mirror of
https://github.com/openssl/openssl.git
synced 2024-12-17 22:13:45 +08:00
Various RT doc fixes
RT1556: doc/crypto/threads.pod RT2024: Missing pages mentioned in crypto.pod RT2890: Wrong size in ERR_string_error description. RT3461: Better description of PEM Encryption (Jeffrey Walton <noloader@gmail.com>) Also, fix up formatting and removed some code examples that encourage unsafe patterns, like unencrypted private keys (Rich Salz) RT4240: Document some speed flags (Tomas Mraz <tmraz@redhat.com>) RT4260: Fix return value doc for X509_REQ_sign and X509_sign (Laetitia Baudoin <lbaudoin@google.com>) Reviewed-by: Emilia Käsper <emilia@openssl.org>
This commit is contained in:
parent
e51511ce49
commit
a047435774
@ -8,6 +8,9 @@ speed - test library performance
|
||||
|
||||
B<openssl speed>
|
||||
[B<-engine id>]
|
||||
[B<-elapsed>]
|
||||
[B<-evp algo>]
|
||||
[B<-decrypt>]
|
||||
[B<md2>]
|
||||
[B<mdc2>]
|
||||
[B<md5>]
|
||||
@ -49,6 +52,19 @@ to attempt to obtain a functional reference to the specified engine,
|
||||
thus initialising it if needed. The engine will then be set as the default
|
||||
for all available algorithms.
|
||||
|
||||
=item B<-elapsed>
|
||||
|
||||
Measure time in real time instead of CPU time. It can be useful when testing
|
||||
speed of hardware engines.
|
||||
|
||||
=item B<-evp algo>
|
||||
|
||||
Use the specified cipher or message digest algorithm via the EVP interface.
|
||||
|
||||
=item B<-decrypt>
|
||||
|
||||
Time the decryption instead of encryption. Affects only the EVP testing.
|
||||
|
||||
=item B<[zero or more test algorithms]>
|
||||
|
||||
If any options are given, B<speed> tests those algorithms, otherwise all of
|
||||
|
@ -20,9 +20,12 @@ error message
|
||||
=head1 DESCRIPTION
|
||||
|
||||
ERR_error_string() generates a human-readable string representing the
|
||||
error code I<e>, and places it at I<buf>. I<buf> must be at least 120
|
||||
error code I<e>, and places it at I<buf>. I<buf> must be at least 256
|
||||
bytes long. If I<buf> is B<NULL>, the error string is placed in a
|
||||
static buffer.
|
||||
Note that this function is not thread-safe and does no checks on the size
|
||||
of the buffer; use ERR_error_string_n() instead.
|
||||
|
||||
ERR_error_string_n() is a variant of ERR_error_string() that writes
|
||||
at most I<len> characters (including the terminating 0)
|
||||
and truncates the string if necessary.
|
||||
|
@ -52,8 +52,8 @@ signature and signing will always update the encoding.
|
||||
=head1 RETURN VALUES
|
||||
|
||||
X509_sign(), X509_sign_ctx(), X509_REQ_sign(), X509_REQ_sign_ctx(),
|
||||
X509_CRL_sign() and X509_CRL_sign_ctx() return 1 for success and 0
|
||||
for failure.
|
||||
X509_CRL_sign() and X509_CRL_sign_ctx() return the size of the signature
|
||||
in bytes for success and zero for failure.
|
||||
|
||||
X509_verify(), X509_REQ_verify() and X509_CRL_verify() return 1 if the
|
||||
signature is valid and 0 if the signature check fails. If the signature
|
||||
|
@ -21,46 +21,10 @@ individual algorithms.
|
||||
|
||||
The functionality includes symmetric encryption, public key
|
||||
cryptography and key agreement, certificate handling, cryptographic
|
||||
hash functions and a cryptographic pseudo-random number generator.
|
||||
hash functions, cryptographic pseudo-random number generator, and
|
||||
various utilities.
