ntfs-3g/libntfs/volume.c
2005-01-25 21:41:25 +00:00

1311 lines
36 KiB
C

/*
* volume.c - NTFS volume handling code. Part of the Linux-NTFS project.
*
* Copyright (c) 2000-2004 Anton Altaparmakov
*
* This program/include file is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published
* by the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program/include file is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program (in the main directory of the Linux-NTFS
* distribution in the file COPYING); if not, write to the Free Software
* Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include "config.h"
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <fcntl.h>
#include <unistd.h>
#include <errno.h>
#include <sys/stat.h>
#include <limits.h>
#include "volume.h"
#include "attrib.h"
#include "mft.h"
#include "bootsect.h"
#include "device.h"
#include "debug.h"
#include "inode.h"
#include "runlist.h"
#include "logfile.h"
/**
* ntfs_volume_alloc -
*
*/
ntfs_volume *ntfs_volume_alloc(void)
{
ntfs_volume *vol;
vol = (ntfs_volume*)calloc(1, sizeof(ntfs_volume));
if (vol) {
vol->dev = NULL;
vol->vol_name = NULL;
vol->lcnbmp_ni = NULL;
vol->lcnbmp_na = NULL;
vol->mft_ni = NULL;
vol->mft_na = NULL;
vol->mftbmp_na = NULL;
vol->mftmirr_ni = NULL;
vol->mftmirr_na = NULL;
vol->upcase = NULL;
vol->attrdef = NULL;
}
return vol;
}
/**
* Internal:
*
* __ntfs_volume_release -
*
*/
static void __ntfs_volume_release(ntfs_volume *v)
{
if (v->lcnbmp_ni && NInoDirty(v->lcnbmp_ni))
ntfs_inode_sync(v->lcnbmp_ni);
if (v->lcnbmp_na)
ntfs_attr_close(v->lcnbmp_na);
if (v->lcnbmp_ni)
ntfs_inode_close(v->lcnbmp_ni);
if (v->mft_ni && NInoDirty(v->mft_ni))
ntfs_inode_sync(v->mft_ni);
if (v->mftbmp_na)
ntfs_attr_close(v->mftbmp_na);
if (v->mft_na)
ntfs_attr_close(v->mft_na);
if (v->mft_ni)
ntfs_inode_close(v->mft_ni);
if (v->mftmirr_ni && NInoDirty(v->mftmirr_ni))
ntfs_inode_sync(v->mftmirr_ni);
if (v->mftmirr_na)
ntfs_attr_close(v->mftmirr_na);
if (v->mftmirr_ni)
ntfs_inode_close(v->mftmirr_ni);
if (v->dev) {
struct ntfs_device *dev = v->dev;
if (NDevDirty(dev))
dev->d_ops->sync(dev);
if (dev->d_ops->close(dev))
Dprintf("%s(): Eeek! Failed to close the device. "
"Error: %s\n", __FUNCTION__,
strerror(errno));
}
if (v->vol_name)
free(v->vol_name);
if (v->upcase)
free(v->upcase);
if (v->attrdef)
free(v->attrdef);
free(v);
}
/**
* Internal:
*
* ntfs_mft_load - load the $MFT and setup the ntfs volume with it
* @vol: ntfs volume whose $MFT to load
*
* Load $MFT from @vol and setup @vol with it. After calling this function the
* volume @vol is ready for use by all read access functions provided by the
* ntfs library.
*
* Return 0 on success and -1 on error with errno set to the error code.
