openssl/ssl/ssl_ciph.c

1194 lines
31 KiB
C
Raw Normal View History

/* ssl/ssl_ciph.c */
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*/
/* ====================================================================
* Copyright 2002 Sun Microsystems, Inc. ALL RIGHTS RESERVED.
* ECC cipher suite support in OpenSSL originally developed by
* SUN MICROSYSTEMS, INC., and contributed to the OpenSSL project.
*/
#include <stdio.h>
#include <openssl/objects.h>
#include <openssl/comp.h>
#include "ssl_locl.h"
#define SSL_ENC_DES_IDX 0
#define SSL_ENC_3DES_IDX 1
#define SSL_ENC_RC4_IDX 2
#define SSL_ENC_RC2_IDX 3
#define SSL_ENC_IDEA_IDX 4
#define SSL_ENC_eFZA_IDX 5
#define SSL_ENC_NULL_IDX 6
#define SSL_ENC_AES128_IDX 7
#define SSL_ENC_AES256_IDX 8
#define SSL_ENC_NUM_IDX 9
1999-04-18 05:25:43 +08:00
static const EVP_CIPHER *ssl_cipher_methods[SSL_ENC_NUM_IDX]={
NULL,NULL,NULL,NULL,NULL,NULL,
};
#define SSL_COMP_NULL_IDX 0
#define SSL_COMP_ZLIB_IDX 1
#define SSL_COMP_NUM_IDX 2
1999-04-13 01:23:57 +08:00
static STACK_OF(SSL_COMP) *ssl_comp_methods=NULL;
#define SSL_MD_MD5_IDX 0
#define SSL_MD_SHA1_IDX 1
#define SSL_MD_NUM_IDX 2
1999-04-18 05:25:43 +08:00
static const EVP_MD *ssl_digest_methods[SSL_MD_NUM_IDX]={
NULL,NULL,
};
#define CIPHER_ADD 1
#define CIPHER_KILL 2
#define CIPHER_DEL 3
#define CIPHER_ORD 4
#define CIPHER_SPECIAL 5
typedef struct cipher_order_st
{
SSL_CIPHER *cipher;
int active;
int dead;
struct cipher_order_st *next,*prev;
} CIPHER_ORDER;
static const SSL_CIPHER cipher_aliases[]={
/* Don't include eNULL unless specifically enabled. */
/* Don't include ECC in ALL because these ciphers are not yet official. */
{0,SSL_TXT_ALL, 0,SSL_ALL & ~SSL_eNULL & ~SSL_kECDH & ~SSL_kECDHE, SSL_ALL ,0,0,0,SSL_ALL,SSL_ALL}, /* must be first */
/* TODO: COMPLEMENT OF ALL and COMPLEMENT OF DEFAULT do not have ECC cipher suites handled properly. */
{0,SSL_TXT_CMPALL,0,SSL_eNULL,0,0,0,0,SSL_ENC_MASK,0}, /* COMPLEMENT OF ALL */
{0,SSL_TXT_CMPDEF,0,SSL_ADH, 0,0,0,0,SSL_AUTH_MASK,0},
{0,SSL_TXT_kKRB5,0,SSL_kKRB5,0,0,0,0,SSL_MKEY_MASK,0}, /* VRS Kerberos5 */
{0,SSL_TXT_kRSA,0,SSL_kRSA, 0,0,0,0,SSL_MKEY_MASK,0},
{0,SSL_TXT_kDHr,0,SSL_kDHr, 0,0,0,0,SSL_MKEY_MASK,0},
{0,SSL_TXT_kDHd,0,SSL_kDHd, 0,0,0,0,SSL_MKEY_MASK,0},
{0,SSL_TXT_kEDH,0,SSL_kEDH, 0,0,0,0,SSL_MKEY_MASK,0},
{0,SSL_TXT_kFZA,0,SSL_kFZA, 0,0,0,0,SSL_MKEY_MASK,0},
{0,SSL_TXT_DH, 0,SSL_DH, 0,0,0,0,SSL_MKEY_MASK,0},
{0,SSL_TXT_ECC, 0,(SSL_kECDH|SSL_kECDHE), 0,0,0,0,SSL_MKEY_MASK,0},
{0,SSL_TXT_EDH, 0,SSL_EDH, 0,0,0,0,SSL_MKEY_MASK|SSL_AUTH_MASK,0},
{0,SSL_TXT_aKRB5,0,SSL_aKRB5,0,0,0,0,SSL_AUTH_MASK,0}, /* VRS Kerberos5 */
{0,SSL_TXT_aRSA,0,SSL_aRSA, 0,0,0,0,SSL_AUTH_MASK,0},
{0,SSL_TXT_aDSS,0,SSL_aDSS, 0,0,0,0,SSL_AUTH_MASK,0},
{0,SSL_TXT_aFZA,0,SSL_aFZA, 0,0,0,0,SSL_AUTH_MASK,0},
{0,SSL_TXT_aNULL,0,SSL_aNULL,0,0,0,0,SSL_AUTH_MASK,0},
{0,SSL_TXT_aDH, 0,SSL_aDH, 0,0,0,0,SSL_AUTH_MASK,0},
{0,SSL_TXT_DSS, 0,SSL_DSS, 0,0,0,0,SSL_AUTH_MASK,0},
{0,SSL_TXT_DES, 0,SSL_DES, 0,0,0,0,SSL_ENC_MASK,0},
{0,SSL_TXT_3DES,0,SSL_3DES, 0,0,0,0,SSL_ENC_MASK,0},
{0,SSL_TXT_RC4, 0,SSL_RC4, 0,0,0,0,SSL_ENC_MASK,0},
{0,SSL_TXT_RC2, 0,SSL_RC2, 0,0,0,0,SSL_ENC_MASK,0},