|
||||
|
||||
=over 4
|
||||
|
||||
=item SYMMETRIC CIPHERS
|
||||
|
||||
L<blowfish(3)>, L<cast(3)>, L<des(3)>,
|
||||
L<idea(3)>, L<rc2(3)>, L<rc4(3)>, L<rc5(3)>
|
||||
|
||||
=item PUBLIC KEY CRYPTOGRAPHY AND KEY AGREEMENT
|
||||
|
||||
L<dsa(3)>, L<dh(3)>, L<ec(3)>, L<rsa(3)>
|
||||
|
||||
=item CERTIFICATES
|
||||
|
||||
L<x509(3)>, L<x509v3(3)>
|
||||
|
||||
=item AUTHENTICATION CODES, HASH FUNCTIONS
|
||||
|
||||
L<hmac(3)>, L<md2(3)>, L<md4(3)>,
|
||||
L<md5(3)>, L<mdc2(3)>, L<ripemd(3)>,
|
||||
L<sha(3)>
|
||||
|
||||
=item AUXILIARY FUNCTIONS
|
||||
|
||||
L<err(3)>, L<threads(3)>, L<rand(3)>,
|
||||
L<OPENSSL_VERSION_NUMBER(3)>
|
||||
|
||||
=item INPUT/OUTPUT, DATA ENCODING
|
||||
|
||||
L<asn1(3)>, L<bio(3)>, L<evp(3)>, L<pem(3)>,
|
||||
L<pkcs7(3)>, L<pkcs12(3)>
|
||||
|
||||
=item UTILITY FUNCTIONS
|
||||
|
||||
L<bn(3)>, L<buffer(3)>, L<lhash(3)>,
|
||||
L<stack(3)>,
|
||||
L<txt_db(3)>
|
||||
|
||||
=back
|
||||
See the individual manual pages for details.
|
||||
|
||||
=head1 NOTES
|
||||
|
||||
|
@ -22,184 +22,127 @@ PEM_write_X509_AUX, PEM_read_bio_X509_REQ, PEM_read_X509_REQ,
|
||||
PEM_write_bio_X509_REQ, PEM_write_X509_REQ, PEM_write_bio_X509_REQ_NEW,
|
||||
PEM_write_X509_REQ_NEW, PEM_read_bio_X509_CRL, PEM_read_X509_CRL,
|
||||
PEM_write_bio_X509_CRL, PEM_write_X509_CRL, PEM_read_bio_PKCS7, PEM_read_PKCS7,
|
||||
PEM_write_bio_PKCS7, PEM_write_PKCS7, PEM_read_bio_NETSCAPE_CERT_SEQUENCE,
|
||||
PEM_read_NETSCAPE_CERT_SEQUENCE, PEM_write_bio_NETSCAPE_CERT_SEQUENCE,
|
||||
PEM_write_NETSCAPE_CERT_SEQUENCE - PEM routines
|
||||
PEM_write_bio_PKCS7, PEM_write_PKCS7 - PEM routines
|
||||
|
||||
=head1 SYNOPSIS
|
||||
|
||||
#include <openssl/pem.h>
|
||||
|
||||
EVP_PKEY *PEM_read_bio_PrivateKey(BIO *bp, EVP_PKEY **x,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
pem_password_cb *cb, void *u);
|
||||
EVP_PKEY *PEM_read_PrivateKey(FILE *fp, EVP_PKEY **x,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
pem_password_cb *cb, void *u);
|
||||
int PEM_write_bio_PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
|
||||
unsigned char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
unsigned char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u);
|
||||
int PEM_write_PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
|
||||
unsigned char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u);
|
||||
unsigned char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
int PEM_write_bio_PKCS8PrivateKey(BIO *bp, EVP_PKEY *x, const EVP_CIPHER *enc,
|
||||
char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u);
|
||||
int PEM_write_PKCS8PrivateKey(FILE *fp, EVP_PKEY *x, const EVP_CIPHER *enc,
|
||||
char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u);
|
||||
int PEM_write_bio_PKCS8PrivateKey_nid(BIO *bp, EVP_PKEY *x, int nid,
|
||||
char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u);
|
||||
int PEM_write_PKCS8PrivateKey_nid(FILE *fp, EVP_PKEY *x, int nid,
|
||||
char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u);
|
||||
char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
EVP_PKEY *PEM_read_bio_PUBKEY(BIO *bp, EVP_PKEY **x,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
