openssl/crypto/bn/bn_prime.c

390 lines
9.5 KiB
C
Raw Normal View History

/* crypto/bn/bn_prime.c */
/* Copyright (C) 1995-1997 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
#include <stdio.h>
#include <time.h>
#include "cryptlib.h"
#include "bn_lcl.h"
#include "rand.h"
/* The quick seive algorithm approach to weeding out primes is
* Philip Zimmermann's, as implemented in PGP. I have had a read of
* his comments and implemented my own version.
*/
#include "bn_prime.h"
#ifndef NOPROTO
static int witness(BIGNUM *a, BIGNUM *n, BN_CTX *ctx);
static int probable_prime(BIGNUM *rnd, int bits);
static int probable_prime_dh(BIGNUM *rnd, int bits,
BIGNUM *add, BIGNUM *rem, BN_CTX *ctx);
static int probable_prime_dh_strong(BIGNUM *rnd, int bits,
BIGNUM *add, BIGNUM *rem, BN_CTX *ctx);
#else
static int witness();
static int probable_prime();
static int probable_prime_dh();
static int probable_prime_dh_strong();
#endif
BIGNUM *BN_generate_prime(bits,strong,add,rem,callback)
int bits;
int strong;
BIGNUM *add;
BIGNUM *rem;
void (*callback)(P_I_I);
{
BIGNUM *rnd=NULL;
BIGNUM *ret=NULL;
BIGNUM *t=NULL;
int i,j,c1=0;
BN_CTX *ctx;
ctx=BN_CTX_new();
if (ctx == NULL) goto err;
if ((rnd=BN_new()) == NULL) goto err;
if (strong)
if ((t=BN_new()) == NULL) goto err;
loop:
/* make a random number and set the top and bottom bits */
if (add == NULL)
{
if (!probable_prime(rnd,bits)) goto err;
}
else
{
if (strong)
{
if (!probable_prime_dh_strong(rnd,bits,add,rem,ctx))
goto err;
}
else
{
if (!probable_prime_dh(rnd,bits,add,rem,ctx))
goto err;
}
}
/* if (BN_mod_word(rnd,(BN_ULONG)3) == 1) goto loop; */
if (callback != NULL) callback(0,c1++);
if (!strong)
{
i=BN_is_prime(rnd,BN_prime_checks,callback,ctx);
if (i == -1) goto err;
if (i == 0) goto loop;
}
else
{
/* for a strong prime generation,
* check that (p-1)/2 is prime.
* Since a prime is odd, We just
* need to divide by 2 */
if (!BN_rshift1(t,rnd)) goto err;
for (i=0; i<BN_prime_checks; i++)
{
j=BN_is_prime(rnd,1,callback,ctx);
if (j == -1) goto err;
if (j == 0) goto loop;
j=BN_is_prime(t,1,callback,ctx);
if (j == -1) goto err;
if (j == 0) goto loop;
if (callback != NULL) callback(2,c1-1);
/* We have a strong prime test pass */
}
}
/* we have a prime :-) */
ret=rnd;
err:
if ((ret == NULL) && (rnd != NULL)) BN_free(rnd);
if (t != NULL) BN_free(t);
if (ctx != NULL) BN_CTX_free(ctx);
return(ret);
}
int BN_is_prime(a,checks,callback,ctx_passed)
BIGNUM *a;
int checks;
void (*callback)(P_I_I);
BN_CTX *ctx_passed;
{
int i,j,c2=0,ret= -1;
BIGNUM *check;
BN_CTX *ctx;
if (ctx_passed != NULL)
ctx=ctx_passed;
else
if ((ctx=BN_CTX_new()) == NULL) goto err;
check=ctx->bn[ctx->tos++];
for (i=0; i<checks; i++)
{
if (!BN_rand(check,BN_num_bits(a)-1,0,0)) goto err;
j=witness(check,a,ctx);
if (j == -1) goto err;
if (j)
{
ret=0;
goto err;
}
if (callback != NULL) callback(1,c2++);
}
ret=1;
err:
ctx->tos--;
if ((ctx_passed == NULL) && (ctx != NULL))
BN_CTX_free(ctx);
return(ret);
}
#define RECP_MUL_MOD
static int witness(a, n,ctx)
BIGNUM *a;
BIGNUM *n;
BN_CTX *ctx;
{
int k,i,nb,ret= -1;
BIGNUM *d,*dd,*tmp;
BIGNUM *d1,*d2,*x,*n1,*inv;
d1=ctx->bn[ctx->tos];
d2=ctx->bn[ctx->tos+1];