#ifndef OPENSSL_NO_IDEA
{0,SSL_TXT_IDEA,0,SSL_IDEA, 0,0,0,0,SSL_ENC_MASK,0},
#endif
{0,SSL_TXT_eNULL,0,SSL_eNULL,0,0,0,0,SSL_ENC_MASK,0},
{0,SSL_TXT_eFZA,0,SSL_eFZA, 0,0,0,0,SSL_ENC_MASK,0},
{0,SSL_TXT_AES, 0,SSL_AES, 0,0,0,0,SSL_ENC_MASK,0},
{0,SSL_TXT_MD5, 0,SSL_MD5, 0,0,0,0,SSL_MAC_MASK,0},
{0,SSL_TXT_SHA1,0,SSL_SHA1, 0,0,0,0,SSL_MAC_MASK,0},
{0,SSL_TXT_SHA, 0,SSL_SHA, 0,0,0,0,SSL_MAC_MASK,0},
{0,SSL_TXT_NULL,0,SSL_NULL, 0,0,0,0,SSL_ENC_MASK,0},
{0,SSL_TXT_KRB5,0,SSL_KRB5, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK,0},
{0,SSL_TXT_RSA, 0,SSL_RSA, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK,0},
{0,SSL_TXT_ADH, 0,SSL_ADH, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK,0},
{0,SSL_TXT_FZA, 0,SSL_FZA, 0,0,0,0,SSL_AUTH_MASK|SSL_MKEY_MASK|SSL_ENC_MASK,0},
{0,SSL_TXT_SSLV2, 0,SSL_SSLV2, 0,0,0,0,SSL_SSL_MASK,0},
{0,SSL_TXT_SSLV3, 0,SSL_SSLV3, 0,0,0,0,SSL_SSL_MASK,0},
{0,SSL_TXT_TLSV1, 0,SSL_TLSV1, 0,0,0,0,SSL_SSL_MASK,0},
{0,SSL_TXT_EXP ,0, 0,SSL_EXPORT, 0,0,0,0,SSL_EXP_MASK},
{0,SSL_TXT_EXPORT,0, 0,SSL_EXPORT, 0,0,0,0,SSL_EXP_MASK},
{0,SSL_TXT_EXP40, 0, 0, SSL_EXP40, 0,0,0,0,SSL_STRONG_MASK},
{0,SSL_TXT_EXP56, 0, 0, SSL_EXP56, 0,0,0,0,SSL_STRONG_MASK},
{0,SSL_TXT_LOW, 0, 0, SSL_LOW, 0,0,0,0,SSL_STRONG_MASK},
{0,SSL_TXT_MEDIUM,0, 0,SSL_MEDIUM, 0,0,0,0,SSL_STRONG_MASK},
{0,SSL_TXT_HIGH, 0, 0, SSL_HIGH, 0,0,0,0,SSL_STRONG_MASK},
};
void ssl_load_ciphers(void)
{
ssl_cipher_methods[SSL_ENC_DES_IDX]=
EVP_get_cipherbyname(SN_des_cbc);
ssl_cipher_methods[SSL_ENC_3DES_IDX]=
EVP_get_cipherbyname(SN_des_ede3_cbc);
ssl_cipher_methods[SSL_ENC_RC4_IDX]=
EVP_get_cipherbyname(SN_rc4);
ssl_cipher_methods[SSL_ENC_RC2_IDX]=
EVP_get_cipherbyname(SN_rc2_cbc);
#ifndef OPENSSL_NO_IDEA
ssl_cipher_methods[SSL_ENC_IDEA_IDX]=
EVP_get_cipherbyname(SN_idea_cbc);
#else
ssl_cipher_methods[SSL_ENC_IDEA_IDX]= NULL;
#endif
ssl_cipher_methods[SSL_ENC_AES128_IDX]=
EVP_get_cipherbyname(SN_aes_128_cbc);
ssl_cipher_methods[SSL_ENC_AES256_IDX]=
EVP_get_cipherbyname(SN_aes_256_cbc);
ssl_digest_methods[SSL_MD_MD5_IDX]=
EVP_get_digestbyname(SN_md5);
ssl_digest_methods[SSL_MD_SHA1_IDX]=
EVP_get_digestbyname(SN_sha1);
}
static int sk_comp_cmp(const SSL_COMP * const *a,
const SSL_COMP * const *b)
{
return((*a)->id-(*b)->id);
}
static void load_builtin_compressions(void)
{
if (ssl_comp_methods != NULL)
return;
CRYPTO_w_lock(CRYPTO_LOCK_SSL);
if (ssl_comp_methods == NULL)
{
SSL_COMP *comp = NULL;
MemCheck_off();
ssl_comp_methods=sk_SSL_COMP_new(sk_comp_cmp);
if (ssl_comp_methods != NULL)
{
comp=(SSL_COMP *)OPENSSL_malloc(sizeof(SSL_COMP));
if (comp != NULL)
{
comp->method=COMP_zlib();
if (comp->method
&& comp->method->type == NID_undef)
OPENSSL_free(comp);
else
{
comp->id=SSL_COMP_ZLIB_IDX;
comp->name=comp->method->name;
sk_SSL_COMP_push(ssl_comp_methods,comp);
}
}
}
MemCheck_on();
}
CRYPTO_w_unlock(CRYPTO_LOCK_SSL);
}
2005-03-30 18:26:02 +08:00
int ssl_cipher_get_evp(const SSL_SESSION *s, const EVP_CIPHER **enc,
1999-04-20 05:31:43 +08:00
const EVP_MD **md, SSL_COMP **comp)
{
int i;
SSL_CIPHER *c;
c=s->cipher;
if (c == NULL) return(0);
if (comp != NULL)
{
SSL_COMP ctmp;