pem_password_cb *cb, void *u);
|
||||
EVP_PKEY *PEM_read_PUBKEY(FILE *fp, EVP_PKEY **x,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
pem_password_cb *cb, void *u);
|
||||
int PEM_write_bio_PUBKEY(BIO *bp, EVP_PKEY *x);
|
||||
int PEM_write_PUBKEY(FILE *fp, EVP_PKEY *x);
|
||||
|
||||
RSA *PEM_read_bio_RSAPrivateKey(BIO *bp, RSA **x,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
pem_password_cb *cb, void *u);
|
||||
RSA *PEM_read_RSAPrivateKey(FILE *fp, RSA **x,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
pem_password_cb *cb, void *u);
|
||||
int PEM_write_bio_RSAPrivateKey(BIO *bp, RSA *x, const EVP_CIPHER *enc,
|
||||
unsigned char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
unsigned char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u);
|
||||
int PEM_write_RSAPrivateKey(FILE *fp, RSA *x, const EVP_CIPHER *enc,
|
||||
unsigned char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u);
|
||||
unsigned char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
RSA *PEM_read_bio_RSAPublicKey(BIO *bp, RSA **x,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
pem_password_cb *cb, void *u);
|
||||
RSA *PEM_read_RSAPublicKey(FILE *fp, RSA **x,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
pem_password_cb *cb, void *u);
|
||||
int PEM_write_bio_RSAPublicKey(BIO *bp, RSA *x);
|
||||
|
||||
int PEM_write_RSAPublicKey(FILE *fp, RSA *x);
|
||||
|
||||
RSA *PEM_read_bio_RSA_PUBKEY(BIO *bp, RSA **x,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
pem_password_cb *cb, void *u);
|
||||
RSA *PEM_read_RSA_PUBKEY(FILE *fp, RSA **x,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
pem_password_cb *cb, void *u);
|
||||
int PEM_write_bio_RSA_PUBKEY(BIO *bp, RSA *x);
|
||||
|
||||
int PEM_write_RSA_PUBKEY(FILE *fp, RSA *x);
|
||||
|
||||
DSA *PEM_read_bio_DSAPrivateKey(BIO *bp, DSA **x,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
pem_password_cb *cb, void *u);
|
||||
DSA *PEM_read_DSAPrivateKey(FILE *fp, DSA **x,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
pem_password_cb *cb, void *u);
|
||||
int PEM_write_bio_DSAPrivateKey(BIO *bp, DSA *x, const EVP_CIPHER *enc,
|
||||
unsigned char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
unsigned char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u);
|
||||
int PEM_write_DSAPrivateKey(FILE *fp, DSA *x, const EVP_CIPHER *enc,
|
||||
unsigned char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u);
|
||||
unsigned char *kstr, int klen,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
DSA *PEM_read_bio_DSA_PUBKEY(BIO *bp, DSA **x,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
pem_password_cb *cb, void *u);
|
||||
DSA *PEM_read_DSA_PUBKEY(FILE *fp, DSA **x,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
pem_password_cb *cb, void *u);
|
||||
int PEM_write_bio_DSA_PUBKEY(BIO *bp, DSA *x);
|
||||
|
||||
int PEM_write_DSA_PUBKEY(FILE *fp, DSA *x);
|
||||
|
||||
DSA *PEM_read_bio_DSAparams(BIO *bp, DSA **x, pem_password_cb *cb, void *u);
|
||||
|
||||
DSA *PEM_read_DSAparams(FILE *fp, DSA **x, pem_password_cb *cb, void *u);
|
||||
|
||||
int PEM_write_bio_DSAparams(BIO *bp, DSA *x);
