp for void* types and casting each * variable. The reason is that the functions aren't static, they're exposed * via ssl.h. */ SSL_CTX *SSL_CTX_new_ex(OSSL_LIB_CTX *libctx, const char *propq, const SSL_METHOD *meth) { SSL_CTX *ret = NULL; #ifndef OPENSSL_NO_COMP_ALG int i; #endif if (meth == NULL) { ERR_raise(ERR_LIB_SSL, SSL_R_NULL_SSL_METHOD_PASSED); return NULL; } if (!OPENSSL_init_ssl(OPENSSL_INIT_LOAD_SSL_STRINGS, NULL)) return NULL; /* Doing this for the run once effect */ if (SSL_get_ex_data_X509_STORE_CTX_idx() < 0) { ERR_raise(ERR_LIB_SSL, SSL_R_X509_VERIFICATION_SETUP_PROBLEMS); goto err; } ret = OPENSSL_zalloc(sizeof(*ret)); if (ret == NULL) return NULL; /* Init the reference counting before any call to SSL_CTX_free */ if (!CRYPTO_NEW_REF(&ret->references, 1)) { OPENSSL_free(ret); return NULL; } ret->lock = CRYPTO_THREAD_lock_new(); if (ret->lock == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB); goto err; } #ifdef TSAN_REQUIRES_LOCKING ret->tsan_lock = CRYPTO_THREAD_lock_new(); if (ret->tsan_lock == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB); goto err; } #endif ret->libctx = libctx; if (propq != NULL) { ret->propq = OPENSSL_strdup(propq); if (ret->propq == NULL) goto err; } ret->method = meth; ret->min_proto_version = 0; ret->max_proto_version = 0; ret->mode = SSL_MODE_AUTO_RETRY; ret->session_cache_mode = SSL_SESS_CACHE_SERVER; ret->session_cache_size = SSL_SESSION_CACHE_MAX_SIZE_DEFAULT; /* We take the system default. */ ret->session_timeout = meth->get_timeout(); ret->max_cert_list = SSL_MAX_CERT_LIST_DEFAULT; ret->verify_mode = SSL_VERIFY_NONE; ret->sessions = lh_SSL_SESSION_new(ssl_session_hash, ssl_session_cmp); if (ret->sessions == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB); goto err; } ret->cert_store = X509_STORE_new(); if (ret->cert_store == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_X509_LIB); goto err; } #ifndef OPENSSL_NO_CT ret->ctlog_store = CTLOG_STORE_new_ex(libctx, propq); if (ret->ctlog_store == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_CT_LIB); goto err; } #endif /* initialize cipher/digest methods table */ if (!ssl_load_ciphers(ret)) { ERR_raise(ERR_LIB_SSL, ERR_R_SSL_LIB); goto err; } if (!ssl_load_groups(ret)) { ERR_raise(ERR_LIB_SSL, ERR_R_SSL_LIB); goto err; } /* load provider sigalgs */ if (!ssl_load_sigalgs(ret)) { ERR_raise(ERR_LIB_SSL, ERR_R_SSL_LIB); goto err; } /* initialise sig algs */ if (!ssl_setup_sigalgs(ret)) { ERR_raise(ERR_LIB_SSL, ERR_R_SSL_LIB); goto err; } if (!SSL_CTX_set_ciphersuites(ret, OSSL_default_ciphersuites())) { ERR_raise(ERR_LIB_SSL, ERR_R_SSL_LIB); goto err; } if ((ret->cert = ssl_cert_new(SSL_PKEY_NUM + ret->sigalg_list_len)) == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_SSL_LIB); goto err; } if (!ssl_create_cipher_list(ret, ret->tls13_ciphersuites, &ret->cipher_list, &ret->cipher_list_by_id, OSSL_default_cipher_list(), ret->cert) || sk_SSL_CIPHER_num(ret->cipher_list) <= 0) { ERR_raise(ERR_LIB_SSL, SSL_R_LIBRARY_HAS_NO_CIPHERS); goto err; } ret->param = X509_VERIFY_PARAM_new(); if (ret->param == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_X509_LIB); goto err; } /* * If these aren't available from the provider we'll get NULL returns. * That's fine but will cause errors later if SSLv3 is negotiated */ ret->md5 = ssl_evp_md_fetch(libctx, NID_md5, propq); ret->sha1 = ssl_evp_md_fetch(libctx, NID_sha1, propq); if ((ret->ca_names = sk_X509_NAME_new_null()) == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB); goto err; } if ((ret->client_ca_names = sk_X509_NAME_new_null()) == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB); goto err; } if (!CRYPTO_new_ex_data(CRYPTO_EX_INDEX_SSL_CTX, ret, &ret->ex_data)) { ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB); goto err; } if ((ret->ext.secure = OPENSSL_secure_zalloc(sizeof(*ret->ext.secure))) == NULL) goto err; /* No compression for DTLS */ if (!(meth->ssl3_enc->enc_flags & SSL_ENC_FLAG_DTLS)) ret->comp_methods = SSL_COMP_get_compression_methods(); ret->max_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; ret->split_send_fragment = SSL3_RT_MAX_PLAIN_LENGTH; /* Setup RFC5077 ticket keys */ if ((RAND_bytes_ex(libctx, ret->ext.tick_key_name, sizeof(ret->ext.tick_key_name), 0) <= 0) || (RAND_priv_bytes_ex(libctx, ret->ext.secure->tick_hmac_key, sizeof(ret->ext.secure->tick_hmac_key), 0) <= 0) || (RAND_priv_bytes_ex(libctx, ret->ext.secure->tick_aes_key, sizeof(ret->ext.secure->tick_aes_key), 0) <= 0)) ret->options |= SSL_OP_NO_TICKET; if (RAND_priv_bytes_ex(libctx, ret->ext.cookie_hmac_key, sizeof(ret->ext.cookie_hmac_key), 0) <= 0) { ERR_raise(ERR_LIB_SSL, ERR_R_RAND_LIB); goto err; } #ifndef OPENSSL_NO_SRP if (!ssl_ctx_srp_ctx_init_intern(ret)) { ERR_raise(ERR_LIB_SSL, ERR_R_SSL_LIB); goto err; } #endif #ifndef OPENSSL_NO_ENGINE # ifdef OPENSSL_SSL_CLIENT_ENGINE_AUTO # define eng_strx(x) #x # define eng_str(x) eng_strx(x) /* Use specific client engine automatically... ignore errors */ { ENGINE *eng; eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO)); if (!eng) { ERR_clear_error(); ENGINE_load_builtin_engines(); eng = ENGINE_by_id(eng_str(OPENSSL_SSL_CLIENT_ENGINE_AUTO)); } if (!eng || !SSL_CTX_set_client_cert_engine(ret, eng)) ERR_clear_error(); } # endif #endif #ifndef OPENSSL_NO_COMP_ALG /* * Set the default order: brotli, zlib, zstd * Including only those enabled algorithms */ memset(ret->cert_comp_prefs, 0, sizeof(ret->cert_comp_prefs)); i = 0; if (ossl_comp_has_alg(TLSEXT_comp_cert_brotli)) ret->cert_comp_prefs[i++] = TLSEXT_comp_cert_brotli; if (ossl_comp_has_alg(TLSEXT_comp_cert_zlib)) ret->cert_comp_prefs[i++] = TLSEXT_comp_cert_zlib; if (ossl_comp_has_alg(TLSEXT_comp_cert_zstd)) ret->cert_comp_prefs[i++] = TLSEXT_comp_cert_zstd; #endif /* * Disable compression by default to prevent CRIME. Applications can * re-enable compression by configuring * SSL_CTX_clear_options(ctx, SSL_OP_NO_COMPRESSION); * or by using the SSL_CONF library. Similarly we also enable TLSv1.3 * middlebox compatibility by default. This may be disabled by default in * a later OpenSSL version. */ ret->options |= SSL_OP_NO_COMPRESSION | SSL_OP_ENABLE_MIDDLEBOX_COMPAT; ret->ext.status_type = TLSEXT_STATUSTYPE_nothing; /* * We cannot usefully set a default max_early_data here (which gets * propagated in SSL_new(), for the following reason: setting the * SSL field causes tls_construct_stoc_early_data() to tell the * client that early data will be accepted when constructing a TLS 1.3 * session ticket, and the client will accordingly send us early data * when using that ticket (if the client has early data to send). * However, in order for the early data to actually be consumed by * the application, the application must also have calls to * SSL_read_early_data(); otherwise we'll just skip past the early data * and ignore it. So, since the application must add calls to * SSL_read_early_data(), we also require them to add * calls to SSL_CTX_set_max_early_data() in order to use early data, * eliminating the bandwidth-wasting early data in the case described * above. */ ret->max_early_data = 0; /* * Default recv_max_early_data is a fully loaded single record. Could be * split across multiple records in practice. We set this differently to * max_early_data so that, in the default case, we do not advertise any * support for early_data, but if a client were to send us some (e.g. * because of an old, stale ticket) then we will tolerate it and skip over * it. */ ret->recv_max_early_data = SSL3_RT_MAX_PLAIN_LENGTH; /* By default we send two session tickets automatically in TLSv1.3 */ ret->num_tickets = 2; ssl_ctx_system_config(ret); return ret; err: SSL_CTX_free(ret); return NULL; } SSL_CTX *SSL_CTX_new(const SSL_METHOD *meth) { return SSL_CTX_new_ex(NULL, NULL, meth); } int SSL_CTX_up_ref(SSL_CTX *ctx) { int i; if (CRYPTO_UP_REF(&ctx->references, &i) <= 0) return 0; REF_PRINT_COUNT("SSL_CTX", ctx); REF_ASSERT_ISNT(i < 2); return ((i > 1) ? 1 : 0); } void SSL_CTX_free(SSL_CTX *a) { int i; size_t j; if (a == NULL) return; CRYPTO_DOWN_REF(&a->references, &i); REF_PRINT_COUNT("SSL_CTX", a); if (i > 0) return; REF_ASSERT_ISNT(i < 0); X509_VERIFY_PARAM_free(a->param); dane_ctx_final(&a->dane); /* * Free internal session cache. However: the remove_cb() may reference * the ex_data of SSL_CTX, thus the ex_data store can only be removed * after the sessions were flushed. * As the ex_data handling routines might also touch the session cache, * the most secure solution seems to be: empty (flush) the cache, then * free ex_data, then finally free the cache. * (See ticket [openssl.org #212].) */ if (a->sessions != NULL) SSL_CTX_flush_sessions(a, 0); CRYPTO_free_ex_data(CRYPTO_EX_INDEX_SSL_CTX, a, &a->ex_data); lh_SSL_SESSION_free(a->sessions); X509_STORE_free(a->cert_store); #ifndef OPENSSL_NO_CT CTLOG_STORE_free(a->ctlog_store); #endif sk_SSL_CIPHER_free(a->cipher_list); sk_SSL_CIPHER_free(a->cipher_list_by_id); sk_SSL_CIPHER_free(a->tls13_ciphersuites); ssl_cert_free(a->cert); sk_X509_NAME_pop_free(a->ca_names, X509_NAME_free); sk_X509_NAME_pop_free(a->client_ca_names, X509_NAME_free); OSSL_STACK_OF_X509_free(a->extra_certs); a->comp_methods = NULL; #ifndef OPENSSL_NO_SRTP sk_SRTP_PROTECTION_PROFILE_free(a->srtp_profiles); #endif #ifndef OPENSSL_NO_SRP ssl_ctx_srp_ctx_free_intern(a); #endif #ifndef OPENSSL_NO_ENGINE tls_engine_finish(a->client_cert_engine); #endif OPENSSL_free(a->ext.ecpointformats); OPENSSL_free(a->ext.supportedgroups); OPENSSL_free(a->ext.supported_groups_default); OPENSSL_free(a->ext.alpn); OPENSSL_secure_free(a->ext.secure); ssl_evp_md_free(a->md5); ssl_evp_md_free(a->sha1); for (j = 0; j < SSL_ENC_NUM_IDX; j++) ssl_evp_cipher_free(a->ssl_cipher_methods[j]); for (j = 0; j < SSL_MD_NUM_IDX; j++) ssl_evp_md_free(a->ssl_digest_methods[j]); for (j = 0; j < a->group_list_len; j++) { OPENSSL_free(a->group_list[j].tlsname); OPENSSL_free(a->group_list[j].realname); OPENSSL_free(a->group_list[j].algorithm); } OPENSSL_free(a->group_list); for (j = 0; j < a->sigalg_list_len; j++) { OPENSSL_free(a->sigalg_list[j].name); OPENSSL_free(a->sigalg_list[j].sigalg_name); OPENSSL_free(a->sigalg_list[j].sigalg_oid); OPENSSL_free(a->sigalg_list[j].sig_name); OPENSSL_free(a->sigalg_list[j].sig_oid); OPENSSL_free(a->sigalg_list[j].hash_name); OPENSSL_free(a->sigalg_list[j].hash_oid); OPENSSL_free(a->sigalg_list[j].keytype); OPENSSL_free(a->sigalg_list[j].keytype_oid); } OPENSSL_free(a->sigalg_list); OPENSSL_free(a->ssl_cert_info); OPENSSL_free(a->sigalg_lookup_cache); OPENSSL_free(a->tls12_sigalgs); OPENSSL_free(a->client_cert_type); OPENSSL_free(a->server_cert_type); CRYPTO_THREAD_lock_free(a->lock); CRYPTO_FREE_REF(&a->references); #ifdef TSAN_REQUIRES_LOCKING CRYPTO_THREAD_lock_free(a->tsan_lock); #endif