load_builtin_compressions();
*comp=NULL;
ctmp.id=s->compress_meth;
if (ssl_comp_methods != NULL)
{
1999-04-13 01:23:57 +08:00
i=sk_SSL_COMP_find(ssl_comp_methods,&ctmp);
if (i >= 0)
1999-04-13 01:23:57 +08:00
*comp=sk_SSL_COMP_value(ssl_comp_methods,i);
else
*comp=NULL;
}
}
if ((enc == NULL) || (md == NULL)) return(0);
switch (c->algorithms & SSL_ENC_MASK)
{
case SSL_DES:
i=SSL_ENC_DES_IDX;
break;
case SSL_3DES:
i=SSL_ENC_3DES_IDX;
break;
case SSL_RC4:
i=SSL_ENC_RC4_IDX;
break;
case SSL_RC2:
i=SSL_ENC_RC2_IDX;
break;
case SSL_IDEA:
i=SSL_ENC_IDEA_IDX;
break;
case SSL_eNULL:
i=SSL_ENC_NULL_IDX;
break;
case SSL_AES:
switch(c->alg_bits)
{
case 128: i=SSL_ENC_AES128_IDX; break;
case 256: i=SSL_ENC_AES256_IDX; break;
default: i=-1; break;
}
break;
default:
i= -1;
break;
}
if ((i < 0) || (i > SSL_ENC_NUM_IDX))
*enc=NULL;
else
{
if (i == SSL_ENC_NULL_IDX)
*enc=EVP_enc_null();
else
*enc=ssl_cipher_methods[i];
}
switch (c->algorithms & SSL_MAC_MASK)
{
case SSL_MD5:
i=SSL_MD_MD5_IDX;
break;
case SSL_SHA1:
i=SSL_MD_SHA1_IDX;
break;
default:
i= -1;
break;
}
if ((i < 0) || (i > SSL_MD_NUM_IDX))
*md=NULL;
else
*md=ssl_digest_methods[i];
if ((*enc != NULL) && (*md != NULL))
return(1);
else
return(0);
}
#define ITEM_SEP(a) \
(((a) == ':') || ((a) == ' ') || ((a) == ';') || ((a) == ','))
1999-04-20 05:31:43 +08:00
static void ll_append_tail(CIPHER_ORDER **head, CIPHER_ORDER *curr,
CIPHER_ORDER **tail)
{
if (curr == *tail) return;
if (curr == *head)
*head=curr->next;
if (curr->prev != NULL)
curr->prev->next=curr->next;
if (curr->next != NULL) /* should always be true */
curr->next->prev=curr->prev;
(*tail)->next=curr;
curr->prev= *tail;
curr->next=NULL;
*tail=curr;
}
static unsigned long ssl_cipher_get_disabled(void)
{
unsigned long mask;
mask = SSL_kFZA;
#ifdef OPENSSL_NO_RSA
mask |= SSL_aRSA|SSL_kRSA;
#endif
#ifdef OPENSSL_NO_DSA
mask |= SSL_aDSS;
#endif
#ifdef OPENSSL_NO_DH
mask |= SSL_kDHr|SSL_kDHd|SSL_kEDH|SSL_aDH;
#endif
#ifdef OPENSSL_NO_KRB5
mask |= SSL_kKRB5|SSL_aKRB5;
#endif
#ifdef OPENSSL_NO_ECDH
mask |= SSL_kECDH|SSL_kECDHE;
#endif
1999-03-06 20:09:36 +08:00
#ifdef SSL_FORBID_ENULL
mask |= SSL_eNULL;
#endif
mask |= (ssl_cipher_methods[SSL_ENC_DES_IDX ] == NULL) ? SSL_DES :0;
mask |= (ssl_cipher_methods[SSL_ENC_3DES_IDX] == NULL) ? SSL_3DES:0;
mask |= (ssl_cipher_methods[SSL_ENC_RC4_IDX ] == NULL) ? SSL_RC4 :0;
mask |= (ssl_cipher_methods[SSL_ENC_RC2_IDX ] == NULL) ? SSL_RC2 :0;
mask |= (ssl_cipher_methods[SSL_ENC_IDEA_IDX] == NULL) ? SSL_IDEA:0;
mask |= (ssl_cipher_methods[SSL_ENC_eFZA_IDX] == NULL) ? SSL_eFZA:0;
mask |= (ssl_cipher_methods[SSL_ENC_AES128_IDX] == NULL) ? SSL_AES:0;
mask |= (ssl_digest_methods[SSL_MD_MD5_IDX ] == NULL) ? SSL_MD5 :0;
mask |= (ssl_digest_methods[SSL_MD_SHA1_IDX] == NULL) ? SSL_SHA1:0;
return(mask);
}
static void ssl_cipher_collect_ciphers(const SSL_METHOD *ssl_method,
int num_of_ciphers, unsigned long mask, CIPHER_ORDER *co_list,
CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p)
{
int i, co_list_num;
SSL_CIPHER *c;
/*
* We have num_of_ciphers descriptions compiled in, depending on the
* method selected (SSLv2 and/or SSLv3, TLSv1 etc).