|
||||
|
||||
int PEM_write_DSAparams(FILE *fp, DSA *x);
|
||||
|
||||
DH *PEM_read_bio_DHparams(BIO *bp, DH **x, pem_password_cb *cb, void *u);
|
||||
|
||||
DH *PEM_read_DHparams(FILE *fp, DH **x, pem_password_cb *cb, void *u);
|
||||
|
||||
int PEM_write_bio_DHparams(BIO *bp, DH *x);
|
||||
|
||||
int PEM_write_DHparams(FILE *fp, DH *x);
|
||||
|
||||
X509 *PEM_read_bio_X509(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
|
||||
|
||||
X509 *PEM_read_X509(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
|
||||
|
||||
int PEM_write_bio_X509(BIO *bp, X509 *x);
|
||||
|
||||
int PEM_write_X509(FILE *fp, X509 *x);
|
||||
|
||||
X509 *PEM_read_bio_X509_AUX(BIO *bp, X509 **x, pem_password_cb *cb, void *u);
|
||||
|
||||
X509 *PEM_read_X509_AUX(FILE *fp, X509 **x, pem_password_cb *cb, void *u);
|
||||
|
||||
int PEM_write_bio_X509_AUX(BIO *bp, X509 *x);
|
||||
|
||||
int PEM_write_X509_AUX(FILE *fp, X509 *x);
|
||||
|
||||
X509_REQ *PEM_read_bio_X509_REQ(BIO *bp, X509_REQ **x,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
pem_password_cb *cb, void *u);
|
||||
X509_REQ *PEM_read_X509_REQ(FILE *fp, X509_REQ **x,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
pem_password_cb *cb, void *u);
|
||||
int PEM_write_bio_X509_REQ(BIO *bp, X509_REQ *x);
|
||||
|
||||
int PEM_write_X509_REQ(FILE *fp, X509_REQ *x);
|
||||
|
||||
int PEM_write_bio_X509_REQ_NEW(BIO *bp, X509_REQ *x);
|
||||
|
||||
int PEM_write_X509_REQ_NEW(FILE *fp, X509_REQ *x);
|
||||
|
||||
X509_CRL *PEM_read_bio_X509_CRL(BIO *bp, X509_CRL **x,
|
||||
pem_password_cb *cb, void *u);
|
||||
pem_password_cb *cb, void *u);
|
||||
X509_CRL *PEM_read_X509_CRL(FILE *fp, X509_CRL **x,
|
||||
pem_password_cb *cb, void *u);
|
||||
pem_password_cb *cb, void *u);
|
||||
int PEM_write_bio_X509_CRL(BIO *bp, X509_CRL *x);
|
||||
int PEM_write_X509_CRL(FILE *fp, X509_CRL *x);
|
||||
|
||||
PKCS7 *PEM_read_bio_PKCS7(BIO *bp, PKCS7 **x, pem_password_cb *cb, void *u);
|
||||
|
||||
PKCS7 *PEM_read_PKCS7(FILE *fp, PKCS7 **x, pem_password_cb *cb, void *u);
|
||||
|
||||
int PEM_write_bio_PKCS7(BIO *bp, PKCS7 *x);
|
||||
|
||||
int PEM_write_PKCS7(FILE *fp, PKCS7 *x);
|
||||
|
||||
NETSCAPE_CERT_SEQUENCE *PEM_read_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp,
|
||||
NETSCAPE_CERT_SEQUENCE **x,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
NETSCAPE_CERT_SEQUENCE *PEM_read_NETSCAPE_CERT_SEQUENCE(FILE *fp,
|
||||
NETSCAPE_CERT_SEQUENCE **x,
|
||||
pem_password_cb *cb, void *u);
|
||||
|
||||
int PEM_write_bio_NETSCAPE_CERT_SEQUENCE(BIO *bp, NETSCAPE_CERT_SEQUENCE *x);
|
||||
|
||||
int PEM_write_NETSCAPE_CERT_SEQUENCE(FILE *fp, NETSCAPE_CERT_SEQUENCE *x);
|
||||
|
||||
=head1 DESCRIPTION
|
||||
|
||||
The PEM functions read or write structures in PEM format. In
|
||||
@ -288,9 +231,6 @@ structure.
|
||||
The B<PKCS7> functions process a PKCS#7 ContentInfo using a PKCS7
|
||||
structure.
|
||||
|
||||
The B<NETSCAPE_CERT_SEQUENCE> functions process a Netscape Certificate
|
||||
Sequence using a NETSCAPE_CERT_SEQUENCE structure.
|
||||
|
||||
=head1 PEM FUNCTION ARGUMENTS
|
||||
|
||||
The PEM functions have many common arguments.
