/* * Copyright 2011-2017 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the OpenSSL license (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy * in the file LICENSE in the source distribution or at * https://www.openssl.org/source/license.html */ #include #include #include #include #include "rand_lcl.h" /* * Support framework for NIST SP 800-90A DRBG, AES-CTR mode. * The RAND_DRBG is OpenSSL's pointer to an instance of the DRBG. * * The OpenSSL model is to have new and free functions, and that new * does all initialization. That is not the NIST model, which has * instantiation and un-instantiate, and re-use within a new/free * lifecycle. (No doubt this comes from the desire to support hardware * DRBG, where allocation of resources on something like an HSM is * a much bigger deal than just re-setting an allocated resource.) */ /* * Set/initialize |drbg| to be of type |nid|, with optional |flags|. * Return -2 if the type is not supported, 1 on success and -1 on * failure. */ int RAND_DRBG_set(RAND_DRBG *drbg, int nid, unsigned int flags) { int ret = 1; drbg->state = DRBG_UNINITIALISED; drbg->flags = flags; drbg->nid = nid; switch (nid) { default: RANDerr(RAND_F_RAND_DRBG_SET, RAND_R_UNSUPPORTED_DRBG_TYPE); return -2; case 0: /* Uninitialized; that's okay. */ return 1; case NID_aes_128_ctr: case NID_aes_192_ctr: case NID_aes_256_ctr: ret = ctr_init(drbg); break; } if (ret < 0) RANDerr(RAND_F_RAND_DRBG_SET, RAND_R_ERROR_INITIALISING_DRBG); return ret; } /* * Allocate memory and initialize a new DRBG. The |parent|, if not * NULL, will be used to auto-seed this RAND_DRBG as needed. */ RAND_DRBG *RAND_DRBG_new(int type, unsigned int flags, RAND_DRBG *parent) { RAND_DRBG *drbg = OPENSSL_zalloc(sizeof(*drbg)); if (drbg == NULL) { RANDerr(RAND_F_RAND_DRBG_NEW, ERR_R_MALLOC_FAILURE); goto err; } drbg->size = RANDOMNESS_NEEDED; drbg->fork_count = rand_fork_count; drbg->parent = parent; if (RAND_DRBG_set(drbg, type, flags) < 0) goto err; if (parent != NULL) { if (parent->state == DRBG_UNINITIALISED && RAND_DRBG_instantiate(parent, NULL, 0) == 0) goto err; if (!RAND_DRBG_set_callbacks(drbg, drbg_entropy_from_parent, drbg_release_entropy, NULL, NULL) /* * Add in our address. Note we are adding the pointer * itself, not its contents! */ || !RAND_DRBG_instantiate(drbg, (unsigned char*)&drbg, sizeof(drbg))) goto err; } return drbg; err: OPENSSL_free(drbg); return NULL; } RAND_DRBG *RAND_DRBG_get0_global(void) { return &rand_drbg; } /* * Uninstantiate |drbg| and free all memory. */ void RAND_DRBG_free(RAND_DRBG *drbg) { /* The global DRBG is free'd by rand_cleanup_int() */ if (drbg == NULL || drbg == &rand_drbg) return; ctr_uninstantiate(drbg); CRYPTO_free_ex_data(CRYPTO_EX_INDEX_DRBG, drbg, &drbg->ex_data); OPENSSL_clear_free(drbg, sizeof(*drbg)); } /* * Instantiate |drbg|, after it has been initialized. Use |pers| and * |perslen| as prediction-resistance input. */ int RAND_DRBG_instantiate(RAND_DRBG *drbg, const unsigned char *pers, size_t perslen) { unsigned char *nonce = NULL, *entropy = NULL; size_t noncelen = 0, entropylen = 0; if (perslen > drbg->max_perslen) { RANDerr(RAND_F_RAND_DRBG_INSTANTIATE, RAND_R_PERSONALISATION_STRING_TOO_LONG); goto end; } if (drbg->state != DRBG_UNINITIALISED) { RANDerr(RAND_F_RAND_DRBG_INSTANTIATE, drbg->state == DRBG_ERROR ? RAND_R_IN_ERROR_STATE : RAND_R_ALREADY_INSTANTIATED); goto