* These will later be sorted in a linked list with at most num
* entries.
*/
/* Get the initial list of ciphers */
co_list_num = 0; /* actual count of ciphers */
for (i = 0; i < num_of_ciphers; i++)
{
c = ssl_method->get_cipher(i);
/* drop those that use any of that is not available */
if ((c != NULL) && c->valid && !(c->algorithms & mask))
{
co_list[co_list_num].cipher = c;
co_list[co_list_num].next = NULL;
co_list[co_list_num].prev = NULL;
co_list[co_list_num].active = 0;
co_list_num++;
#ifdef KSSL_DEBUG
printf("\t%d: %s %lx %lx\n",i,c->name,c->id,c->algorithms);
#endif /* KSSL_DEBUG */
/*
if (!sk_push(ca_list,(char *)c)) goto err;
*/
}
}
/*
* Prepare linked list from list entries
*/
for (i = 1; i < co_list_num - 1; i++)
{
co_list[i].prev = &(co_list[i-1]);
co_list[i].next = &(co_list[i+1]);
}
if (co_list_num > 0)
{
(*head_p) = &(co_list[0]);
(*head_p)->prev = NULL;
(*head_p)->next = &(co_list[1]);
(*tail_p) = &(co_list[co_list_num - 1]);
(*tail_p)->prev = &(co_list[co_list_num - 2]);
(*tail_p)->next = NULL;
}
}
static void ssl_cipher_collect_aliases(SSL_CIPHER **ca_list,
int num_of_group_aliases, unsigned long mask,
CIPHER_ORDER *head)
{
CIPHER_ORDER *ciph_curr;
SSL_CIPHER **ca_curr;
int i;
/*
* First, add the real ciphers as already collected
*/
ciph_curr = head;
ca_curr = ca_list;
while (ciph_curr != NULL)
{
*ca_curr = ciph_curr->cipher;
ca_curr++;
ciph_curr = ciph_curr->next;
}
/*
* Now we add the available ones from the cipher_aliases[] table.
* They represent either an algorithm, that must be fully
* supported (not match any bit in mask) or represent a cipher
* strength value (will be added in any case because algorithms=0).
*/
for (i = 0; i < num_of_group_aliases; i++)
{
if ((i == 0) || /* always fetch "ALL" */
!(cipher_aliases[i].algorithms & mask))
{
*ca_curr = (SSL_CIPHER *)(cipher_aliases + i);
ca_curr++;
}
}
*ca_curr = NULL; /* end of list */
}
static void ssl_cipher_apply_rule(unsigned long algorithms, unsigned long mask,
unsigned long algo_strength, unsigned long mask_strength,
int rule, int strength_bits, CIPHER_ORDER *co_list,
CIPHER_ORDER **head_p, CIPHER_ORDER **tail_p)
{
CIPHER_ORDER *head, *tail, *curr, *curr2, *tail2;
SSL_CIPHER *cp;
unsigned long ma, ma_s;
#ifdef CIPHER_DEBUG
printf("Applying rule %d with %08lx %08lx %08lx %08lx (%d)\n",
rule, algorithms, mask, algo_strength, mask_strength,
strength_bits);
#endif
curr = head = *head_p;
curr2 = head;
tail2 = tail = *tail_p;
for (;;)
{
if ((curr == NULL) || (curr == tail2)) break;
curr = curr2;
curr2 = curr->next;
cp = curr->cipher;
/*
* Selection criteria is either the number of strength_bits
* or the algorithm used.