|
||||
@ -354,84 +294,65 @@ Read a certificate in PEM format from a BIO:
|
||||
|
||||
X509 *x;
|
||||
x = PEM_read_bio_X509(bp, NULL, 0, NULL);
|
||||
if (x == NULL)
|
||||
{
|
||||
/* Error */
|
||||
}
|
||||
if (x == NULL) {
|
||||
/* Error */
|
||||
}
|
||||
|
||||
Alternative method:
|
||||
|
||||
X509 *x = NULL;
|
||||
if (!PEM_read_bio_X509(bp, &x, 0, NULL))
|
||||
{
|
||||
/* Error */
|
||||
}
|
||||
if (!PEM_read_bio_X509(bp, &x, 0, NULL)) {
|
||||
/* Error */
|
||||
}
|
||||
|
||||
Write a certificate to a BIO:
|
||||
|
||||
if (!PEM_write_bio_X509(bp, x))
|
||||
{
|
||||
/* Error */
|
||||
}
|
||||
|
||||
Write an unencrypted private key to a FILE pointer:
|
||||
|
||||
if (!PEM_write_PrivateKey(fp, key, NULL, NULL, 0, 0, NULL))
|
||||
{
|
||||
/* Error */
|
||||
}
|
||||
if (!PEM_write_bio_X509(bp, x)) {
|
||||
/* Error */
|
||||
}
|
||||
|
||||
Write a private key (using traditional format) to a BIO using
|
||||
triple DES encryption, the pass phrase is prompted for:
|
||||
|
||||
if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL))
|
||||
{
|
||||
/* Error */
|
||||
}
|
||||
if (!PEM_write_bio_PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, NULL)) {
|
||||
/* Error */
|
||||
}
|
||||
|
||||
Write a private key (using PKCS#8 format) to a BIO using triple
|
||||
DES encryption, using the pass phrase "hello":
|
||||
|
||||
if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, "hello"))
|
||||
{
|
||||
/* Error */
|
||||
}
|
||||
|
||||
Read a private key from a BIO using the pass phrase "hello":
|
||||
|
||||
key = PEM_read_bio_PrivateKey(bp, NULL, 0, "hello");
|
||||
if (key == NULL)
|
||||
{
|
||||
/* Error */
|
||||
}
|
||||
if (!PEM_write_bio_PKCS8PrivateKey(bp, key, EVP_des_ede3_cbc(), NULL, 0, 0, "hello")) {
|
||||
/* Error */
|
||||
}
|
||||
|
||||
Read a private key from a BIO using a pass phrase callback:
|
||||
|
||||
key = PEM_read_bio_PrivateKey(bp, NULL, pass_cb, "My Private Key");
|
||||
if (key == NULL)
|
||||
{
|
||||
/* Error */
|
||||
}
|
||||
if (key == NULL) {
|
||||
/* Error */
|
||||
}
|
||||
|
||||
Skeleton pass phrase callback:
|
||||
|
||||
int pass_cb(char *buf, int size, int rwflag, void *u);
|
||||
{
|
||||
int len;
|
||||
char *tmp;
|
||||
/* We'd probably do something else if 'rwflag' is 1 */
|
||||
printf("Enter pass phrase for \"%s\"\n", u);
|
||||
int pass_cb(char *buf, int size, int rwflag, void *u)
|
||||
{
|
||||
int len;
|
||||
char *tmp;
|
||||
|
||||
/* get pass phrase, length 'len' into 'tmp' */
|
||||
tmp = "hello";
|
||||
len = strlen(tmp);
|
||||
/* We'd probably do something else if 'rwflag' is 1 */
|
||||
printf("Enter pass phrase for \"%s\"\n", (char *)u);
|
||||
|
||||
if (len <= 0) return 0;
|
||||
/* if too long, truncate */
|
||||
if (len > size) len = size;
|
||||
memcpy(buf, tmp, len);
|
||||
return len;
|
||||
}
|
||||
/* get pass phrase, length 'len' into 'tmp' */
|
||||
tmp = "hello";
|
||||
len = strlen(tmp);
|
||||
if (len <= 0)
|
||||
return 0;
|
||||
|
||||
if (len > size)
|
||||
len = size;
|
||||
memcpy(buf, tmp, len);
|
||||
return len;
|
||||
}
|
||||
|
||||
=head1 NOTES
|
||||
|
||||
@ -456,7 +377,7 @@ which is an uninitialised pointer.
|
||||
|
||||
=head1 PEM ENCRYPTION FORMAT
|
||||
|
||||
This old B<PrivateKey> routines use a non standard technique for encryption.
|
||||
These old B<PrivateKey> routines use a non standard technique for encryption.
|
||||
|
||||
The private key (or other data) takes the following form:
|
||||
|
||||
@ -467,15 +388,43 @@ The private key (or other data) takes the following form:
|
||||
...base64 encoded data...
|
||||
-----END RSA PRIVATE KEY-----
|
||||
|
||||
The line beginning DEK-Info contains two comma separated pieces of information:
|
||||
the encryption algorithm name as used by EVP_get_cipherbyname() and an 8
|
||||
byte B<salt> encoded as a set of hexadecimal digits.