end; } drbg->state = DRBG_ERROR; if (drbg->get_entropy != NULL) entropylen = drbg->get_entropy(drbg, &entropy, drbg->strength, drbg->min_entropylen, drbg->max_entropylen); if (entropylen < drbg->min_entropylen || entropylen > drbg->max_entropylen) { RANDerr(RAND_F_RAND_DRBG_INSTANTIATE, RAND_R_ERROR_RETRIEVING_ENTROPY); goto end; } if (drbg->max_noncelen > 0 && drbg->get_nonce != NULL) { noncelen = drbg->get_nonce(drbg, &nonce, drbg->strength / 2, drbg->min_noncelen, drbg->max_noncelen); if (noncelen < drbg->min_noncelen || noncelen > drbg->max_noncelen) { RANDerr(RAND_F_RAND_DRBG_INSTANTIATE, RAND_R_ERROR_RETRIEVING_NONCE); goto end; } } if (!ctr_instantiate(drbg, entropy, entropylen, nonce, noncelen, pers, perslen)) { RANDerr(RAND_F_RAND_DRBG_INSTANTIATE, RAND_R_ERROR_INSTANTIATING_DRBG); goto end; } drbg->state = DRBG_READY; drbg->reseed_counter = 1; end: if (entropy != NULL && drbg->cleanup_entropy != NULL) drbg->cleanup_entropy(drbg, entropy); if (nonce != NULL && drbg->cleanup_nonce!= NULL ) drbg->cleanup_nonce(drbg, nonce); if (drbg->state == DRBG_READY) return 1; return 0; } /* * Uninstantiate |drbg|. Must be instantiated before it can be used. */ int RAND_DRBG_uninstantiate(RAND_DRBG *drbg) { int ret = ctr_uninstantiate(drbg); OPENSSL_cleanse(&drbg->ctr, sizeof(drbg->ctr)); drbg->state = DRBG_UNINITIALISED; return ret; } /* * Mix in the specified data to reseed |drbg|. */ int RAND_DRBG_reseed(RAND_DRBG *drbg, const unsigned char *adin, size_t adinlen) { unsigned char *entropy = NULL; size_t entropylen = 0; if (drbg->state == DRBG_ERROR) { RANDerr(RAND_F_RAND_DRBG_RESEED, RAND_R_IN_ERROR_STATE); return 0; } if (drbg->state == DRBG_UNINITIALISED) { RANDerr(RAND_F_RAND_DRBG_RESEED, RAND_R_NOT_INSTANTIATED); return 0; } if (adin == NULL) adinlen = 0; else if (adinlen > drbg->max_adinlen) { RANDerr(RAND_F_RAND_DRBG_RESEED, RAND_R_ADDITIONAL_INPUT_TOO_LONG); return 0; } drbg->state = DRBG_ERROR; if (drbg->get_entropy != NULL) entropylen = drbg->get_entropy(drbg, &entropy, drbg->strength, drbg->min_entropylen, drbg->max_entropylen); if (entropylen < drbg->min_entropylen || entropylen > drbg->max_entropylen) { RANDerr(RAND_F_RAND_DRBG_RESEED, RAND_R_ERROR_RETRIEVING_ENTROPY); goto end; } if (!ctr_reseed(drbg, entropy, entropylen, adin, adinlen)) goto end; drbg->state = DRBG_READY; drbg->reseed_counter = 1; end: if (entropy != NULL && drbg->cleanup_entropy != NULL) drbg->cleanup_entropy(drbg, entropy); if (drbg->state == DRBG_READY) return 1; return 0; } /* * Generate |outlen| bytes into the buffer at |out|. Reseed if we need * to or if |prediction_resistance| is set. Additional input can be * sent in |adin| and |adinlen|. */ int RAND_DRBG_generate(RAND_DRBG *drbg, unsigned char *out, size_t outlen, int prediction_resistance, const unsigned char *adin, size_t adinlen) { if (drbg->state == DRBG_ERROR) { RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_IN_ERROR_STATE); return 0; } if (drbg->state == DRBG_UNINITIALISED) { RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_NOT_INSTANTIATED); return 0; } if (outlen > drbg->max_request) { RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_REQUEST_TOO_LARGE_FOR_DRBG); return 0; } if (adinlen > drbg->max_adinlen) { RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_ADDITIONAL_INPUT_TOO_LONG); return 0; } if (drbg->fork_count != rand_fork_count) { drbg->fork_count = rand_fork_count; drbg->state = DRBG_RESEED; } if (drbg->reseed_counter >= drbg->reseed_interval) drbg->state = DRBG_RESEED; if (drbg->state == DRBG_RESEED || prediction_resistance) { if (!RAND_DRBG_reseed(drbg, adin, adinlen)) { RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_RESEED_ERROR); return 0; } adin = NULL; adinlen = 0; } if (!ctr_generate(drbg, out, outlen, adin, adinlen)) { drbg->state = DRBG_ERROR; RANDerr(RAND_F_RAND_DRBG_GENERATE, RAND_R_GENERATE_ERROR); return 0; } if (drbg->reseed_counter >= drbg->reseed_interval) drbg->state = DRBG_RESEED; else drbg->reseed_counter++; return 1; } /* * Set the callbacks for entropy and nonce. We currently don't use * the nonce; that's mainly for the KATs */ int RAND_DRBG_set_callbacks(RAND_DRBG *drbg, RAND_DRBG_get_entropy_fn cb_get_entropy, RAND_DRBG_cleanup_entropy_fn cb_cleanup_entropy, RAND_DRBG_get_nonce_fn cb_get_nonce, RAND_DRBG_cleanup_nonce_fn cb_cleanup_nonce) { if (drbg->state != DRBG_UNINITIALISED) return 0; drbg->get_entropy = cb_get_entropy; drbg->cleanup_entropy = cb_cleanup_entropy; drbg->get_nonce = cb_get_nonce; drbg->cleanup_nonce = cb_cleanup_nonce; return 1; } /* * Set the reseed interval. */ int RAND_DRBG_set_reseed_interval(RAND_DRBG *drbg, int interval) { if (interval < 0 || interval > MAX_RESEED) return 0; drbg->reseed_interval = interval; return 1; } /* * Get and set the EXDATA */ int RAND_DRBG_set_ex_data(RAND_DRBG *drbg, int idx, void *arg) { return CRYPTO_set_ex_data(&drbg->ex_data, idx, arg); } void *RAND_DRBG_get_ex_data(const RAND_DRBG *drbg, int idx) { return CRYPTO_get_ex_data(&drbg->ex_data, idx); } /* * The following functions provide a RAND_METHOD that works on the * global DRBG. They lock. */ static int drbg_bytes(unsigned char *out, int count) { int ret = 0; size_t chunk; CRYPTO_THREAD_write_lock(rand_drbg.lock); if (rand_drbg.state == DRBG_UNINITIALISED && RAND_DRBG_instantiate(&rand_drbg, NULL, 0) == 0) goto err; for ( ; count > 0; count -= chunk, out += chunk) { chunk = count; if (chunk > rand_drbg.max_request) chunk = rand_drbg.max_request; ret = RAND_DRBG_generate(&rand_drbg, out, chunk, 0, NULL, 0); if (!ret) goto err; } ret = 1; err: CRYPTO_THREAD_unlock(rand_drbg.lock); return ret; } static int drbg_add(const void *buf, int num, double randomness) { unsigned char *in = (unsigned char *)buf; unsigned char *out, *end; CRYPTO_THREAD_write_lock(rand_bytes.lock); out = &rand_bytes.buff[rand_bytes.curr]; end = &rand_bytes.buff[rand_bytes.size]; /* Copy whatever fits into the end of the buffer. */ for ( ; --num >= 0 && out < end; rand_bytes.curr++) *out++ = *in++; /* XOR any the leftover. */ while (num > 0) { for (out = rand_bytes.buff; --num >= 0 && out < end; ) *out++ ^= *in++; } CRYPTO_THREAD_unlock(rand_bytes.lock); return 1; } static int drbg_seed(const void *buf, int num) { return drbg_add(buf, num, num); } static int drbg_status(void) { int ret; CRYPTO_THREAD_write_lock(rand_drbg.lock); if (rand_drbg.state == DRBG_UNINITIALISED) RAND_DRBG_instantiate(&rand_drbg, NULL, 0); ret = rand_drbg.state == DRBG_READY ? 1 : 0; CRYPTO_THREAD_unlock(rand_drbg.lock); return ret; } RAND_DRBG rand_drbg; /* The default global DRBG. */ RAND_DRBG priv_drbg; /* The global private-key DRBG. */ RAND_METHOD rand_meth = { drbg_seed, drbg_bytes, NULL, drbg_add, drbg_bytes, drbg_status }; RAND_METHOD *RAND_OpenSSL(void) { return &rand_meth; }