*/
if (strength_bits == -1)
{
ma = mask & cp->algorithms;
ma_s = mask_strength & cp->algo_strength;
#ifdef CIPHER_DEBUG
printf("\nName: %s:\nAlgo = %08lx Algo_strength = %08lx\nMask = %08lx Mask_strength %08lx\n", cp->name, cp->algorithms, cp->algo_strength, mask, mask_strength);
printf("ma = %08lx ma_s %08lx, ma&algo=%08lx, ma_s&algos=%08lx\n", ma, ma_s, ma&algorithms, ma_s&algo_strength);
#endif
/*
* Select: if none of the mask bit was met from the
* cipher or not all of the bits were met, the
* selection does not apply.
*/
if (((ma == 0) && (ma_s == 0)) ||
((ma & algorithms) != ma) ||
((ma_s & algo_strength) != ma_s))
continue; /* does not apply */
}
else if (strength_bits != cp->strength_bits)
continue; /* does not apply */
#ifdef CIPHER_DEBUG
printf("Action = %d\n", rule);
#endif
/* add the cipher if it has not been added yet. */
if (rule == CIPHER_ADD)
{
if (!curr->active)
{
ll_append_tail(&head, curr, &tail);
curr->active = 1;
}
}
/* Move the added cipher to this location */
else if (rule == CIPHER_ORD)
{
if (curr->active)
{
ll_append_tail(&head, curr, &tail);
}
}
else if (rule == CIPHER_DEL)
curr->active = 0;
else if (rule == CIPHER_KILL)
{
if (head == curr)
head = curr->next;
else
curr->prev->next = curr->next;
if (tail == curr)
tail = curr->prev;
curr->active = 0;
if (curr->next != NULL)
curr->next->prev = curr->prev;
if (curr->prev != NULL)
curr->prev->next = curr->next;
curr->next = NULL;
curr->prev = NULL;
}
}
*head_p = head;
*tail_p = tail;
}
static int ssl_cipher_strength_sort(CIPHER_ORDER *co_list,
CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p)
{
int max_strength_bits, i, *number_uses;
CIPHER_ORDER *curr;
/*
* This routine sorts the ciphers with descending strength. The sorting
* must keep the pre-sorted sequence, so we apply the normal sorting
* routine as '+' movement to the end of the list.
*/
max_strength_bits = 0;
curr = *head_p;
while (curr != NULL)
{
if (curr->active &&
(curr->cipher->strength_bits > max_strength_bits))
max_strength_bits = curr->cipher->strength_bits;
curr = curr->next;
}
number_uses = OPENSSL_malloc((max_strength_bits + 1) * sizeof(int));
if (!number_uses)
{
SSLerr(SSL_F_SSL_CIPHER_STRENGTH_SORT,ERR_R_MALLOC_FAILURE);
return(0);
}
memset(number_uses, 0, (max_strength_bits + 1) * sizeof(int));
/*
* Now find the strength_bits values actually used
*/
curr = *head_p;
while (curr != NULL)
{
if (curr->active)
number_uses[curr->cipher->strength_bits]++;
curr = curr->next;
}
/*
* Go through the list of used strength_bits values in descending
* order.
*/
for (i = max_strength_bits; i >= 0; i--)
if (number_uses[i] > 0)
ssl_cipher_apply_rule(0, 0, 0, 0, CIPHER_ORD, i,
co_list, head_p, tail_p);
OPENSSL_free(number_uses);
return(1);
}
static int ssl_cipher_process_rulestr(const char *rule_str,
CIPHER_ORDER *co_list, CIPHER_ORDER **head_p,
CIPHER_ORDER **tail_p, SSL_CIPHER **ca_list)
{
unsigned long algorithms, mask, algo_strength, mask_strength;
const char *l, *start, *buf;
int j, multi, found, rule, retval, ok, buflen;
char ch;
retval = 1;
l = rule_str;
for (;;)
{
ch = *l;
if (ch == '\0')
break; /* done */
if (ch == '-')
{ rule = CIPHER_DEL; l++; }
else if (ch == '+')
{ rule = CIPHER_ORD; l++; }
else if (ch == '!')
{ rule = CIPHER_KILL; l++; }
else if (ch == '@')
{ rule = CIPHER_SPECIAL; l++; }
else
{ rule = CIPHER_ADD; }
if (ITEM_SEP(ch))
{
l++;
continue;
}
algorithms = mask = algo_strength = mask_strength = 0;
start=l;
for (;;)
{
ch = *l;
buf = l;
buflen = 0;
#ifndef CHARSET_EBCDIC
while ( ((ch >= 'A') && (ch <= 'Z')) ||
((ch >= '0') && (ch <= '9')) ||
((ch >= 'a') && (ch <= 'z')) ||
(ch == '-'))
#else
while ( isalnum(ch) || (ch == '-'))
#endif
{
ch = *(++l);
buflen++;
}
if (buflen == 0)
{
/*
* We hit something we cannot deal with,
2000-02-04 07:23:24 +08:00
* it is no command or separator nor
* alphanumeric, so we call this an error.
*/
SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
SSL_R_INVALID_COMMAND);
retval = found = 0;
l++;
break;
}
if (rule == CIPHER_SPECIAL)
{
found = 0; /* unused -- avoid compiler warning */
break; /* special treatment */
}
/* check for multi-part specification */
if (ch == '+')
{
multi=1;
l++;
}
else
multi=0;
/*
* Now search for the cipher alias in the ca_list. Be careful
* with the strncmp, because the "buflen" limitation
* will make the rule "ADH:SOME" and the cipher
* "ADH-MY-CIPHER" look like a match for buflen=3.