|
||||
The line beginning with I<Proc-Type> contains the version and the
|
||||
protection on the encapsulated data. The line beginning I<DEK-Info>
|
||||
contains two comma separated values: the encryption algorithm name as
|
||||
used by EVP_get_cipherbyname() and an initialization vector used by the
|
||||
cipher encoded as a set of hexadecimal digits. After those two lines is
|
||||
the base64-encoded encrypted data.
|
||||
|
||||
After this is the base64 encoded encrypted data.
|
||||
The encryption key is derived using EVP_BytesToKey(). The cipher's
|
||||
initialization vector is passed to EVP_BytesToKey() as the B<salt>
|
||||
parameter. Internally, B<PKCS5_SALT_LEN> bytes of the salt are used
|
||||
(regardless of the size of the initialization vector). The user's
|
||||
password is passed to to EVP_BytesToKey() using the B<data> and B<datal>
|
||||
parameters. Finally, the library uses an iteration count of 1 for
|
||||
EVP_BytesToKey().
|
||||
|
||||
The encryption key is determined using EVP_BytesToKey(), using B<salt> and an
|
||||
iteration count of 1. The IV used is the value of B<salt> and *not* the IV
|
||||
returned by EVP_BytesToKey().
|
||||
he B<key> derived by EVP_BytesToKey() along with the original initialization
|
||||
vector is then used to decrypt the encrypted data. The B<iv> produced by
|
||||
EVP_BytesToKey() is not utilized or needed, and NULL should be passed to
|
||||
the function.
|
||||
|
||||
The pseudo code to derive the key would look similar to:
|
||||
|
||||
EVP_CIPHER* cipher = EVP_des_ede3_cbc();
|
||||
EVP_MD* md = EVP_md5();
|
||||
|
||||
unsigned int nkey = EVP_CIPHER_key_length(cipher);
|
||||
unsigned int niv = EVP_CIPHER_iv_length(cipher);
|
||||
unsigned char key[nkey];
|
||||
unsigned char iv[niv];
|
||||
|
||||
memcpy(iv, HexToBin("3F17F5316E2BAC89"), niv);
|
||||
rc = EVP_BytesToKey(cipher, md, iv /*salt*/, pword, plen, 1, key, NULL /*iv*/);
|
||||
if (rc != nkey) {
|
||||
/* Error */
|
||||
}
|
||||
|
||||
/* On success, use key and iv to initialize the cipher */
|
||||
|
||||
=head1 BUGS
|
||||
|
||||
@ -498,6 +447,12 @@ if an error occurred.
|
||||
|
||||
The write routines return 1 for success or 0 for failure.
|
||||
|
||||
=head1 HISTORY
|
||||
|
||||
The old Netscape certificate sequences were no longer documented
|
||||
in OpenSSL 1.1; applications should use the PKCS7 standard instead
|
||||
as they will be formally deprecated in a future releases.
|
||||
|
||||
=head1 SEE ALSO
|
||||
|
||||
L<EVP_get_cipherbyname(3)|EVP_EncryptInit(3)>, L<EVP_BytesToKey(3)|EVP_BytesToKey(3)>
|
||||
L<EVP_EncryptInit(3)>, L<EVP_BytesToKey(3)>
|
||||
|
@ -84,9 +84,10 @@ threadid_func(CRYPTO_THREADID *id) is needed to record the currently-executing
|
||||
thread's identifier into B<id>. The implementation of this callback should not
|
||||
fill in B<id> directly, but should use CRYPTO_THREADID_set_numeric() if thread
|
||||
IDs are numeric, or CRYPTO_THREADID_set_pointer() if they are pointer-based.
|
||||
The B<id> must be unique for the duration of the execution of the program.
|
||||
If the application does not register such a callback using
|
||||
CRYPTO_THREADID_set_callback(), then a default implementation is used - on
|
||||
Windows and BeOS this uses the system's default thread identifying APIs, and on
|
||||
Windows this uses the system's default thread identifying APIs, and on
|
||||
all other platforms it uses the address of B<errno>. The latter is satisfactory
|
||||
for thread-safety if and only if the platform has a thread-local error number
|
||||
facility.
|
||||
|
Loading…
Reference in New Issue
Block a user