OPENSSL_free(a->propq); OPENSSL_free(a); } void SSL_CTX_set_default_passwd_cb(SSL_CTX *ctx, pem_password_cb *cb) { ctx->default_passwd_callback = cb; } void SSL_CTX_set_default_passwd_cb_userdata(SSL_CTX *ctx, void *u) { ctx->default_passwd_callback_userdata = u; } pem_password_cb *SSL_CTX_get_default_passwd_cb(SSL_CTX *ctx) { return ctx->default_passwd_callback; } void *SSL_CTX_get_default_passwd_cb_userdata(SSL_CTX *ctx) { return ctx->default_passwd_callback_userdata; } void SSL_set_default_passwd_cb(SSL *s, pem_password_cb *cb) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return; sc->default_passwd_callback = cb; } void SSL_set_default_passwd_cb_userdata(SSL *s, void *u) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return; sc->default_passwd_callback_userdata = u; } pem_password_cb *SSL_get_default_passwd_cb(SSL *s) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return NULL; return sc->default_passwd_callback; } void *SSL_get_default_passwd_cb_userdata(SSL *s) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return NULL; return sc->default_passwd_callback_userdata; } void SSL_CTX_set_cert_verify_callback(SSL_CTX *ctx, int (*cb) (X509_STORE_CTX *, void *), void *arg) { ctx->app_verify_callback = cb; ctx->app_verify_arg = arg; } void SSL_CTX_set_verify(SSL_CTX *ctx, int mode, int (*cb) (int, X509_STORE_CTX *)) { ctx->verify_mode = mode; ctx->default_verify_callback = cb; } void SSL_CTX_set_verify_depth(SSL_CTX *ctx, int depth) { X509_VERIFY_PARAM_set_depth(ctx->param, depth); } void SSL_CTX_set_cert_cb(SSL_CTX *c, int (*cb) (SSL *ssl, void *arg), void *arg) { ssl_cert_set_cert_cb(c->cert, cb, arg); } void SSL_set_cert_cb(SSL *s, int (*cb) (SSL *ssl, void *arg), void *arg) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return; ssl_cert_set_cert_cb(sc->cert, cb, arg); } void ssl_set_masks(SSL_CONNECTION *s) { CERT *c = s->cert; uint32_t *pvalid = s->s3.tmp.valid_flags; int rsa_enc, rsa_sign, dh_tmp, dsa_sign; unsigned long mask_k, mask_a; int have_ecc_cert, ecdsa_ok; if (c == NULL) return; dh_tmp = (c->dh_tmp != NULL || c->dh_tmp_cb != NULL || c->dh_tmp_auto); rsa_enc = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID; rsa_sign = pvalid[SSL_PKEY_RSA] & CERT_PKEY_VALID; dsa_sign = pvalid[SSL_PKEY_DSA_SIGN] & CERT_PKEY_VALID; have_ecc_cert = pvalid[SSL_PKEY_ECC] & CERT_PKEY_VALID; mask_k = 0; mask_a = 0; OSSL_TRACE4(TLS_CIPHER, "dh_tmp=%d rsa_enc=%d rsa_sign=%d dsa_sign=%d\n", dh_tmp, rsa_enc, rsa_sign, dsa_sign); #ifndef OPENSSL_NO_GOST if (ssl_has_cert(s, SSL_PKEY_GOST12_512)) { mask_k |= SSL_kGOST | SSL_kGOST18; mask_a |= SSL_aGOST12; } if (ssl_has_cert(s, SSL_PKEY_GOST12_256)) { mask_k |= SSL_kGOST | SSL_kGOST18; mask_a |= SSL_aGOST12; } if (ssl_has_cert(s, SSL_PKEY_GOST01)) { mask_k |= SSL_kGOST; mask_a |= SSL_aGOST01; } #endif if (rsa_enc) mask_k |= SSL_kRSA; if (dh_tmp) mask_k |= SSL_kDHE; /* * If we only have an RSA-PSS certificate allow RSA authentication * if TLS 1.2 and peer supports it. */ if (rsa_enc || rsa_sign || (ssl_has_cert(s, SSL_PKEY_RSA_PSS_SIGN) && pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_EXPLICIT_SIGN && TLS1_get_version(&s->ssl) == TLS1_2_VERSION)) mask_a |= SSL_aRSA; if (dsa_sign) { mask_a |= SSL_aDSS; } mask_a |= SSL_aNULL; /* * You can do anything with an RPK key, since there's no cert to restrict it * But we need to check for private keys */ if (pvalid[SSL_PKEY_RSA] & CERT_PKEY_RPK) { mask_a |= SSL_aRSA; mask_k |= SSL_kRSA; } if (pvalid[SSL_PKEY_ECC] & CERT_PKEY_RPK) mask_a |= SSL_aECDSA; if (TLS1_get_version(&s->ssl) == TLS1_2_VERSION) { if (pvalid[SSL_PKEY_RSA_PSS_SIGN] & CERT_PKEY_RPK) mask_a |= SSL_aRSA; if (pvalid[SSL_PKEY_ED25519] & CERT_PKEY_RPK || pvalid[SSL_PKEY_ED448] & CERT_PKEY_RPK) mask_a |= SSL_aECDSA; } /* * An ECC certificate may be usable for ECDH and/or ECDSA cipher suites * depending on the key usage extension. */ if (have_ecc_cert) { uint32_t ex_kusage; ex_kusage = X509_get_key_usage(c->pkeys[SSL_PKEY_ECC].x509); ecdsa_ok = ex_kusage & X509v3_KU_DIGITAL_SIGNATURE; if (!(pvalid[SSL_PKEY_ECC] & CERT_PKEY_SIGN)) ecdsa_ok = 0; if (ecdsa_ok) mask_a |= SSL_aECDSA; } /* Allow Ed25519 for TLS 1.2 if peer supports it */ if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED25519) && pvalid[SSL_PKEY_ED25519] & CERT_PKEY_EXPLICIT_SIGN && TLS1_get_version(&s->ssl) == TLS1_2_VERSION) mask_a |= SSL_aECDSA; /* Allow Ed448 for TLS 1.2 if peer supports it */ if (!(mask_a & SSL_aECDSA) && ssl_has_cert(s, SSL_PKEY_ED448) && pvalid[SSL_PKEY_ED448] & CERT_PKEY_EXPLICIT_SIGN && TLS1_get_version(&s->ssl) == TLS1_2_VERSION) mask_a |= SSL_aECDSA; mask_k |= SSL_kECDHE; #ifndef OPENSSL_NO_PSK mask_k |= SSL_kPSK; mask_a |= SSL_aPSK; if (mask_k & SSL_kRSA) mask_k |= SSL_kRSAPSK; if (mask_k & SSL_kDHE) mask_k |= SSL_kDHEPSK; if (mask_k & SSL_kECDHE) mask_k |= SSL_kECDHEPSK; #endif s->s3.tmp.mask_k = mask_k; s->s3.tmp.mask_a = mask_a; } int ssl_check_srvr_ecc_cert_and_alg(X509 *x, SSL_CONNECTION *s) { if (s->s3.tmp.new_cipher->algorithm_auth & SSL_aECDSA) { /* key usage, if present, must allow signing */ if (!(X509_get_key_usage(x) & X509v3_KU_DIGITAL_SIGNATURE)) { ERR_raise(ERR_LIB_SSL, SSL_R_ECC_CERT_NOT_FOR_SIGNING); return 0; } } return 1; /* all checks are ok */ } int ssl_get_server_cert_serverinfo(SSL_CONNECTION *s, const unsigned char **serverinfo, size_t *serverinfo_length) { CERT_PKEY *cpk = s->s3.tmp.cert; *serverinfo_length = 0; if (cpk == NULL || cpk->serverinfo == NULL) return 0; *serverinfo = cpk->serverinfo; *serverinfo_length = cpk->serverinfo_length; return 1; } void ssl_update_cache(SSL_CONNECTION *s, int mode) { int i; /* * If the session_id_length is 0, we are not supposed to cache it, and it * would be rather hard to do anyway :-) */ if (s->session->session_id_length == 0) return; /* * If sid_ctx_length is 0 there is no specific application context * associated with this session, so when we try to resume it and * SSL_VERIFY_PEER is requested to verify the client identity, we have no * indication that this is actually a session for the proper application * context, and the *handshake* will fail, not just the resumption attempt. * Do not cache (on the server) these sessions that are not resumable * (clients can set SSL_VERIFY_PEER without needing a sid_ctx set). */ if (s->server && s->session->sid_ctx_length == 0 && (s->verify_mode & SSL_VERIFY_PEER) != 0) return; i = s->session_ctx->session_cache_mode; if ((i & mode) != 0 && (!s->hit || SSL_CONNECTION_IS_TLS13(s))) { /* * Add the session to the internal cache. In server side TLSv1.3 we * normally don't do this because by default it's a full stateless ticket * with only a dummy session id so there is no reason to cache it, * unless: * - we are doing early_data, in which case we cache so that we can * detect replays * - the application has set a remove_session_cb so needs to know about * session timeout events * - SSL_OP_NO_TICKET is set in which case it is a stateful ticket */ if ((i & SSL_SESS_CACHE_NO_INTERNAL_STORE) == 0 && (!SSL_CONNECTION_IS_TLS13(s) || !s->server || (s->max_early_data > 0 && (s->options & SSL_OP_NO_ANTI_REPLAY) == 0) || s->session_ctx->remove_session_cb != NULL || (s->options & SSL_OP_NO_TICKET) != 0)) SSL_CTX_add_session(s->session_ctx, s->session); /* * Add the session to the external cache. We do this even in server side * TLSv1.3 without early data because some applications just want to * know about the creation of a session and aren't doing a full cache. */ if (s->session_ctx->new_session_cb != NULL) { SSL_SESSION_up_ref(s->session); if (!s->session_ctx->new_session_cb(SSL_CONNECTION_GET_SSL(s), s->session)) SSL_SESSION_free(s->session); } } /* auto flush every 255 connections */ if ((!(i & SSL_SESS_CACHE_NO_AUTO_CLEAR)) && ((i & mode) == mode)) { TSAN_QUALIFIER int *stat; if (mode & SSL_SESS_CACHE_CLIENT) stat = &s->session_ctx->stats.sess_connect_good; else stat = &s->session_ctx->stats.sess_accept_good; if ((ssl_tsan_load(s->session_ctx, stat) & 0xff) == 0xff) SSL_CTX_flush_sessions(s->session_ctx, (unsigned long)time(NULL)); } } const SSL_METHOD *SSL_CTX_get_ssl_method(const SSL_CTX *ctx) { return ctx->method; } const SSL_METHOD *SSL_get_ssl_method(const SSL *s) { return s->method; } int SSL_set_ssl_method(SSL *s, const SSL_METHOD *meth) { int ret = 1; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); /* Not allowed for QUIC */ if (sc == NULL || (s->type != SSL_TYPE_SSL_CONNECTION && s->method != meth) || (s->type == SSL_TYPE_SSL_CONNECTION && IS_QUIC_METHOD(meth))) return 0; if (s->method != meth) { const SSL_METHOD *sm = s->method; int (*hf) (SSL *) = sc->handshake_func; if (sm->version == meth->version) s->method = meth; else { sm->ssl_deinit(s); s->method = meth; ret = s->method->ssl_init(s); } if (hf == sm->ssl_connect) sc->handshake_func = meth->ssl_connect; else if (hf == sm->ssl_accept) sc->handshake_func = meth->ssl_accept; } return ret; } int SSL_get_error(const SSL *s, int i) { return ossl_ssl_get_error(s, i, /*check_err=*/1); } int ossl_ssl_get_error(const SSL *s, int i, int check_err) { int reason; unsigned long l; BIO *bio; const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (i > 0) return SSL_ERROR_NONE; #ifndef OPENSSL_NO_QUIC if (IS_QUIC(s)) { reason = ossl_quic_get_error(s, i); if (reason != SSL_ERROR_NONE) return reason; } #endif if (sc == NULL) return SSL_ERROR_SSL; /* * Make things return SSL_ERROR_SYSCALL when doing SSL_do_handshake etc, * where we do encode the error */ if (check_err && (l = ERR_peek_error()) != 0) { if (ERR_GET_LIB(l) == ERR_LIB_SYS) return SSL_ERROR_SYSCALL; else return SSL_ERROR_SSL; } #ifndef OPENSSL_NO_QUIC if (!IS_QUIC(s)) #endif { if (SSL_want_read(s)) { bio = SSL_get_rbio(s); if (BIO_should_read(bio)) return SSL_ERROR_WANT_READ; else if (BIO_should_write(bio)) /* * This one doesn't make too much sense ... We never try to * write to the rbio, and an application program where rbio and * wbio are separate couldn't even know what it should wait for. * However if we ever set s->rwstate incorrectly (so that we * have SSL_want_read(s) instead of SSL_want_write(s)) and rbio * and wbio *are* the same, this test works around that bug; so * it might be safer to keep it. */ return SSL_ERROR_WANT_WRITE; else if (BIO_should_io_special(bio)) { reason = BIO_get_retry_reason(bio); if (reason == BIO_RR_CONNECT) return SSL_ERROR_WANT_CONNECT; else if (reason == BIO_RR_ACCEPT) return SSL_ERROR_WANT_ACCEPT; else return SSL_ERROR_SYSCALL; /* unknown */ } } if (SSL_want_write(s)) { /* * Access wbio directly - in order to use the buffered bio if * present */ bio = sc->wbio; if (BIO_should_write(bio)) return SSL_ERROR_WANT_WRITE; else if (BIO_should_read(bio)) /* * See above (SSL_want_read(s) with BIO_should_write(bio)) */ return SSL_ERROR_WANT_READ; else if (BIO_should_io_special(bio)) { reason = BIO_get_retry_reason(bio); if (reason == BIO_RR_CONNECT) return SSL_ERROR_WANT_CONNECT; else if (reason == BIO_RR_ACCEPT) return SSL_ERROR_WANT_ACCEPT; else return SSL_ERROR_SYSCALL; } } } if (SSL_want_x509_lookup(s)) return SSL_ERROR_WANT_X509_LOOKUP; if (SSL_want_retry_verify(s)) return SSL_ERROR_WANT_RETRY_VERIFY; if (SSL_want_async(s)) return SSL_ERROR_WANT_ASYNC; if (SSL_want_async_job(s)) return SSL_ERROR_WANT_ASYNC_JOB; if (SSL_want_client_hello_cb(s)) return SSL_ERROR_WANT_CLIENT_HELLO_CB; if ((sc->shutdown & SSL_RECEIVED_SHUTDOWN) && (sc->s3.warn_alert == SSL_AD_CLOSE_NOTIFY)) return SSL_ERROR_ZERO_RETURN; return SSL_ERROR_SYSCALL; } static int ssl_do_handshake_intern(void *vargs) { struct ssl_async_args *args = (struct ssl_async_args *)vargs; SSL *s = args->s; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return -1; return sc->handshake_func(s); } int SSL_do_handshake(SSL *s) { int ret = 1; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); #ifndef OPENSSL_NO_QUIC if (IS_QUIC(s)) return ossl_quic_do_handshake(s); #endif if (sc->handshake_func == NULL) { ERR_raise(ERR_LIB_SSL, SSL_R_CONNECTION_TYPE_NOT_SET); return -1; } ossl_statem_check_finish_init(sc, -1); s->method->ssl_renegotiate_check(s, 0); if (SSL_in_init(s) || SSL_in_before(s)) { if ((sc->mode & SSL_MODE_ASYNC) && ASYNC_get_current_job() == NULL) { struct ssl_async_args args; memset(&args, 0, sizeof(args)); args.s = s; ret = ssl_start_async_job(s, &args, ssl_do_handshake_intern); } else { ret = sc->handshake_func(s); } } return ret; } void SSL_set_accept_state(SSL *s) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL_ONLY(s); #ifndef OPENSSL_NO_QUIC if (IS_QUIC(s)) { ossl_quic_set_accept_state(s); return; } #endif sc->server = 1; sc->shutdown = 0; ossl_statem_clear(sc); sc->handshake_func = s->method->ssl_accept; /* Ignore return value. Its a void public API function */ clear_record_layer(sc); } void SSL_set_connect_state(SSL *s) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL_ONLY(s); #ifndef OPENSSL_NO_QUIC if (IS_QUIC(s)) { ossl_quic_set_connect_state(s); return; } #endif sc->server = 0; sc->shutdown = 0; ossl_statem_clear(sc); sc->handshake_func = s->method->ssl_connect; /* Ignore return value. Its a void public API function */ clear_record_layer(sc); } int ssl_undefined_function(SSL *s) { ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } int ssl_undefined_void_function(void) { ERR_raise(ERR_LIB_SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED); return 0; } int ssl_undefined_const_function(const SSL *s) { return 0; } const char *ssl_protocol_to_string(int version) { switch (version) { case TLS1_3_VERSION: return "TLSv1.3"; case TLS1_2_VERSION: return "TLSv1.2"; case TLS1_1_VERSION: return "TLSv1.1"; case TLS1_VERSION: return "TLSv1"; case SSL3_VERSION: return "SSLv3"; case DTLS1_BAD_VER: return "DTLSv0.9"; case DTLS1_VERSION: return "DTLSv1"; case DTLS1_2_VERSION: return "DTLSv1.2"; default: return "unknown"; } } const char *SSL_get_version(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); #ifndef OPENSSL_NO_QUIC /* We only support QUICv1 - so if its QUIC its QUICv1 */ if (s->type == SSL_TYPE_QUIC_CONNECTION || s->type == SSL_TYPE_QUIC_XSO) return "QUICv1"; #endif if (sc == NULL) return NULL; return ssl_protocol_to_string(sc->version); } __owur int SSL_get_handshake_rtt(const SSL *s, uint64_t *rtt) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL) return -1; if (sc->ts_msg_write.t <= 0 || sc->ts_msg_read.t <= 0) return 0; /* data not (yet) available */ if (sc->ts_msg_read.t < sc->ts_msg_write.t) return -1; *rtt = ossl_time2us(ossl_time_subtract(sc->ts_msg_read, sc->ts_msg_write)); return 1; } static int dup_ca_names(STACK_OF(X509_NAME) **dst, STACK_OF(X509_NAME) *src) { STACK_OF(X509_NAME) *sk; X509_NAME *xn; int i; if (src == NULL) { *dst = NULL; return 1; } if ((sk = sk_X509_NAME_new_null()) == NULL) return 0; for (i = 0; i < sk_X509_NAME_num(src); i++) { xn = X509_NAME_dup(sk_X509_NAME_value(src, i)); if (xn == NULL) { sk_X509_NAME_pop_free(sk, X509_NAME_free); return 0; } if (sk_X509_NAME_insert(sk, xn, i) == 0) { X509_NAME_free(xn); sk_X509_NAME_pop_free(sk, X509_NAME_free); return 0; } } *dst = sk; return 1; } SSL *SSL_dup(SSL *s) { SSL *ret; int i; /* TODO(QUIC FUTURE): Add a SSL_METHOD function for duplication */ SSL_CONNECTION *retsc; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL_ONLY(s); if (sc == NULL) return NULL; /* If we're not quiescent, just up_ref! */ if (!SSL_in_init(s) || !SSL_in_before(s)) { CRYPTO_UP_REF(&s->references, &i); return s; } /* * Otherwise, copy configuration state, and session if set. */ if ((ret = SSL_new(SSL_get_SSL_CTX(s))) == NULL) return NULL; if ((retsc = SSL_CONNECTION_FROM_SSL_ONLY(ret)) == NULL) goto err; if (sc->session != NULL) { /* * Arranges to share the same session via up_ref. This "copies" * session-id, SSL_METHOD, sid_ctx, and 'cert' */ if (!SSL_copy_session_id(ret, s)) goto err; } else { /* * No session has been established yet, so we have to expect that * s->cert or ret->cert will be changed later -- they should not both * point to the same object, and thus we can't use * SSL_copy_session_id. */ if (!SSL_set_ssl_method(ret, s->method)) goto err; if (sc->cert != NULL) { ssl_cert_free(retsc->cert); retsc->cert = ssl_cert_dup(sc->cert); if (retsc->cert == NULL) goto err; } if (!SSL_set_session_id_context(ret, sc->sid_ctx, (int)sc->sid_ctx_length)) goto err; } if (!ssl_dane_dup(retsc, sc)) goto err; retsc->version = sc->version; retsc->options = sc->options; retsc->min_proto_version = sc->min_proto_version; retsc->max_proto_version = sc->max_proto_version; retsc->mode = sc->mode; SSL_set_max_cert_list(ret, SSL_get_max_cert_list(s)); SSL_set_read_ahead(ret, SSL_get_read_ahead(s)); retsc->msg_callback = sc->msg_callback; retsc->msg_callback_arg = sc->msg_callback_arg; SSL_set_verify(ret, SSL_get_verify_mode(s), SSL_get_verify_callback(s)); SSL_set_verify_depth(ret, SSL_get_verify_depth(s)); retsc->generate_session_id = sc->generate_session_id; SSL_set_info_callback(ret, SSL_get_info_callback(s)); /* copy app data, a little dangerous perhaps */ if (!CRYPTO_dup_ex_data(CRYPTO_EX_INDEX_SSL, &ret->ex_data, &s->ex_data)) goto err; retsc->server = sc->server; if (sc->handshake_func) { if (sc->server) SSL_set_accept_state(ret); else SSL_set_connect_state(ret); } retsc->shutdown = sc->shutdown; retsc->hit = sc->hit; retsc->default_passwd_callback = sc->default_passwd_callback; retsc->default_passwd_callback_userdata = sc->default_passwd_callback_userdata; X509_VERIFY_PARAM_inherit(retsc->param, sc->param); /* dup the cipher_list and cipher_list_by_id stacks */ if (sc->cipher_list != NULL) { if ((retsc->cipher_list = sk_SSL_CIPHER_dup(sc->cipher_list)) == NULL) goto err; } if (sc->cipher_list_by_id != NULL) if ((retsc->cipher_list_by_id = sk_SSL_CIPHER_dup(sc->cipher_list_by_id)) == NULL) goto err; /* Dup the client_CA list */ if (!dup_ca_names(&retsc->ca_names, sc->ca_names) || !dup_ca_names(&retsc->client_ca_names, sc->client_ca_names)) goto err; return ret; err: SSL_free(ret); return NULL; } X509 *SSL_get_certificate(const SSL *s) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return NULL; if (sc->cert != NULL) return sc->cert->key->x509; else return NULL; } EVP_PKEY *SSL_get_privatekey(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL) return NULL; if (sc->cert != NULL) return sc->cert->key->privatekey; else return NULL; } X509 *SSL_CTX_get0_certificate(const SSL_CTX *ctx) { if (ctx->cert != NULL) return ctx->cert->key->x509; else return NULL; } EVP_PKEY *SSL_CTX_get0_privatekey(const SSL_CTX *ctx) { if (ctx->cert != NULL) return ctx->cert->key->privatekey; else return NULL; } const SSL_CIPHER *SSL_get_current_cipher(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL) return NULL; if ((sc->session != NULL) && (sc->session->cipher != NULL)) return sc->session->cipher; return NULL; } const SSL_CIPHER *SSL_get_pending_cipher(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL) return NULL; return sc->s3.tmp.new_cipher; } const COMP_METHOD *SSL_get_current_compression(const SSL *s) { #ifndef OPENSSL_NO_COMP const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL_ONLY(s); if (sc == NULL) return NULL; return sc->rlayer.wrlmethod->get_compression(sc->rlayer.wrl); #else return NULL; #endif } const COMP_METHOD *SSL_get_current_expansion(const SSL *s) { #ifndef OPENSSL_NO_COMP const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL_ONLY(s); if (sc == NULL) return NULL; return sc->rlayer.rrlmethod->get_compression(sc->rlayer.rrl); #else return NULL; #endif } int ssl_init_wbio_buffer(SSL_CONNECTION *s) { BIO *bbio; if (s->bbio != NULL) { /* Already buffered. */ return 1; } bbio = BIO_new(BIO_f_buffer()); if (bbio == NULL || BIO_set_read_buffer_size(bbio, 1) <= 0) { BIO_free(bbio); ERR_raise(ERR_LIB_SSL, ERR_R_BUF_LIB); return 0; } s->bbio = bbio; s->wbio = BIO_push(bbio, s->wbio); s->rlayer.wrlmethod->set1_bio(s->rlayer.wrl, s->wbio); return 1; } int ssl_free_wbio_buffer(SSL_CONNECTION *s) { /* callers ensure s is never null */ if (s->bbio == NULL) return 1; s->wbio = BIO_pop(s->wbio); s->rlayer.wrlmethod->set1_bio(s->rlayer.wrl, s->wbio); BIO_free(s->bbio); s->bbio = NULL; return 1; } void SSL_CTX_set_quiet_shutdown(SSL_CTX *ctx, int mode) { ctx->quiet_shutdown = mode; } int SSL_CTX_get_quiet_shutdown(const SSL_CTX *ctx) { return ctx->quiet_shutdown; } void SSL_set_quiet_shutdown(SSL *s, int mode) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL_ONLY(s); /* Not supported with QUIC */ if (sc == NULL) return; sc->quiet_shutdown = mode; } int SSL_get_quiet_shutdown(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL_ONLY(s); /* Not supported with QUIC */ if (sc == NULL) return 0; return sc->quiet_shutdown; } void SSL_set_shutdown(SSL *s, int mode) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL_ONLY(s); /* Not supported with QUIC */ if (sc == NULL) return; sc->shutdown = mode; } int SSL_get_shutdown(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL_ONLY(s); #ifndef OPENSSL_NO_QUIC /* QUIC: Just indicate whether the connection was shutdown cleanly. */ if (IS_QUIC(s)) return ossl_quic_get_shutdown(s); #endif if (sc == NULL) return 0; return sc->shutdown; } int SSL_version(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); #ifndef OPENSSL_NO_QUIC /* We only support QUICv1 - so if its QUIC its QUICv1 */ if (s->type == SSL_TYPE_QUIC_CONNECTION || s->type == SSL_TYPE_QUIC_XSO) return OSSL_QUIC1_VERSION; #endif if (sc == NULL) return 0; return sc->version; } int SSL_client_version(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); #ifndef OPENSSL_NO_QUIC /* We only support QUICv1 - so if its QUIC its QUICv1 */ if (s->type == SSL_TYPE_QUIC_CONNECTION || s->type == SSL_TYPE_QUIC_XSO) return OSSL_QUIC1_VERSION; #endif if (sc == NULL) return 0; return sc->client_version; } SSL_CTX *SSL_get_SSL_CTX(const SSL *ssl) { return ssl->ctx; } SSL_CTX *SSL_set_SSL_CTX(SSL *ssl, SSL_CTX *ctx) { CERT *new_cert; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL_ONLY(ssl); /* TODO(QUIC FUTURE): Add support for QUIC */ if (sc == NULL) return NULL; if (ssl->ctx == ctx) return ssl->ctx; if (ctx == NULL) ctx = sc->session_ctx; new_cert = ssl_cert_dup(ctx->cert); if (new_cert == NULL) { return NULL; } if (!custom_exts_copy_flags(&new_cert->custext, &sc->cert->custext)) { ssl_cert_free(new_cert); return NULL; } ssl_cert_free(sc->cert); sc->cert = new_cert; /* * Program invariant: |sid_ctx| has fixed size (SSL_MAX_SID_CTX_LENGTH), * so setter APIs must prevent invalid lengths from entering the system. */ if (!ossl_assert(sc->sid_ctx_length <= sizeof(sc->sid_ctx))) return NULL; /* * If the session ID context matches that of the parent SSL_CTX, * inherit it from the new SSL_CTX as well. If however the context does * not match (i.e., it was set per-ssl with SSL_set_session_id_context), * leave it unchanged. */ if ((ssl->ctx != NULL) && (sc->sid_ctx_length == ssl->ctx->sid_ctx_length) && (memcmp(sc->sid_ctx, ssl->ctx->sid_ctx, sc->sid_ctx_length) == 0)) { sc->sid_ctx_length = ctx->sid_ctx_length; memcpy(&sc->sid_ctx, &ctx->sid_ctx, sizeof(sc->sid_ctx)); } SSL_CTX_up_ref(ctx); SSL_CTX_free(ssl->ctx); /* decrement reference count */ ssl->ctx = ctx; return ssl->ctx; } int SSL_CTX_set_default_verify_paths(SSL_CTX *ctx) { return X509_STORE_set_default_paths_ex(ctx->cert_store, ctx->libctx, ctx->propq); } int SSL_CTX_set_default_verify_dir(SSL_CTX *ctx) { X509_LOOKUP *lookup; lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_hash_dir()); if (lookup == NULL) return 0; /* We ignore errors, in case the directory doesn't exist */ ERR_set_mark(); X509_LOOKUP_add_dir(lookup, NULL, X509_FILETYPE_DEFAULT); ERR_pop_to_mark(); return 1; } int SSL_CTX_set_default_verify_file(SSL_CTX *ctx) { X509_LOOKUP *lookup; lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_file()); if (lookup == NULL) return 0; /* We ignore errors, in case the file doesn't exist */ ERR_set_mark(); X509_LOOKUP_load_file_ex(lookup, NULL, X509_FILETYPE_DEFAULT, ctx->libctx, ctx->propq); ERR_pop_to_mark(); return 1; } int SSL_CTX_set_default_verify_store(SSL_CTX *ctx) { X509_LOOKUP *lookup; lookup = X509_STORE_add_lookup(ctx->cert_store, X509_LOOKUP_store()); if (lookup == NULL) return 0; /* We ignore errors, in case the directory doesn't exist */ ERR_set_mark(); X509_LOOKUP_add_store_ex(lookup, NULL, ctx->libctx, ctx->propq); ERR_pop_to_mark(); return 1; } int SSL_CTX_load_verify_file(SSL_CTX *ctx, const char *CAfile) { return X509_STORE_load_file_ex(ctx->cert_store, CAfile, ctx->libctx, ctx->propq); } int SSL_CTX_load_verify_dir(SSL_CTX *ctx, const char *CApath) { return X509_STORE_load_path(ctx->cert_store, CApath); } int SSL_CTX_load_verify_store(SSL_CTX *ctx, const char *CAstore) { return X509_STORE_load_store_ex(ctx->cert_store, CAstore, ctx->libctx, ctx->propq); } int SSL_CTX_load_verify_locations(SSL_CTX *ctx, const char *CAfile, const char *CApath) { if (CAfile == NULL && CApath == NULL) return 0; if (CAfile != NULL && !SSL_CTX_load_verify_file(ctx, CAfile)) return 0; if (CApath != NULL && !SSL_CTX_load_verify_dir(ctx, CApath)) return 0; return 1; } void SSL_set_info_callback(SSL *ssl, void (*cb) (const SSL *ssl, int type, int val)) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl); if (sc == NULL) return; sc->info_callback = cb; } /* * One compiler (Diab DCC) doesn't like argument names in returned function * pointer. */ void (*SSL_get_info_callback(const SSL *ssl)) (const SSL * /* ssl */ , int /* type */ , int /* val */ ) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(ssl); if (sc == NULL) return NULL; return sc->info_callback; } void SSL_set_verify_result(SSL *ssl, long arg) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl); if (sc == NULL) return; sc->verify_result = arg; } long SSL_get_verify_result(const SSL *ssl) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(ssl); if (sc == NULL) return 0; return sc->verify_result; } size_t SSL_get_client_random(const SSL *ssl, unsigned char *out, size_t outlen) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(ssl); if (sc == NULL) return 0; if (outlen == 0) return sizeof(sc->s3.client_random); if (outlen > sizeof(sc->s3.client_random)) outlen = sizeof(sc->s3.client_random); memcpy(out, sc->s3.client_random, outlen); return outlen; } size_t SSL_get_server_random(const SSL *ssl, unsigned char *out, size_t outlen) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(ssl); if (sc == NULL) return 0; if (outlen == 0) return sizeof(sc->s3.server_random); if (outlen > sizeof(sc->s3.server_random)) outlen = sizeof(sc->s3.server_random); memcpy(out, sc->s3.server_random, outlen); return outlen; } size_t SSL_SESSION_get_master_key(const SSL_SESSION *session, unsigned char *out, size_t outlen) { if (outlen == 0) return session->master_key_length; if (outlen > session->master_key_length) outlen = session->master_key_length; memcpy(out, session->master_key, outlen); return outlen; } int SSL_SESSION_set1_master_key(SSL_SESSION *sess, const unsigned char *in, size_t len) { if (len > sizeof(sess->master_key)) return 0; memcpy(sess->master_key, in, len); sess->master_key_length = len; return 1; } int SSL_set_ex_data(SSL *s, int idx, void *arg) { return CRYPTO_set_ex_data(&s->ex_data, idx, arg); } void *SSL_get_ex_data(const SSL *s, int idx) { return CRYPTO_get_ex_data(&s->ex_data, idx); } int SSL_CTX_set_ex_data(SSL_CTX *s, int idx, void *arg) { return CRYPTO_set_ex_data(&s->ex_data, idx, arg); } void *SSL_CTX_get_ex_data(const SSL_CTX *s, int idx) { return CRYPTO_get_ex_data(&s->ex_data, idx); } X509_STORE *SSL_CTX_get_cert_store(const SSL_CTX *ctx) { return ctx->cert_store; } void SSL_CTX_set_cert_store(SSL_CTX *ctx, X509_STORE *store) { X509_STORE_free(ctx->cert_store); ctx->cert_store = store; } void SSL_CTX_set1_cert_store(SSL_CTX *ctx, X509_STORE *store) { if (store != NULL) X509_STORE_up_ref(store); SSL_CTX_set_cert_store(ctx, store); } int SSL_want(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); #ifndef OPENSSL_NO_QUIC if (IS_QUIC(s)) return ossl_quic_want(s); #endif if (sc == NULL) return SSL_NOTHING; return sc->rwstate; } #ifndef OPENSSL_NO_PSK int SSL_CTX_use_psk_identity_hint(SSL_CTX *ctx, const char *identity_hint) { if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { ERR_raise(ERR_LIB_SSL, SSL_R_DATA_LENGTH_TOO_LONG); return 0; } OPENSSL_free(ctx->cert->psk_identity_hint); if (identity_hint != NULL) { ctx->cert->psk_identity_hint = OPENSSL_strdup(identity_hint); if (ctx->cert->psk_identity_hint == NULL) return 0; } else ctx->cert->psk_identity_hint = NULL; return 1; } int SSL_use_psk_identity_hint(SSL *s, const char *identity_hint) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; if (identity_hint != NULL && strlen(identity_hint) > PSK_MAX_IDENTITY_LEN) { ERR_raise(ERR_LIB_SSL, SSL_R_DATA_LENGTH_TOO_LONG); return 0; } OPENSSL_free(sc->cert->psk_identity_hint); if (identity_hint != NULL) { sc->cert->psk_identity_hint = OPENSSL_strdup(identity_hint); if (sc->cert->psk_identity_hint == NULL) return 0; } else sc->cert->psk_identity_hint = NULL; return 1; } const char *SSL_get_psk_identity_hint(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL || sc->session == NULL) return NULL; return sc->session->psk_identity_hint; } const char *SSL_get_psk_identity(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL || sc->session == NULL) return NULL; return sc->session->psk_identity; } void SSL_set_psk_client_callback(SSL *s, SSL_psk_client_cb_func cb) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return; sc->psk_client_callback = cb; } void SSL_CTX_set_psk_client_callback(SSL_CTX *ctx, SSL_psk_client_cb_func cb) { ctx->psk_client_callback = cb; } void SSL_set_psk_server_callback(SSL *s, SSL_psk_server_cb_func cb) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return; sc->psk_server_callback = cb; } void SSL_CTX_set_psk_server_callback(SSL_CTX *ctx, SSL_psk_server_cb_func cb) { ctx->psk_server_callback = cb; } #endif void SSL_set_psk_find_session_callback(SSL *s, SSL_psk_find_session_cb_func cb) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return; sc->psk_find_session_cb = cb; } void SSL_CTX_set_psk_find_session_callback(SSL_CTX *ctx, SSL_psk_find_session_cb_func cb) { ctx->psk_find_session_cb = cb; } void SSL_set_psk_use_session_callback(SSL *s, SSL_psk_use_session_cb_func cb) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return; sc->psk_use_session_cb = cb; } void SSL_CTX_set_psk_use_session_callback(SSL_CTX *ctx, SSL_psk_use_session_cb_func cb) { ctx->psk_use_session_cb = cb; } void SSL_CTX_set_msg_callback(SSL_CTX *ctx, void (*cb) (int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg)) { SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb); } void SSL_set_msg_callback(SSL *ssl, void (*cb) (int write_p, int version, int content_type, const void *buf, size_t len, SSL *ssl, void *arg)) { SSL_callback_ctrl(ssl, SSL_CTRL_SET_MSG_CALLBACK, (void (*)(void))cb); } void SSL_CTX_set_not_resumable_session_callback(SSL_CTX *ctx, int (*cb) (SSL *ssl, int is_forward_secure)) { SSL_CTX_callback_ctrl(ctx, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB, (void (*)(void))cb); } void SSL_set_not_resumable_session_callback(SSL *ssl, int (*cb) (SSL *ssl, int is_forward_secure)) { SSL_callback_ctrl(ssl, SSL_CTRL_SET_NOT_RESUMABLE_SESS_CB, (void (*)(void))cb); } void SSL_CTX_set_record_padding_callback(SSL_CTX *ctx, size_t (*cb) (SSL *ssl, int type, size_t len, void *arg)) { ctx->record_padding_cb = cb; } void SSL_CTX_set_record_padding_callback_arg(SSL_CTX *ctx, void *arg) { ctx->record_padding_arg = arg; } void *SSL_CTX_get_record_padding_callback_arg(const SSL_CTX *ctx) { return ctx->record_padding_arg; } int SSL_CTX_set_block_padding(SSL_CTX *ctx, size_t block_size) { if (IS_QUIC_CTX(ctx) && block_size > 1) return 0; /* block size of 0 or 1 is basically no padding */ if (block_size == 1) ctx->block_padding = 0; else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH) ctx->block_padding = block_size; else return 0; return 1; } int SSL_set_record_padding_callback(SSL *ssl, size_t (*cb) (SSL *ssl, int type, size_t len, void *arg)) { BIO *b; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL_ONLY(ssl); if (sc == NULL) return 0; b = SSL_get_wbio(ssl); if (b == NULL || !BIO_get_ktls_send(b)) { sc->rlayer.record_padding_cb = cb; return 1; } return 0; } void SSL_set_record_padding_callback_arg(SSL *ssl, void *arg) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl); if (sc == NULL) return; sc->rlayer.record_padding_arg = arg; } void *SSL_get_record_padding_callback_arg(const SSL *ssl) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(ssl); if (sc == NULL) return NULL; return sc->rlayer.record_padding_arg; } int SSL_set_block_padding(SSL *ssl, size_t block_size) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl); if (sc == NULL || (IS_QUIC(ssl) && block_size > 1)) return 0; /* block size of 0 or 1 is basically no padding */ if (block_size == 1) sc->rlayer.block_padding = 0; else if (block_size <= SSL3_RT_MAX_PLAIN_LENGTH) sc->rlayer.block_padding = block_size; else return 0; return 1; } int SSL_set_num_tickets(SSL *s, size_t num_tickets) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; sc->num_tickets = num_tickets; return 1; } size_t SSL_get_num_tickets(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL) return 0; return sc->num_tickets; } int SSL_CTX_set_num_tickets(SSL_CTX *ctx, size_t num_tickets) { ctx->num_tickets = num_tickets; return 1; } size_t SSL_CTX_get_num_tickets(const SSL_CTX *ctx) { return ctx->num_tickets; } /* Retrieve handshake hashes */ int ssl_handshake_hash(SSL_CONNECTION *s, unsigned char *out, size_t outlen, size_t *hashlen) { EVP_MD_CTX *ctx = NULL; EVP_MD_CTX *hdgst = s->s3.handshake_dgst; int hashleni = EVP_MD_CTX_get_size(hdgst); int ret = 0; if (hashleni < 0 || (size_t)hashleni > outlen) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); goto err; } ctx = EVP_MD_CTX_new(); if (ctx == NULL) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); goto err; } if (!EVP_MD_CTX_copy_ex(ctx, hdgst) || EVP_DigestFinal_ex(ctx, out, NULL) <= 0) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); goto err; } *hashlen = hashleni; ret = 1; err: EVP_MD_CTX_free(ctx); return ret; } int SSL_session_reused(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL) return 0; return sc->hit; } int SSL_is_server(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL) return 0; return sc->server; } #ifndef OPENSSL_NO_DEPRECATED_1_1_0 void SSL_set_debug(SSL *s, int debug) { /* Old function was do-nothing anyway... */ (void)s; (void)debug; } #endif void SSL_set_security_level(SSL *s, int level) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return; sc->cert->sec_level = level; } int SSL_get_security_level(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL) return 0; return sc->cert->sec_level; } void SSL_set_security_callback(SSL *s, int (*cb) (const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid, void *other, void *ex)) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return; sc->cert->sec_cb = cb; } int (*SSL_get_security_callback(const SSL *s)) (const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid, void *other, void *ex) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL) return NULL; return sc->cert->sec_cb; } void SSL_set0_security_ex_data(SSL *s, void *ex) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return; sc->cert->sec_ex = ex; } void *SSL_get0_security_ex_data(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL) return NULL; return sc->cert->sec_ex; } void SSL_CTX_set_security_level(SSL_CTX *ctx, int level) { ctx->cert->sec_level = level; } int SSL_CTX_get_security_level(const SSL_CTX *ctx) { return ctx->cert->sec_level; } void SSL_CTX_set_security_callback(SSL_CTX *ctx, int (*cb) (const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid, void *other, void *ex)) { ctx->cert->sec_cb = cb; } int (*SSL_CTX_get_security_callback(const SSL_CTX *ctx)) (const SSL *s, const SSL_CTX *ctx, int op, int bits, int nid, void *other, void *ex) { return ctx->cert->sec_cb; } void SSL_CTX_set0_security_ex_data(SSL_CTX *ctx, void *ex) { ctx->cert->sec_ex = ex; } void *SSL_CTX_get0_security_ex_data(const SSL_CTX *ctx) { return ctx->cert->sec_ex; } uint64_t SSL_CTX_get_options(const SSL_CTX *ctx) { return ctx->options; } uint64_t SSL_get_options(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); #ifndef OPENSSL_NO_QUIC if (IS_QUIC(s)) return ossl_quic_get_options(s); #endif if (sc == NULL) return 0; return sc->options; } uint64_t SSL_CTX_set_options(SSL_CTX *ctx, uint64_t op) { return ctx->options |= op; } uint64_t SSL_set_options(SSL *s, uint64_t op) { SSL_CONNECTION *sc; OSSL_PARAM options[2], *opts = options; #ifndef OPENSSL_NO_QUIC if (IS_QUIC(s)) return ossl_quic_set_options(s, op); #endif sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; sc->options |= op; *opts++ = OSSL_PARAM_construct_uint64(OSSL_LIBSSL_RECORD_LAYER_PARAM_OPTIONS, &sc->options); *opts = OSSL_PARAM_construct_end(); /* Ignore return value */ sc->rlayer.rrlmethod->set_options(sc->rlayer.rrl, options); sc->rlayer.wrlmethod->set_options(sc->rlayer.wrl, options); return sc->options; } uint64_t SSL_CTX_clear_options(SSL_CTX *ctx, uint64_t op) { return ctx->options &= ~op; } uint64_t SSL_clear_options(SSL *s, uint64_t op) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); OSSL_PARAM options[2], *opts = options; #ifndef OPENSSL_NO_QUIC if (IS_QUIC(s)) return ossl_quic_clear_options(s, op); #endif if (sc == NULL) return 0; sc->options &= ~op; *opts++ = OSSL_PARAM_construct_uint64(OSSL_LIBSSL_RECORD_LAYER_PARAM_OPTIONS, &sc->options); *opts = OSSL_PARAM_construct_end(); /* Ignore return value */ sc->rlayer.rrlmethod->set_options(sc->rlayer.rrl, options); sc->rlayer.wrlmethod->set_options(sc->rlayer.wrl, options); return sc->options; } STACK_OF(X509) *SSL_get0_verified_chain(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL) return NULL; return sc->verified_chain; } IMPLEMENT_OBJ_BSEARCH_GLOBAL_CMP_FN(SSL_CIPHER, SSL_CIPHER, ssl_cipher_id); #ifndef OPENSSL_NO_CT /* * Moves SCTs from the |src| stack to the |dst| stack. * The source of each SCT will be set to |origin|. * If |dst| points to a NULL pointer, a new stack will be created and owned by * the caller. * Returns the number of SCTs moved, or a negative integer if an error occurs. * The |dst| stack is created and possibly partially populated even in case * of error, likewise the |src| stack may be left in an intermediate state. */ static int ct_move_scts(STACK_OF(SCT) **dst, STACK_OF(SCT) *src, sct_source_t origin) { int scts_moved = 0; SCT *sct = NULL; if (*dst == NULL) { *dst = sk_SCT_new_null(); if (*dst == NULL) { ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB); goto err; } } while ((sct = sk_SCT_pop(src)) != NULL) { if (SCT_set_source(sct, origin) != 1) goto err; if (!sk_SCT_push(*dst, sct)) goto err; scts_moved += 1; } return scts_moved; err: SCT_free(sct); return -1; } /* * Look for data collected during ServerHello and parse if found. * Returns the number of SCTs extracted. */ static int ct_extract_tls_extension_scts(SSL_CONNECTION *s) { int scts_extracted = 0; if (s->ext.scts != NULL) { const unsigned char *p = s->ext.scts; STACK_OF(SCT) *scts = o2i_SCT_LIST(NULL, &p, s->ext.scts_len); scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_TLS_EXTENSION); SCT_LIST_free(scts); } return scts_extracted; } /* * Checks for an OCSP response and then attempts to extract any SCTs found if it * contains an SCT X509 extension. They will be stored in |s->scts|. * Returns: * - The number of SCTs extracted, assuming an OCSP response exists. * - 0 if no OCSP response exists or it contains no SCTs. * - A negative integer if an error occurs. */ static int ct_extract_ocsp_response_scts(SSL_CONNECTION *s) { # ifndef OPENSSL_NO_OCSP int scts_extracted = 0; const unsigned char *p; OCSP_BASICRESP *br = NULL; OCSP_RESPONSE *rsp = NULL; STACK_OF(SCT) *scts = NULL; int i; if (s->ext.ocsp.resp == NULL || s->ext.ocsp.resp_len == 0) goto err; p = s->ext.ocsp.resp; rsp = d2i_OCSP_RESPONSE(NULL, &p, (int)s->ext.ocsp.resp_len); if (rsp == NULL) goto err; br = OCSP_response_get1_basic(rsp); if (br == NULL) goto err; for (i = 0; i < OCSP_resp_count(br); ++i) { OCSP_SINGLERESP *single = OCSP_resp_get0(br, i); if (single == NULL) continue; scts = OCSP_SINGLERESP_get1_ext_d2i(single, NID_ct_cert_scts, NULL, NULL); scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_OCSP_STAPLED_RESPONSE); if (scts_extracted < 0) goto err; } err: SCT_LIST_free(scts); OCSP_BASICRESP_free(br); OCSP_RESPONSE_free(rsp); return scts_extracted; # else /* Behave as if no OCSP response exists */ return 0; # endif } /* * Attempts to extract SCTs from the peer certificate. * Return the number of SCTs extracted, or a negative integer if an error * occurs. */ static int ct_extract_x509v3_extension_scts(SSL_CONNECTION *s) { int scts_extracted = 0; X509 *cert = s->session != NULL ? s->session->peer : NULL; if (cert != NULL) { STACK_OF(SCT) *scts = X509_get_ext_d2i(cert, NID_ct_precert_scts, NULL, NULL); scts_extracted = ct_move_scts(&s->scts, scts, SCT_SOURCE_X509V3_EXTENSION); SCT_LIST_free(scts); } return scts_extracted; } /* * Attempts to find all received SCTs by checking TLS extensions, the OCSP * response (if it exists) and X509v3 extensions in the certificate. * Returns NULL if an error occurs. */ const STACK_OF(SCT) *SSL_get0_peer_scts(SSL *s) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return NULL; if (!sc->scts_parsed) { if (ct_extract_tls_extension_scts(sc) < 0 || ct_extract_ocsp_response_scts(sc) < 0 || ct_extract_x509v3_extension_scts(sc) < 0) goto err; sc->scts_parsed = 1; } return sc->scts; err: return NULL; } static int ct_permissive(const CT_POLICY_EVAL_CTX *ctx, const STACK_OF(SCT) *scts, void *unused_arg) { return 1; } static int ct_strict(const CT_POLICY_EVAL_CTX *ctx, const STACK_OF(SCT) *scts, void *unused_arg) { int count = scts != NULL ? sk_SCT_num(scts) : 0; int i; for (i = 0; i < count; ++i) { SCT *sct = sk_SCT_value(scts, i); int status = SCT_get_validation_status(sct); if (status == SCT_VALIDATION_STATUS_VALID) return 1; } ERR_raise(ERR_LIB_SSL, SSL_R_NO_VALID_SCTS); return 0; } int SSL_set_ct_validation_callback(SSL *s, ssl_ct_validation_cb callback, void *arg) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; /* * Since code exists that uses the custom extension handler for CT, look * for this and throw an error if they have already registered to use CT. */ if (callback != NULL && SSL_CTX_has_client_custom_ext(s->ctx, TLSEXT_TYPE_signed_certificate_timestamp)) { ERR_raise(ERR_LIB_SSL, SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED); return 0; } if (callback != NULL) { /* * If we are validating CT, then we MUST accept SCTs served via OCSP */ if (!SSL_set_tlsext_status_type(s, TLSEXT_STATUSTYPE_ocsp)) return 0; } sc->ct_validation_callback = callback; sc->ct_validation_callback_arg = arg; return 1; } int SSL_CTX_set_ct_validation_callback(SSL_CTX *ctx, ssl_ct_validation_cb callback, void *arg) { /* * Since code exists that uses the custom extension handler for CT, look for * this and throw an error if they have already registered to use CT. */ if (callback != NULL && SSL_CTX_has_client_custom_ext(ctx, TLSEXT_TYPE_signed_certificate_timestamp)) { ERR_raise(ERR_LIB_SSL, SSL_R_CUSTOM_EXT_HANDLER_ALREADY_INSTALLED); return 0; } ctx->ct_validation_callback = callback; ctx->ct_validation_callback_arg = arg; return 1; } int SSL_ct_is_enabled(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL) return 0; return sc->ct_validation_callback != NULL; } int SSL_CTX_ct_is_enabled(const SSL_CTX *ctx) { return ctx->ct_validation_callback != NULL; } int ssl_validate_ct(SSL_CONNECTION *s) { int ret = 0; X509 *cert = s->session != NULL ? s->session->peer : NULL; X509 *issuer; SSL_DANE *dane = &s->dane; CT_POLICY_EVAL_CTX *ctx = NULL; const STACK_OF(SCT) *scts; /* * If no callback is set, the peer is anonymous, or its chain is invalid, * skip SCT validation - just return success. Applications that continue * handshakes without certificates, with unverified chains, or pinned leaf * certificates are outside the scope of the WebPKI and CT. * * The above exclusions notwithstanding the vast majority of peers will * have rather ordinary certificate chains validated by typical * applications that perform certificate verification and therefore will * process SCTs when enabled. */ if (s->ct_validation_callback == NULL || cert == NULL || s->verify_result != X509_V_OK || s->verified_chain == NULL || sk_X509_num(s->verified_chain) <= 1) return 1; /* * CT not applicable for chains validated via DANE-TA(2) or DANE-EE(3) * trust-anchors. See https://tools.ietf.org/html/rfc7671#section-4.2 */ if (DANETLS_ENABLED(dane) && dane->mtlsa != NULL) { switch (dane->mtlsa->usage) { case DANETLS_USAGE_DANE_TA: case DANETLS_USAGE_DANE_EE: return 1; } } ctx = CT_POLICY_EVAL_CTX_new_ex(SSL_CONNECTION_GET_CTX(s)->libctx, SSL_CONNECTION_GET_CTX(s)->propq); if (ctx == NULL) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_CT_LIB); goto end; } issuer = sk_X509_value(s->verified_chain, 1); CT_POLICY_EVAL_CTX_set1_cert(ctx, cert); CT_POLICY_EVAL_CTX_set1_issuer(ctx, issuer); CT_POLICY_EVAL_CTX_set_shared_CTLOG_STORE(ctx, SSL_CONNECTION_GET_CTX(s)->ctlog_store); CT_POLICY_EVAL_CTX_set_time( ctx, (uint64_t)SSL_SESSION_get_time(s->session) * 1000); scts = SSL_get0_peer_scts(SSL_CONNECTION_GET_SSL(s)); /* * This function returns success (> 0) only when all the SCTs are valid, 0 * when some are invalid, and < 0 on various internal errors (out of * memory, etc.). Having some, or even all, invalid SCTs is not sufficient * reason to abort the handshake, that decision is up to the callback. * Therefore, we error out only in the unexpected case that the return * value is negative. * * XXX: One might well argue that the return value of this function is an * unfortunate design choice. Its job is only to determine the validation * status of each of the provided SCTs. So long as it correctly separates * the wheat from the chaff it should return success. Failure in this case * ought to correspond to an inability to carry out its duties. */ if (SCT_LIST_validate(scts, ctx) < 0) { SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_SCT_VERIFICATION_FAILED); goto end; } ret = s->ct_validation_callback(ctx, scts, s->ct_validation_callback_arg); if (ret < 0) ret = 0; /* This function returns 0 on failure */ if (!ret) SSLfatal(s, SSL_AD_HANDSHAKE_FAILURE, SSL_R_CALLBACK_FAILED); end: CT_POLICY_EVAL_CTX_free(ctx); /* * With SSL_VERIFY_NONE the session may be cached and re-used despite a * failure return code here. Also the application may wish the complete * the handshake, and then disconnect cleanly at a higher layer, after * checking the verification status of the completed connection. * * We therefore force a certificate verification failure which will be * visible via SSL_get_verify_result() and cached as part of any resumed * session. * * Note: the permissive callback is for information gathering only, always * returns success, and does not affect verification status. Only the * strict callback or a custom application-specified callback can trigger * connection failure or record a verification error. */ if (ret <= 0) s->verify_result = X509_V_ERR_NO_VALID_SCTS; return ret; } int SSL_CTX_enable_ct(SSL_CTX *ctx, int validation_mode) { switch (validation_mode) { default: ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_CT_VALIDATION_TYPE); return 0; case SSL_CT_VALIDATION_PERMISSIVE: return SSL_CTX_set_ct_validation_callback(ctx, ct_permissive, NULL); case SSL_CT_VALIDATION_STRICT: return SSL_CTX_set_ct_validation_callback(ctx, ct_strict, NULL); } } int SSL_enable_ct(SSL *s, int validation_mode) { switch (validation_mode) { default: ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_CT_VALIDATION_TYPE); return 0; case SSL_CT_VALIDATION_PERMISSIVE: return SSL_set_ct_validation_callback(s, ct_permissive, NULL); case SSL_CT_VALIDATION_STRICT: return SSL_set_ct_validation_callback(s, ct_strict, NULL); } } int SSL_CTX_set_default_ctlog_list_file(SSL_CTX *ctx) { return CTLOG_STORE_load_default_file(ctx->ctlog_store); } int SSL_CTX_set_ctlog_list_file(SSL_CTX *ctx, const char *path) { return CTLOG_STORE_load_file(ctx->ctlog_store, path); } void SSL_CTX_set0_ctlog_store(SSL_CTX *ctx, CTLOG_STORE *logs) { CTLOG_STORE_free(ctx->ctlog_store); ctx->ctlog_store = logs; } const CTLOG_STORE *SSL_CTX_get0_ctlog_store(const SSL_CTX *ctx) { return ctx->ctlog_store; } #endif /* OPENSSL_NO_CT */ void SSL_CTX_set_client_hello_cb(SSL_CTX *c, SSL_client_hello_cb_fn cb, void *arg) { c->client_hello_cb = cb; c->client_hello_cb_arg = arg; } int SSL_client_hello_isv2(SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; if (sc->clienthello == NULL) return 0; return sc->clienthello->isv2; } unsigned int SSL_client_hello_get0_legacy_version(SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; if (sc->clienthello == NULL) return 0; return sc->clienthello->legacy_version; } size_t SSL_client_hello_get0_random(SSL *s, const unsigned char **out) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; if (sc->clienthello == NULL) return 0; if (out != NULL) *out = sc->clienthello->random; return SSL3_RANDOM_SIZE; } size_t SSL_client_hello_get0_session_id(SSL *s, const unsigned char **out) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; if (sc->clienthello == NULL) return 0; if (out != NULL) *out = sc->clienthello->session_id; return sc->clienthello->session_id_len; } size_t SSL_client_hello_get0_ciphers(SSL *s, const unsigned char **out) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; if (sc->clienthello == NULL) return 0; if (out != NULL) *out = PACKET_data(&sc->clienthello->ciphersuites); return PACKET_remaining(&sc->clienthello->ciphersuites); } size_t SSL_client_hello_get0_compression_methods(SSL *s, const unsigned char **out) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; if (sc->clienthello == NULL) return 0; if (out != NULL) *out = sc->clienthello->compressions; return sc->clienthello->compressions_len; } int SSL_client_hello_get1_extensions_present(SSL *s, int **out, size_t *outlen) { RAW_EXTENSION *ext; int *present; size_t num = 0, i; const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; if (sc->clienthello == NULL || out == NULL || outlen == NULL) return 0; for (i = 0; i < sc->clienthello->pre_proc_exts_len; i++) { ext = sc->clienthello->pre_proc_exts + i; if (ext->present) num++; } if (num == 0) { *out = NULL; *outlen = 0; return 1; } if ((present = OPENSSL_malloc(sizeof(*present) * num)) == NULL) return 0; for (i = 0; i < sc->clienthello->pre_proc_exts_len; i++) { ext = sc->clienthello->pre_proc_exts + i; if (ext->present) { if (ext->received_order >= num) goto err; present[ext->received_order] = ext->type; } } *out = present; *outlen = num; return 1; err: OPENSSL_free(present); return 0; } int SSL_client_hello_get_extension_order(SSL *s, uint16_t *exts, size_t *num_exts) { RAW_EXTENSION *ext; size_t num = 0, i; const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; if (sc->clienthello == NULL || num_exts == NULL) return 0; for (i = 0; i < sc->clienthello->pre_proc_exts_len; i++) { ext = sc->clienthello->pre_proc_exts + i; if (ext->present) num++; } if (num == 0) { *num_exts = 0; return 1; } if (exts == NULL) { *num_exts = num; return 1; } if (*num_exts < num) return 0; for (i = 0; i < sc->clienthello->pre_proc_exts_len; i++) { ext = sc->clienthello->pre_proc_exts + i; if (ext->present) { if (ext->received_order >= num) return 0; exts[ext->received_order] = ext->type; } } *num_exts = num; return 1; } int SSL_client_hello_get0_ext(SSL *s, unsigned int type, const unsigned char **out, size_t *outlen) { size_t i; RAW_EXTENSION *r; const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; if (sc->clienthello == NULL) return 0; for (i = 0; i < sc->clienthello->pre_proc_exts_len; ++i) { r = sc->clienthello->pre_proc_exts + i; if (r->present && r->type == type) { if (out != NULL) *out = PACKET_data(&r->data); if (outlen != NULL) *outlen = PACKET_remaining(&r->data); return 1; } } return 0; } int SSL_free_buffers(SSL *ssl) { RECORD_LAYER *rl; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL_ONLY(ssl); if (sc == NULL) return 0; rl = &sc->rlayer; return rl->rrlmethod->free_buffers(rl->rrl) && rl->wrlmethod->free_buffers(rl->wrl); } int SSL_alloc_buffers(SSL *ssl) { RECORD_LAYER *rl; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl); if (sc == NULL) return 0; /* QUIC always has buffers allocated. */ if (IS_QUIC(ssl)) return 1; rl = &sc->rlayer; return rl->rrlmethod->alloc_buffers(rl->rrl) && rl->wrlmethod->alloc_buffers(rl->wrl); } void SSL_CTX_set_keylog_callback(SSL_CTX *ctx, SSL_CTX_keylog_cb_func cb) { ctx->keylog_callback = cb; } SSL_CTX_keylog_cb_func SSL_CTX_get_keylog_callback(const SSL_CTX *ctx) { return ctx->keylog_callback; } static int nss_keylog_int(const char *prefix, SSL_CONNECTION *sc, const uint8_t *parameter_1, size_t parameter_1_len, const uint8_t *parameter_2, size_t parameter_2_len) { char *out = NULL; char *cursor = NULL; size_t out_len = 0; size_t i; size_t prefix_len; SSL_CTX *sctx = SSL_CONNECTION_GET_CTX(sc); if (sctx->keylog_callback == NULL) return 1; /* * Our output buffer will contain the following strings, rendered with * space characters in between, terminated by a NULL character: first the * prefix, then the first parameter, then the second parameter. The * meaning of each parameter depends on the specific key material being * logged. Note that the first and second parameters are encoded in * hexadecimal, so we need a buffer that is twice their lengths. */ prefix_len = strlen(prefix); out_len = prefix_len + (2 * parameter_1_len) + (2 * parameter_2_len) + 3; if ((out = cursor = OPENSSL_malloc(out_len)) == NULL) return 0; strcpy(cursor, prefix); cursor += prefix_len; *cursor++ = ' '; for (i = 0; i < parameter_1_len; i++) { sprintf(cursor, "%02x", parameter_1[i]); cursor += 2; } *cursor++ = ' '; for (i = 0; i < parameter_2_len; i++) { sprintf(cursor, "%02x", parameter_2[i]); cursor += 2; } *cursor = '\0'; sctx->keylog_callback(SSL_CONNECTION_GET_SSL(sc), (const char *)out); OPENSSL_clear_free(out, out_len); return 1; } int ssl_log_rsa_client_key_exchange(SSL_CONNECTION *sc, const uint8_t *encrypted_premaster, size_t encrypted_premaster_len, const uint8_t *premaster, size_t premaster_len) { if (encrypted_premaster_len < 8) { SSLfatal(sc, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return 0; } /* We only want the first 8 bytes of the encrypted premaster as a tag. */ return nss_keylog_int("RSA", sc, encrypted_premaster, 8, premaster, premaster_len); } int ssl_log_secret(SSL_CONNECTION *sc, const char *label, const uint8_t *secret, size_t secret_len) { return nss_keylog_int(label, sc, sc->s3.client_random, SSL3_RANDOM_SIZE, secret, secret_len); } #define SSLV2_CIPHER_LEN 3 int ssl_cache_cipherlist(SSL_CONNECTION *s, PACKET *cipher_suites, int sslv2format) { int n; n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN; if (PACKET_remaining(cipher_suites) == 0) { SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_NO_CIPHERS_SPECIFIED); return 0; } if (PACKET_remaining(cipher_suites) % n != 0) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); return 0; } OPENSSL_free(s->s3.tmp.ciphers_raw); s->s3.tmp.ciphers_raw = NULL; s->s3.tmp.ciphers_rawlen = 0; if (sslv2format) { size_t numciphers = PACKET_remaining(cipher_suites) / n; PACKET sslv2ciphers = *cipher_suites; unsigned int leadbyte; unsigned char *raw; /* * We store the raw ciphers list in SSLv3+ format so we need to do some * preprocessing to convert the list first. If there are any SSLv2 only * ciphersuites with a non-zero leading byte then we are going to * slightly over allocate because we won't store those. But that isn't a * problem. */ raw = OPENSSL_malloc(numciphers * TLS_CIPHER_LEN); s->s3.tmp.ciphers_raw = raw; if (raw == NULL) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_CRYPTO_LIB); return 0; } for (s->s3.tmp.ciphers_rawlen = 0; PACKET_remaining(&sslv2ciphers) > 0; raw += TLS_CIPHER_LEN) { if (!PACKET_get_1(&sslv2ciphers, &leadbyte) || (leadbyte == 0 && !PACKET_copy_bytes(&sslv2ciphers, raw, TLS_CIPHER_LEN)) || (leadbyte != 0 && !PACKET_forward(&sslv2ciphers, TLS_CIPHER_LEN))) { SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_PACKET); OPENSSL_free(s->s3.tmp.ciphers_raw); s->s3.tmp.ciphers_raw = NULL; s->s3.tmp.ciphers_rawlen = 0; return 0; } if (leadbyte == 0) s->s3.tmp.ciphers_rawlen += TLS_CIPHER_LEN; } } else if (!PACKET_memdup(cipher_suites, &s->s3.tmp.ciphers_raw, &s->s3.tmp.ciphers_rawlen)) { SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_INTERNAL_ERROR); return 0; } return 1; } int SSL_bytes_to_cipher_list(SSL *s, const unsigned char *bytes, size_t len, int isv2format, STACK_OF(SSL_CIPHER) **sk, STACK_OF(SSL_CIPHER) **scsvs) { PACKET pkt; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; if (!PACKET_buf_init(&pkt, bytes, len)) return 0; return ossl_bytes_to_cipher_list(sc, &pkt, sk, scsvs, isv2format, 0); } int ossl_bytes_to_cipher_list(SSL_CONNECTION *s, PACKET *cipher_suites, STACK_OF(SSL_CIPHER) **skp, STACK_OF(SSL_CIPHER) **scsvs_out, int sslv2format, int fatal) { const SSL_CIPHER *c; STACK_OF(SSL_CIPHER) *sk = NULL; STACK_OF(SSL_CIPHER) *scsvs = NULL; int n; /* 3 = SSLV2_CIPHER_LEN > TLS_CIPHER_LEN = 2. */ unsigned char cipher[SSLV2_CIPHER_LEN]; n = sslv2format ? SSLV2_CIPHER_LEN : TLS_CIPHER_LEN; if (PACKET_remaining(cipher_suites) == 0) { if (fatal) SSLfatal(s, SSL_AD_ILLEGAL_PARAMETER, SSL_R_NO_CIPHERS_SPECIFIED); else ERR_raise(ERR_LIB_SSL, SSL_R_NO_CIPHERS_SPECIFIED); return 0; } if (PACKET_remaining(cipher_suites) % n != 0) { if (fatal) SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); else ERR_raise(ERR_LIB_SSL, SSL_R_ERROR_IN_RECEIVED_CIPHER_LIST); return 0; } sk = sk_SSL_CIPHER_new_null(); scsvs = sk_SSL_CIPHER_new_null(); if (sk == NULL || scsvs == NULL) { if (fatal) SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_CRYPTO_LIB); else ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB); goto err; } while (PACKET_copy_bytes(cipher_suites, cipher, n)) { /* * SSLv3 ciphers wrapped in an SSLv2-compatible ClientHello have the * first byte set to zero, while true SSLv2 ciphers have a non-zero * first byte. We don't support any true SSLv2 ciphers, so skip them. */ if (sslv2format && cipher[0] != '\0') continue; /* For SSLv2-compat, ignore leading 0-byte. */ c = ssl_get_cipher_by_char(s, sslv2format ? &cipher[1] : cipher, 1); if (c != NULL) { if ((c->valid && !sk_SSL_CIPHER_push(sk, c)) || (!c->valid && !sk_SSL_CIPHER_push(scsvs, c))) { if (fatal) SSLfatal(s, SSL_AD_INTERNAL_ERROR, ERR_R_CRYPTO_LIB); else ERR_raise(ERR_LIB_SSL, ERR_R_CRYPTO_LIB); goto err; } } } if (PACKET_remaining(cipher_suites) > 0) { if (fatal) SSLfatal(s, SSL_AD_DECODE_ERROR, SSL_R_BAD_LENGTH); else ERR_raise(ERR_LIB_SSL, SSL_R_BAD_LENGTH); goto err; } if (skp != NULL) *skp = sk; else sk_SSL_CIPHER_free(sk); if (scsvs_out != NULL) *scsvs_out = scsvs; else sk_SSL_CIPHER_free(scsvs); return 1; err: sk_SSL_CIPHER_free(sk); sk_SSL_CIPHER_free(scsvs); return 0; } int SSL_CTX_set_max_early_data(SSL_CTX *ctx, uint32_t max_early_data) { ctx->max_early_data = max_early_data; return 1; } uint32_t SSL_CTX_get_max_early_data(const SSL_CTX *ctx) { return ctx->max_early_data; } int SSL_set_max_early_data(SSL *s, uint32_t max_early_data) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL_ONLY(s); if (sc == NULL) return 0; sc->max_early_data = max_early_data; return 1; } uint32_t SSL_get_max_early_data(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL) return 0; return sc->max_early_data; } int SSL_CTX_set_recv_max_early_data(SSL_CTX *ctx, uint32_t recv_max_early_data) { ctx->recv_max_early_data = recv_max_early_data; return 1; } uint32_t SSL_CTX_get_recv_max_early_data(const SSL_CTX *ctx) { return ctx->recv_max_early_data; } int SSL_set_recv_max_early_data(SSL *s, uint32_t recv_max_early_data) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL_ONLY(s); if (sc == NULL) return 0; sc->recv_max_early_data = recv_max_early_data; return 1; } uint32_t SSL_get_recv_max_early_data(const SSL *s) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (sc == NULL) return 0; return sc->recv_max_early_data; } __owur unsigned int ssl_get_max_send_fragment(const SSL_CONNECTION *sc) { /* Return any active Max Fragment Len extension */ if (sc->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(sc->session)) return GET_MAX_FRAGMENT_LENGTH(sc->session); /* return current SSL connection setting */ return sc->max_send_fragment; } __owur unsigned int ssl_get_split_send_fragment(const SSL_CONNECTION *sc) { /* Return a value regarding an active Max Fragment Len extension */ if (sc->session != NULL && USE_MAX_FRAGMENT_LENGTH_EXT(sc->session) && sc->split_send_fragment > GET_MAX_FRAGMENT_LENGTH(sc->session)) return GET_MAX_FRAGMENT_LENGTH(sc->session); /* else limit |split_send_fragment| to current |max_send_fragment| */ if (sc->split_send_fragment > sc->max_send_fragment) return sc->max_send_fragment; /* return current SSL connection setting */ return sc->split_send_fragment; } int SSL_stateless(SSL *s) { int ret; SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL_ONLY(s); if (sc == NULL) return 0; /* Ensure there is no state left over from a previous invocation */ if (!SSL_clear(s)) return 0; ERR_clear_error(); sc->s3.flags |= TLS1_FLAGS_STATELESS; ret = SSL_accept(s); sc->s3.flags &= ~TLS1_FLAGS_STATELESS; if (ret > 0 && sc->ext.cookieok) return 1; if (sc->hello_retry_request == SSL_HRR_PENDING && !ossl_statem_in_error(sc)) return 0; return -1; } void SSL_CTX_set_post_handshake_auth(SSL_CTX *ctx, int val) { ctx->pha_enabled = val; } void SSL_set_post_handshake_auth(SSL *ssl, int val) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL_ONLY(ssl); if (sc == NULL) return; sc->pha_enabled = val; } int SSL_verify_client_post_handshake(SSL *ssl) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(ssl); #ifndef OPENSSL_NO_QUIC if (IS_QUIC(ssl)) { ERR_raise(ERR_LIB_SSL, SSL_R_WRONG_SSL_VERSION); return 0; } #endif if (sc == NULL) return 0; if (!SSL_CONNECTION_IS_TLS13(sc)) { ERR_raise(ERR_LIB_SSL, SSL_R_WRONG_SSL_VERSION); return 0; } if (!sc->server) { ERR_raise(ERR_LIB_SSL, SSL_R_NOT_SERVER); return 0; } if (!SSL_is_init_finished(ssl)) { ERR_raise(ERR_LIB_SSL, SSL_R_STILL_IN_INIT); return 0; } switch (sc->post_handshake_auth) { case SSL_PHA_NONE: ERR_raise(ERR_LIB_SSL, SSL_R_EXTENSION_NOT_RECEIVED); return 0; default: case SSL_PHA_EXT_SENT: ERR_raise(ERR_LIB_SSL, ERR_R_INTERNAL_ERROR); return 0; case SSL_PHA_EXT_RECEIVED: break; case SSL_PHA_REQUEST_PENDING: ERR_raise(ERR_LIB_SSL, SSL_R_REQUEST_PENDING); return 0; case SSL_PHA_REQUESTED: ERR_raise(ERR_LIB_SSL, SSL_R_REQUEST_SENT); return 0; } sc->post_handshake_auth = SSL_PHA_REQUEST_PENDING; /* checks verify_mode and algorithm_auth */ if (!send_certificate_request(sc)) { sc->post_handshake_auth = SSL_PHA_EXT_RECEIVED; /* restore on error */ ERR_raise(ERR_LIB_SSL, SSL_R_INVALID_CONFIG); return 0; } ossl_statem_set_in_init(sc, 1); return 1; } int SSL_CTX_set_session_ticket_cb(SSL_CTX *ctx, SSL_CTX_generate_session_ticket_fn gen_cb, SSL_CTX_decrypt_session_ticket_fn dec_cb, void *arg) { ctx->generate_ticket_cb = gen_cb; ctx->decrypt_ticket_cb = dec_cb; ctx->ticket_cb_data = arg; return 1; } void SSL_CTX_set_allow_early_data_cb(SSL_CTX *ctx, SSL_allow_early_data_cb_fn cb, void *arg) { ctx->allow_early_data_cb = cb; ctx->allow_early_data_cb_data = arg; } void SSL_set_allow_early_data_cb(SSL *s, SSL_allow_early_data_cb_fn cb, void *arg) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL_ONLY(s); if (sc == NULL) return; sc->allow_early_data_cb = cb; sc->allow_early_data_cb_data = arg; } const EVP_CIPHER *ssl_evp_cipher_fetch(OSSL_LIB_CTX *libctx, int nid, const char *properties) { const EVP_CIPHER *ciph; ciph = tls_get_cipher_from_engine(nid); if (ciph != NULL) return ciph; /* * If there is no engine cipher then we do an explicit fetch. This may fail * and that could be ok */ ERR_set_mark(); ciph = EVP_CIPHER_fetch(libctx, OBJ_nid2sn(nid), properties); ERR_pop_to_mark(); return ciph; } int ssl_evp_cipher_up_ref(const EVP_CIPHER *cipher) { /* Don't up-ref an implicit EVP_CIPHER */ if (EVP_CIPHER_get0_provider(cipher) == NULL) return 1; /* * The cipher was explicitly fetched and therefore it is safe to cast * away the const */ return EVP_CIPHER_up_ref((EVP_CIPHER *)cipher); } void ssl_evp_cipher_free(const EVP_CIPHER *cipher) { if (cipher == NULL) return; if (EVP_CIPHER_get0_provider(cipher) != NULL) { /* * The cipher was explicitly fetched and therefore it is safe to cast * away the