* So additionally check whether the cipher name found
* has the correct length. We can save a strlen() call:
* just checking for the '\0' at the right place is
* sufficient, we have to strncmp() anyway. (We cannot
* use strcmp(), because buf is not '\0' terminated.)
*/
j = found = 0;
while (ca_list[j])
{
if (!strncmp(buf, ca_list[j]->name, buflen) &&
(ca_list[j]->name[buflen] == '\0'))
{
found = 1;
break;
}
else
j++;
}
if (!found)
break; /* ignore this entry */
/* New algorithms:
* 1 - any old restrictions apply outside new mask
* 2 - any new restrictions apply outside old mask
* 3 - enforce old & new where masks intersect
*/
algorithms = (algorithms & ~ca_list[j]->mask) | /* 1 */
(ca_list[j]->algorithms & ~mask) | /* 2 */
(algorithms & ca_list[j]->algorithms); /* 3 */
mask |= ca_list[j]->mask;
algo_strength = (algo_strength & ~ca_list[j]->mask_strength) |
(ca_list[j]->algo_strength & ~mask_strength) |
(algo_strength & ca_list[j]->algo_strength);
mask_strength |= ca_list[j]->mask_strength;
if (!multi) break;
}
/*
* Ok, we have the rule, now apply it
*/
if (rule == CIPHER_SPECIAL)
{ /* special command */
ok = 0;
if ((buflen == 8) &&
!strncmp(buf, "STRENGTH", 8))
ok = ssl_cipher_strength_sort(co_list,
head_p, tail_p);
else
SSLerr(SSL_F_SSL_CIPHER_PROCESS_RULESTR,
SSL_R_INVALID_COMMAND);
if (ok == 0)
retval = 0;
/*
* We do not support any "multi" options
* together with "@", so throw away the
* rest of the command, if any left, until
* end or ':' is found.
*/
while ((*l != '\0') && ITEM_SEP(*l))
l++;
}
else if (found)
{
ssl_cipher_apply_rule(algorithms, mask,
algo_strength, mask_strength, rule, -1,
co_list, head_p, tail_p);
}
else
{
while ((*l != '\0') && ITEM_SEP(*l))
l++;
}
if (*l == '\0') break; /* done */
}
return(retval);
}
STACK_OF(SSL_CIPHER) *ssl_create_cipher_list(const SSL_METHOD *ssl_method,
STACK_OF(SSL_CIPHER) **cipher_list,
STACK_OF(SSL_CIPHER) **cipher_list_by_id,
const char *rule_str)
{
int ok, num_of_ciphers, num_of_alias_max, num_of_group_aliases;
unsigned long disabled_mask;
STACK_OF(SSL_CIPHER) *cipherstack, *tmp_cipher_list;
const char *rule_p;
CIPHER_ORDER *co_list = NULL, *head = NULL, *tail = NULL, *curr;
SSL_CIPHER **ca_list = NULL;
/*
* Return with error if nothing to do.
*/
if (rule_str == NULL || cipher_list == NULL || cipher_list_by_id == NULL)
return NULL;
/*
* To reduce the work to do we only want to process the compiled
* in algorithms, so we first get the mask of disabled ciphers.
*/
disabled_mask = ssl_cipher_get_disabled();
/*
* Now we have to collect the available ciphers from the compiled
* in ciphers. We cannot get more than the number compiled in, so
* it is used for allocation.
*/
num_of_ciphers = ssl_method->num_ciphers();
#ifdef KSSL_DEBUG
printf("ssl_create_cipher_list() for %d ciphers\n", num_of_ciphers);
#endif /* KSSL_DEBUG */
co_list = (CIPHER_ORDER *)OPENSSL_malloc(sizeof(CIPHER_ORDER) * num_of_ciphers);
if (co_list == NULL)
{
SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST,ERR_R_MALLOC_FAILURE);
return(NULL); /* Failure */
}
ssl_cipher_collect_ciphers(ssl_method, num_of_ciphers, disabled_mask,
co_list, &head, &tail);
/*
* We also need cipher aliases for selecting based on the rule_str.
* There might be two types of entries in the rule_str: 1) names
* of ciphers themselves 2) aliases for groups of ciphers.
* For 1) we need the available ciphers and for 2) the cipher
2000-02-04 07:23:24 +08:00
* groups of cipher_aliases added together in one list (otherwise
* we would be happy with just the cipher_aliases table).
*/
num_of_group_aliases = sizeof(cipher_aliases) / sizeof(SSL_CIPHER);
num_of_alias_max = num_of_ciphers + num_of_group_aliases + 1;
ca_list =
(SSL_CIPHER **)OPENSSL_malloc(sizeof(SSL_CIPHER *) * num_of_alias_max);
if (ca_list == NULL)
{
OPENSSL_free(co_list);
SSLerr(SSL_F_SSL_CREATE_CIPHER_LIST,ERR_R_MALLOC_FAILURE);
return(NULL); /* Failure */
}
ssl_cipher_collect_aliases(ca_list, num_of_group_aliases, disabled_mask,
head);
/*
* If the rule_string begins with DEFAULT, apply the default rule
* before using the (possibly available) additional rules.