x=ctx->bn[ctx->tos+2];
n1=ctx->bn[ctx->tos+3];
inv=ctx->bn[ctx->tos+4];
ctx->tos+=5;
d=d1;
dd=d2;
if (!BN_one(d)) goto err;
if (!BN_sub(n1,n,d)) goto err; /* n1=n-1; */
k=BN_num_bits(n1);
/* i=BN_num_bits(n); */
#ifdef RECP_MUL_MOD
nb=BN_reciprocal(inv,n,ctx); /**/
if (nb == -1) goto err;
#endif
for (i=k-1; i>=0; i--)
{
if (BN_copy(x,d) == NULL) goto err;
#ifndef RECP_MUL_MOD
if (!BN_mod_mul(dd,d,d,n,ctx)) goto err;
#else
if (!BN_mod_mul_reciprocal(dd,d,d,n,inv,nb,ctx)) goto err;
#endif
if ( BN_is_one(dd) &&
!BN_is_one(x) &&
(BN_cmp(x,n1) != 0))
{
ret=1;
goto err;
}
if (BN_is_bit_set(n1,i))
{
#ifndef RECP_MUL_MOD
if (!BN_mod_mul(d,dd,a,n,ctx)) goto err;
#else
if (!BN_mod_mul_reciprocal(d,dd,a,n,inv,nb,ctx)) goto err;
#endif
}
else
{
tmp=d;
d=dd;
dd=tmp;
}
}
if (BN_is_one(d))
i=0;
else i=1;
ret=i;
err:
ctx->tos-=5;
return(ret);
}
static int probable_prime(rnd, bits)
BIGNUM *rnd;
int bits;
{
int i;
MS_STATIC BN_ULONG mods[NUMPRIMES];
BN_ULONG delta;
if (!BN_rand(rnd,bits,1,1)) return(0);
/* we now have a random number 'rand' to test. */
for (i=1; i<NUMPRIMES; i++)
mods[i]=BN_mod_word(rnd,(BN_ULONG)primes[i]);
delta=0;
loop: for (i=1; i<NUMPRIMES; i++)
{
/* check that rnd is not a prime and also
* that gcd(rnd-1,primes) == 1 (except for 2) */
if (((mods[i]+delta)%primes[i]) <= 1)
{
delta+=2;
/* perhaps need to check for overflow of
* delta (but delta can be upto 2^32) */
goto loop;
}
}
if (!BN_add_word(rnd,delta)) return(0);
return(1);
}
static int probable_prime_dh(rnd, bits, add, rem,ctx)
BIGNUM *rnd;
int bits;
BIGNUM *add;
BIGNUM *rem;
BN_CTX *ctx;
{
int i,ret=0;
BIGNUM *t1;
t1=ctx->bn[ctx->tos++];
if (!BN_rand(rnd,bits,0,1)) goto err;
/* we need ((rnd-rem) % add) == 0 */
if (!BN_mod(t1,rnd,add,ctx)) goto err;
if (!BN_sub(rnd,rnd,t1)) goto err;
if (rem == NULL)
{ if (!BN_add_word(rnd,1)) goto err; }
else
{ if (!BN_add(rnd,rnd,rem)) goto err; }
/* we now have a random number 'rand' to test. */
loop: for (i=1; i<NUMPRIMES; i++)
{
/* check that rnd is a prime */
if (BN_mod_word(rnd,(BN_LONG)primes[i]) <= 1)
{
if (!BN_add(rnd,rnd,add)) goto err;
goto loop;
}
}
ret=1;
err:
ctx->tos--;
return(ret);
}
static int probable_prime_dh_strong(p, bits, padd, rem,ctx)
BIGNUM *p;
int bits;
BIGNUM *padd;
BIGNUM *rem;
BN_CTX *ctx;
{
int i,ret=0;
BIGNUM *t1,*qadd=NULL,*q=NULL;
bits--;
t1=ctx->bn[ctx->tos++];
q=ctx->bn[ctx->tos++];
qadd=ctx->bn[ctx->tos++];
if (!BN_rshift1(qadd,padd)) goto err;
if (!BN_rand(q,bits,0,1)) goto err;
/* we need ((rnd-rem) % add) == 0 */
if (!BN_mod(t1,q,qadd,ctx)) goto err;
if (!BN_sub(q,q,t1)) goto err;
if (rem == NULL)
{ if (!BN_add_word(q,1)) goto err; }
else
{
if (!BN_rshift1(t1,rem)) goto err;
if (!BN_add(q,q,t1)) goto err;
}
/* we now have a random number 'rand' to test. */
if (!BN_lshift1(p,q)) goto err;
if (!BN_add_word(p,1)) goto err;
loop: for (i=1; i<NUMPRIMES; i++)
{
/* check that p and q are prime */
/* check that for p and q
* gcd(p-1,primes) == 1 (except for 2) */
if ( (BN_mod_word(p,(BN_LONG)primes[i]) == 0) ||
(BN_mod_word(q,(BN_LONG)primes[i]) == 0))
{
if (!BN_add(p,p,padd)) goto err;
if (!BN_add(q,q,qadd)) goto err;
goto loop;
}
}
ret=1;
err:
ctx->tos-=3;
return(ret);
}