const */ EVP_CIPHER_free((EVP_CIPHER *)cipher); } } const EVP_MD *ssl_evp_md_fetch(OSSL_LIB_CTX *libctx, int nid, const char *properties) { const EVP_MD *md; md = tls_get_digest_from_engine(nid); if (md != NULL) return md; /* Otherwise we do an explicit fetch */ ERR_set_mark(); md = EVP_MD_fetch(libctx, OBJ_nid2sn(nid), properties); ERR_pop_to_mark(); return md; } int ssl_evp_md_up_ref(const EVP_MD *md) { /* Don't up-ref an implicit EVP_MD */ if (EVP_MD_get0_provider(md) == NULL) return 1; /* * The digest was explicitly fetched and therefore it is safe to cast * away the const */ return EVP_MD_up_ref((EVP_MD *)md); } void ssl_evp_md_free(const EVP_MD *md) { if (md == NULL) return; if (EVP_MD_get0_provider(md) != NULL) { /* * The digest was explicitly fetched and therefore it is safe to cast * away the const */ EVP_MD_free((EVP_MD *)md); } } int SSL_set0_tmp_dh_pkey(SSL *s, EVP_PKEY *dhpkey) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; if (!ssl_security(sc, SSL_SECOP_TMP_DH, EVP_PKEY_get_security_bits(dhpkey), 0, dhpkey)) { ERR_raise(ERR_LIB_SSL, SSL_R_DH_KEY_TOO_SMALL); return 0; } EVP_PKEY_free(sc->cert->dh_tmp); sc->cert->dh_tmp = dhpkey; return 1; } int SSL_CTX_set0_tmp_dh_pkey(SSL_CTX *ctx, EVP_PKEY *dhpkey) { if (!ssl_ctx_security(ctx, SSL_SECOP_TMP_DH, EVP_PKEY_get_security_bits(dhpkey), 0, dhpkey)) { ERR_raise(ERR_LIB_SSL, SSL_R_DH_KEY_TOO_SMALL); return 0; } EVP_PKEY_free(ctx->cert->dh_tmp); ctx->cert->dh_tmp = dhpkey; return 1; } /* QUIC-specific methods which are supported on QUIC connections only. */ int SSL_handle_events(SSL *s) { SSL_CONNECTION *sc; #ifndef OPENSSL_NO_QUIC if (IS_QUIC(s)) return ossl_quic_handle_events(s); #endif sc = SSL_CONNECTION_FROM_SSL_ONLY(s); if (sc != NULL && SSL_CONNECTION_IS_DTLS(sc)) /* * DTLSv1_handle_timeout returns 0 if the timer wasn't expired yet, * which we consider a success case. Theoretically DTLSv1_handle_timeout * can also return 0 if s is NULL or not a DTLS object, but we've * already ruled out those possibilities above, so this is not possible * here. Thus the only failure cases are where DTLSv1_handle_timeout * returns -1. */ return DTLSv1_handle_timeout(s) >= 0; return 1; } int SSL_get_event_timeout(SSL *s, struct timeval *tv, int *is_infinite) { SSL_CONNECTION *sc; #ifndef OPENSSL_NO_QUIC if (IS_QUIC(s)) return ossl_quic_get_event_timeout(s, tv, is_infinite); #endif sc = SSL_CONNECTION_FROM_SSL_ONLY(s); if (sc != NULL && SSL_CONNECTION_IS_DTLS(sc) && DTLSv1_get_timeout(s, tv)) { *is_infinite = 0; return 1; } tv->tv_sec = 1000000; tv->tv_usec = 0; *is_infinite = 1; return 1; } int SSL_get_rpoll_descriptor(SSL *s, BIO_POLL_DESCRIPTOR *desc) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); #ifndef OPENSSL_NO_QUIC if (IS_QUIC(s)) return ossl_quic_get_rpoll_descriptor(s, desc); #endif if (sc == NULL || sc->rbio == NULL) return 0; return BIO_get_rpoll_descriptor(sc->rbio, desc); } int SSL_get_wpoll_descriptor(SSL *s, BIO_POLL_DESCRIPTOR *desc) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); #ifndef OPENSSL_NO_QUIC if (IS_QUIC(s)) return ossl_quic_get_wpoll_descriptor(s, desc); #endif if (sc == NULL || sc->wbio == NULL) return 0; return BIO_get_wpoll_descriptor(sc->wbio, desc); } int SSL_net_read_desired(SSL *s) { #ifndef OPENSSL_NO_QUIC if (!IS_QUIC(s)) return SSL_want_read(s); return ossl_quic_get_net_read_desired(s); #else return SSL_want_read(s); #endif } int SSL_net_write_desired(SSL *s) { #ifndef OPENSSL_NO_QUIC if (!IS_QUIC(s)) return SSL_want_write(s); return ossl_quic_get_net_write_desired(s); #else return SSL_want_write(s); #endif } int SSL_set_blocking_mode(SSL *s, int blocking) { #ifndef OPENSSL_NO_QUIC if (!IS_QUIC(s)) return 0; return ossl_quic_conn_set_blocking_mode(s, blocking); #else return 0; #endif } int SSL_get_blocking_mode(SSL *s) { #ifndef OPENSSL_NO_QUIC if (!IS_QUIC(s)) return -1; return ossl_quic_conn_get_blocking_mode(s); #else return -1; #endif } int SSL_set1_initial_peer_addr(SSL *s, const BIO_ADDR *peer_addr) { #ifndef OPENSSL_NO_QUIC if (!IS_QUIC(s)) return 0; return ossl_quic_conn_set_initial_peer_addr(s, peer_addr); #else return 0; #endif } int SSL_shutdown_ex(SSL *ssl, uint64_t flags, const SSL_SHUTDOWN_EX_ARGS *args, size_t args_len) { #ifndef OPENSSL_NO_QUIC if (!IS_QUIC(ssl)) return SSL_shutdown(ssl); return ossl_quic_conn_shutdown(ssl, flags, args, args_len); #else return SSL_shutdown(ssl); #endif } int SSL_stream_conclude(SSL *ssl, uint64_t flags) { #ifndef OPENSSL_NO_QUIC if (!IS_QUIC(ssl)) return 0; return ossl_quic_conn_stream_conclude(ssl); #else return 0; #endif } SSL *SSL_new_stream(SSL *s, uint64_t flags) { #ifndef OPENSSL_NO_QUIC if (!IS_QUIC(s)) return NULL; return ossl_quic_conn_stream_new(s, flags); #else return NULL; #endif } SSL *SSL_get0_connection(SSL *s) { #ifndef OPENSSL_NO_QUIC if (!IS_QUIC(s)) return s; return ossl_quic_get0_connection(s); #else return s; #endif } int SSL_is_connection(SSL *s) { return SSL_get0_connection(s) == s; } int SSL_get_stream_type(SSL *s) { #ifndef OPENSSL_NO_QUIC if (!IS_QUIC(s)) return SSL_STREAM_TYPE_BIDI; return ossl_quic_get_stream_type(s); #else return SSL_STREAM_TYPE_BIDI; #endif } uint64_t SSL_get_stream_id(SSL *s) { #ifndef OPENSSL_NO_QUIC if (!IS_QUIC(s)) return UINT64_MAX; return ossl_quic_get_stream_id(s); #else return UINT64_MAX; #endif } int SSL_is_stream_local(SSL *s) { #ifndef OPENSSL_NO_QUIC if (!IS_QUIC(s)) return -1; return ossl_quic_is_stream_local(s); #else return -1; #endif } int SSL_set_default_stream_mode(SSL *s, uint32_t mode) { #ifndef OPENSSL_NO_QUIC if (!IS_QUIC(s)) return 0; return ossl_quic_set_default_stream_mode(s, mode); #else return 0; #endif } int SSL_set_incoming_stream_policy(SSL *s, int policy, uint64_t aec) { #ifndef OPENSSL_NO_QUIC if (!IS_QUIC(s)) return 0; return ossl_quic_set_incoming_stream_policy(s, policy, aec); #else return 0; #endif } SSL *SSL_accept_stream(SSL *s, uint64_t flags) { #ifndef OPENSSL_NO_QUIC if (!IS_QUIC(s)) return NULL; return ossl_quic_accept_stream(s, flags); #else return NULL; #endif } size_t SSL_get_accept_stream_queue_len(SSL *s) { #ifndef OPENSSL_NO_QUIC if (!IS_QUIC(s)) return 0; return ossl_quic_get_accept_stream_queue_len(s); #else return 0; #endif } int SSL_stream_reset(SSL *s, const SSL_STREAM_RESET_ARGS *args, size_t args_len) { #ifndef OPENSSL_NO_QUIC if (!IS_QUIC(s)) return 0; return ossl_quic_stream_reset(s, args, args_len); #else return 0; #endif } int SSL_get_stream_read_state(SSL *s) { #ifndef OPENSSL_NO_QUIC if (!IS_QUIC(s)) return SSL_STREAM_STATE_NONE; return ossl_quic_get_stream_read_state(s); #else return SSL_STREAM_STATE_NONE; #endif } int SSL_get_stream_write_state(SSL *s) { #ifndef OPENSSL_NO_QUIC if (!IS_QUIC(s)) return SSL_STREAM_STATE_NONE; return ossl_quic_get_stream_write_state(s); #else return SSL_STREAM_STATE_NONE; #endif } int SSL_get_stream_read_error_code(SSL *s, uint64_t *app_error_code) { #ifndef OPENSSL_NO_QUIC if (!IS_QUIC(s)) return -1; return ossl_quic_get_stream_read_error_code(s, app_error_code); #else return -1; #endif } int SSL_get_stream_write_error_code(SSL *s, uint64_t *app_error_code) { #ifndef OPENSSL_NO_QUIC if (!IS_QUIC(s)) return -1; return ossl_quic_get_stream_write_error_code(s, app_error_code); #else return -1; #endif } int SSL_get_conn_close_info(SSL *s, SSL_CONN_CLOSE_INFO *info, size_t info_len) { #ifndef OPENSSL_NO_QUIC if (!IS_QUIC(s)) return -1; return ossl_quic_get_conn_close_info(s, info, info_len); #else return -1; #endif } int SSL_add_expected_rpk(SSL *s, EVP_PKEY *rpk) { unsigned char *data = NULL; SSL_DANE *dane = SSL_get0_dane(s); int ret; if (dane == NULL || dane->dctx == NULL) return 0; if ((ret = i2d_PUBKEY(rpk, &data)) <= 0) return 0; ret = SSL_dane_tlsa_add(s, DANETLS_USAGE_DANE_EE, DANETLS_SELECTOR_SPKI, DANETLS_MATCHING_FULL, data, (size_t)ret) > 0; OPENSSL_free(data); return ret; } EVP_PKEY *SSL_get0_peer_rpk(const SSL *s) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL || sc->session == NULL) return NULL; return sc->session->peer_rpk; } int SSL_get_negotiated_client_cert_type(const SSL *s) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; return sc->ext.client_cert_type; } int SSL_get_negotiated_server_cert_type(const SSL *s) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); if (sc == NULL) return 0; return sc->ext.server_cert_type; } static int validate_cert_type(const unsigned char *val, size_t len) { size_t i; int saw_rpk = 0; int saw_x509 = 0; if (val == NULL && len == 0) return 1; if (val == NULL || len == 0) return 0; for (i = 0; i < len; i++) { switch (val[i]) { case TLSEXT_cert_type_rpk: if (saw_rpk) return 0; saw_rpk = 1; break; case TLSEXT_cert_type_x509: if (saw_x509) return 0; saw_x509 = 1; break; case TLSEXT_cert_type_pgp: case TLSEXT_cert_type_1609dot2: default: return 0; } } return 1; } static int set_cert_type(unsigned char **cert_type, size_t *cert_type_len, const unsigned char *val, size_t len) { unsigned char *tmp = NULL; if (!validate_cert_type(val, len)) return 0; if (val != NULL && (tmp = OPENSSL_memdup(val, len)) == NULL) return 0; OPENSSL_free(*cert_type); *cert_type = tmp; *cert_type_len = len; return 1; } int SSL_set1_client_cert_type(SSL *s, const unsigned char *val, size_t len) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); return set_cert_type(&sc->client_cert_type, &sc->client_cert_type_len, val, len); } int SSL_set1_server_cert_type(SSL *s, const unsigned char *val, size_t len) { SSL_CONNECTION *sc = SSL_CONNECTION_FROM_SSL(s); return set_cert_type(&sc->server_cert_type, &sc->server_cert_type_len, val, len); } int SSL_CTX_set1_client_cert_type(SSL_CTX *ctx, const unsigned char *val, size_t len) { return set_cert_type(&ctx->client_cert_type, &ctx->client_cert_type_len, val, len); } int SSL_CTX_set1_server_cert_type(SSL_CTX *ctx, const unsigned char *val, size_t len) { return set_cert_type(&ctx->server_cert_type, &ctx->server_cert_type_len, val, len); } int SSL_get0_client_cert_type(const SSL *s, unsigned char **t, size_t *len) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (t == NULL || len == NULL) return 0; *t = sc->client_cert_type; *len = sc->client_cert_type_len; return 1; } int SSL_get0_server_cert_type(const SSL *s, unsigned char **t, size_t *len) { const SSL_CONNECTION *sc = SSL_CONNECTION_FROM_CONST_SSL(s); if (t == NULL || len == NULL) return 0; *t = sc->server_cert_type; *len = sc->server_cert_type_len; return 1; } int SSL_CTX_get0_client_cert_type(const SSL_CTX *ctx, unsigned char **t, size_t *len) { if (t == NULL || len == NULL) return 0; *t = ctx->client_cert_type; *len = ctx->client_cert_type_len; return 1; } int SSL_CTX_get0_server_cert_type(const SSL_CTX *ctx, unsigned char **t, size_t *len) { if (t == NULL || len == NULL) return 0; *t = ctx->server_cert_type; *len = ctx->server_cert_type_len; return 1; }