*/
ok = 1;
rule_p = rule_str;
if (strncmp(rule_str,"DEFAULT",7) == 0)
{
ok = ssl_cipher_process_rulestr(SSL_DEFAULT_CIPHER_LIST,
co_list, &head, &tail, ca_list);
rule_p += 7;
if (*rule_p == ':')
rule_p++;
}
if (ok && (strlen(rule_p) > 0))
ok = ssl_cipher_process_rulestr(rule_p, co_list, &head, &tail,
ca_list);
OPENSSL_free(ca_list); /* Not needed anymore */
if (!ok)
{ /* Rule processing failure */
OPENSSL_free(co_list);
return(NULL);
}
/*
* Allocate new "cipherstack" for the result, return with error
* if we cannot get one.
*/
if ((cipherstack = sk_SSL_CIPHER_new_null()) == NULL)
{
OPENSSL_free(co_list);
return(NULL);
}
/*
* The cipher selection for the list is done. The ciphers are added
* to the resulting precedence to the STACK_OF(SSL_CIPHER).
*/
for (curr = head; curr != NULL; curr = curr->next)
{
if (curr->active)
{
sk_SSL_CIPHER_push(cipherstack, curr->cipher);
#ifdef CIPHER_DEBUG
printf("<%s>\n",curr->cipher->name);
#endif
}
}
OPENSSL_free(co_list); /* Not needed any longer */
tmp_cipher_list = sk_SSL_CIPHER_dup(cipherstack);
if (tmp_cipher_list == NULL)
{
sk_SSL_CIPHER_free(cipherstack);
return NULL;
}
if (*cipher_list != NULL)
sk_SSL_CIPHER_free(*cipher_list);
*cipher_list = cipherstack;
if (*cipher_list_by_id != NULL)
sk_SSL_CIPHER_free(*cipher_list_by_id);
*cipher_list_by_id = tmp_cipher_list;
1999-04-13 01:23:57 +08:00
sk_SSL_CIPHER_set_cmp_func(*cipher_list_by_id,ssl_cipher_ptr_id_cmp);
return(cipherstack);
}
1999-04-20 05:31:43 +08:00
char *SSL_CIPHER_description(SSL_CIPHER *cipher, char *buf, int len)
{
int is_export,pkl,kl;
2005-03-21 06:56:07 +08:00
const char *ver,*exp_str;
const char *kx,*au,*enc,*mac;
unsigned long alg,alg2,alg_s;
#ifdef KSSL_DEBUG
2005-03-21 06:56:07 +08:00
static const char *format="%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s%s AL=%lx\n";
#else
2005-03-21 06:56:07 +08:00
static const char *format="%-23s %s Kx=%-8s Au=%-4s Enc=%-9s Mac=%-4s%s\n";
#endif /* KSSL_DEBUG */
alg=cipher->algorithms;
alg_s=cipher->algo_strength;
alg2=cipher->algorithm2;
is_export=SSL_C_IS_EXPORT(cipher);
pkl=SSL_C_EXPORT_PKEYLENGTH(cipher);
kl=SSL_C_EXPORT_KEYLENGTH(cipher);
exp_str=is_export?" export":"";
if (alg & SSL_SSLV2)
ver="SSLv2";
else if (alg & SSL_SSLV3)
ver="SSLv3";
else
ver="unknown";
switch (alg&SSL_MKEY_MASK)
{
case SSL_kRSA:
kx=is_export?(pkl == 512 ? "RSA(512)" : "RSA(1024)"):"RSA";
break;
case SSL_kDHr:
kx="DH/RSA";
break;
case SSL_kDHd:
kx="DH/DSS";
break;
case SSL_kKRB5: /* VRS */
case SSL_KRB5: /* VRS */
kx="KRB5";
break;
case SSL_kFZA:
kx="Fortezza";
break;
case SSL_kEDH:
kx=is_export?(pkl == 512 ? "DH(512)" : "DH(1024)"):"DH";
break;
case SSL_kECDH:
case SSL_kECDHE:
kx=is_export?"ECDH(<=163)":"ECDH";
break;
default:
kx="unknown";
}
switch (alg&SSL_AUTH_MASK)
{
case SSL_aRSA:
au="RSA";
break;
case SSL_aDSS:
au="DSS";
break;
case SSL_aDH:
au="DH";
break;
case SSL_aKRB5: /* VRS */
case SSL_KRB5: /* VRS */
au="KRB5";
break;
case SSL_aFZA:
case SSL_aNULL:
au="None";
break;
case SSL_aECDSA:
au="ECDSA";
break;
default:
au="unknown";
break;
}
switch (alg&SSL_ENC_MASK)
{
case SSL_DES:
enc=(is_export && kl == 5)?"DES(40)":"DES(56)";
break;
case SSL_3DES:
enc="3DES(168)";
break;
case SSL_RC4:
enc=is_export?(kl == 5 ? "RC4(40)" : "RC4(56)")
:((alg2&SSL2_CF_8_BYTE_ENC)?"RC4(64)":"RC4(128)");
break;
case SSL_RC2:
enc=is_export?(kl == 5 ? "RC2(40)" : "RC2(56)"):"RC2(128)";
break;
case SSL_IDEA:
enc="IDEA(128)";
break;
case SSL_eFZA:
enc="Fortezza";
break;
case SSL_eNULL:
enc="None";
break;
case SSL_AES:
switch(cipher->strength_bits)
{
case 128: enc="AES(128)"; break;
case 192: enc="AES(192)"; break;
case 256: enc="AES(256)"; break;
default: enc="AES(?""?""?)"; break;
}
break;
default:
enc="unknown";
break;
}
switch (alg&SSL_MAC_MASK)
{
case SSL_MD5:
mac="MD5";
break;
case SSL_SHA1:
mac="SHA1";
break;
default:
mac="unknown";
break;
}
if (buf == NULL)
{
2000-05-21 22:17:01 +08:00
len=128;
buf=OPENSSL_malloc(len);
if (buf == NULL) return("OPENSSL_malloc Error");
}
else if (len < 128)
return("Buffer too small");
#ifdef KSSL_DEBUG
BIO_snprintf(buf,len,format,cipher->name,ver,kx,au,enc,mac,exp_str,alg);
#else
BIO_snprintf(buf,len,format,cipher->name,ver,kx,au,enc,mac,exp_str);
#endif /* KSSL_DEBUG */
return(buf);
}
2005-03-30 18:26:02 +08:00
char *SSL_CIPHER_get_version(const SSL_CIPHER *c)
{
int i;
if (c == NULL) return("(NONE)");
i=(int)(c->id>>24L);
if (i == 3)
return("TLSv1/SSLv3");
else if (i == 2)
return("SSLv2");
else
return("unknown");
}
/* return the actual cipher being used */
2005-03-30 18:26:02 +08:00
const char *SSL_CIPHER_get_name(const SSL_CIPHER *c)
{
if (c != NULL)
return(c->name);
return("(NONE)");
}
2000-02-04 07:23:24 +08:00
/* number of bits for symmetric cipher */
2005-03-30 18:26:02 +08:00
int SSL_CIPHER_get_bits(const SSL_CIPHER *c, int *alg_bits)
{
int ret=0;
if (c != NULL)
{
if (alg_bits != NULL) *alg_bits = c->alg_bits;
ret = c->strength_bits;
}
return(ret);
}
1999-04-20 05:31:43 +08:00
SSL_COMP *ssl3_comp_find(STACK_OF(SSL_COMP) *sk, int n)
{
SSL_COMP *ctmp;
int i,nn;
if ((n == 0) || (sk == NULL)) return(NULL);
1999-04-13 01:23:57 +08:00
nn=sk_SSL_COMP_num(sk);
for (i=0; i<nn; i++)
{
1999-04-13 01:23:57 +08:00
ctmp=sk_SSL_COMP_value(sk,i);
if (ctmp->id == n)
return(ctmp);
}
return(NULL);
}
1999-04-20 05:31:43 +08:00
STACK_OF(SSL_COMP) *SSL_COMP_get_compression_methods(void)
{
load_builtin_compressions();
return(ssl_comp_methods);
}
1999-04-20 05:31:43 +08:00
int SSL_COMP_add_compression_method(int id, COMP_METHOD *cm)
{
SSL_COMP *comp;
if (cm == NULL || cm->type == NID_undef)
return 1;
/* According to draft-ietf-tls-compression-04.txt, the
compression number ranges should be the following:
0 to 63: methods defined by the IETF
64 to 192: external party methods assigned by IANA
193 to 255: reserved for private use */
if (id < 193 || id > 255)
{
SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,SSL_R_COMPRESSION_ID_NOT_WITHIN_PRIVATE_RANGE);
return 0;
}
MemCheck_off();
comp=(SSL_COMP *)OPENSSL_malloc(sizeof(SSL_COMP));
comp->id=id;
comp->method=cm;
load_builtin_compressions();
if (ssl_comp_methods
&& !sk_SSL_COMP_find(ssl_comp_methods,comp))
{
OPENSSL_free(comp);
MemCheck_on();
SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,SSL_R_DUPLICATE_COMPRESSION_ID);
return(1);
}
else if ((ssl_comp_methods == NULL)
|| !sk_SSL_COMP_push(ssl_comp_methods,comp))
{
OPENSSL_free(comp);
MemCheck_on();
SSLerr(SSL_F_SSL_COMP_ADD_COMPRESSION_METHOD,ERR_R_MALLOC_FAILURE);
2003-10-02 18:38:44 +08:00
return(1);
}
else
{
MemCheck_on();
2003-10-02 18:38:44 +08:00
return(0);
}
}
const char *SSL_COMP_get_name(const COMP_METHOD *comp)
{
if (comp)
return comp->name;
return NULL;
}