*/
static int ntfs_mft_load(ntfs_volume *vol)
{
VCN next_vcn, last_vcn, highest_vcn;
s64 l;
MFT_RECORD *mb = NULL;
ntfs_attr_search_ctx *ctx = NULL;
ATTR_RECORD *a;
int eo;
/* Manually setup an ntfs_inode. */
vol->mft_ni = ntfs_inode_allocate(vol);
mb = (MFT_RECORD*)malloc(vol->mft_record_size);
if (!vol->mft_ni || !mb) {
Dperror("Error allocating memory for $MFT");
goto error_exit;
}
vol->mft_ni->mft_no = 0;
vol->mft_ni->mrec = mb;
/* Can't use any of the higher level functions yet! */
l = ntfs_mst_pread(vol->dev, vol->mft_lcn << vol->cluster_size_bits, 1,
vol->mft_record_size, mb);
if (l != 1) {
if (l != -1)
errno = EIO;
Dperror("Error reading $MFT");
goto error_exit;
}
if (ntfs_is_baad_record(mb->magic)) {
Dputs("Error: Incomplete multi sector transfer detected in "
"$MFT.");
goto io_error_exit;
}
if (!ntfs_is_mft_record(mb->magic)) {
Dputs("Error: $MFT has invalid magic.");
goto io_error_exit;
}
ctx = ntfs_attr_get_search_ctx(vol->mft_ni, mb);
if (!ctx) {
Dperror("Failed to allocate attribute search context");
goto error_exit;
}
if (p2n(ctx->attr) < p2n(mb) ||
(char*)ctx->attr > (char*)mb + vol->mft_record_size) {
Dputs("Error: $MFT is corrupt.");
goto io_error_exit;
}
/* Find the $ATTRIBUTE_LIST attribute in $MFT if present. */
if (ntfs_attr_lookup(AT_ATTRIBUTE_LIST, AT_UNNAMED, 0, 0, 0, NULL, 0,
ctx)) {
if (errno != ENOENT) {
Dputs("Error: $MFT has corrupt attribute list.");
goto io_error_exit;
}
goto mft_has_no_attr_list;
}
NInoSetAttrList(vol->mft_ni);
l = ntfs_get_attribute_value_length(ctx->attr);
if (l <= 0 || l > 0x40000) {
Dputs("Error: $MFT/$ATTRIBUTE_LIST has invalid length.");
goto io_error_exit;
}
vol->mft_ni->attr_list_size = l;
vol->mft_ni->attr_list = malloc(l);
if (!vol->mft_ni->attr_list) {
Dputs("Error: failed to allocate buffer for attribute list.");
goto error_exit;
}
l = ntfs_get_attribute_value(vol, ctx->attr, vol->mft_ni->attr_list);
if (!l) {
Dputs("Error: failed to get value of $MFT/$ATTRIBUTE_LIST.");
goto io_error_exit;
}
if (l != vol->mft_ni->attr_list_size) {
Dputs("Error: got unexepected amount of data when reading "
"$MFT/$ATTRIBUTE_LIST.");
goto io_error_exit;
}
mft_has_no_attr_list:
/* We now have a fully setup ntfs inode for $MFT in vol->mft_ni. */
/* Get an ntfs attribute for $MFT/$DATA and set it up, too. */
vol->mft_na = ntfs_attr_open(vol->mft_ni, AT_DATA, AT_UNNAMED, 0);
if (!vol->mft_na) {
Dperror("Failed to open ntfs attribute");
goto error_exit;
}
/* Read all extents from the $DATA attribute in $MFT. */
ntfs_attr_reinit_search_ctx(ctx);
last_vcn = vol->mft_na->allocated_size >> vol->cluster_size_bits;
highest_vcn = next_vcn = 0;
a = NULL;
while (!ntfs_attr_lookup(AT_DATA, AT_UNNAMED, 0, 0, next_vcn, NULL, 0,
ctx)) {
runlist_element *nrl;
a = ctx->attr;
/* $MFT must be non-resident. */
if (!a->non_resident) {
Dputs("$MFT must be non-resident but a resident "
"extent was found. $MFT is corrupt. "
"Run chkdsk.");
goto io_error_exit;
}
/* $MFT must be uncompressed and unencrypted. */
if (a->flags & ATTR_COMPRESSION_MASK ||
a->flags & ATTR_IS_ENCRYPTED) {
Dputs("$MFT must be uncompressed and unencrypted but "
"a compressed/encrypted extent was "
"found. $MFT is corrupt. Run chkdsk.");
goto io_error_exit;
}
/*
* Decompress the mapping pairs array of this extent and merge
* the result into the existing runlist. No need for locking
* as we have exclusive access to the inode at this time and we
* are a mount in progress task, too.
*/
nrl = ntfs_mapping_pairs_decompress(vol, a, vol->mft_na->rl);
if (!nrl) {
Dperror("ntfs_mapping_pairs_decompress() failed");
goto error_exit;
}
vol->mft_na->rl = nrl;
/* Get the lowest vcn for the next extent. */
highest_vcn = sle64_to_cpu(a->highest_vcn);
next_vcn = highest_vcn + 1;
/* Only one extent or error, which we catch below. */
if (next_vcn <= 0)
break;
/* Avoid endless loops due to corruption. */
if (next_vcn < sle64_to_cpu(a->lowest_vcn)) {
Dputs("$MFT has corrupt attribute list attribute. "
"Run chkdsk.");
goto io_error_exit;
}
}
if (!a) {
Dputs("$MFT/$DATA attribute not found. $MFT is corrupt. "
"Run chkdsk.");
goto io_error_exit;
}
if (highest_vcn && highest_vcn != last_vcn - 1) {
Dputs("Failed to load the complete runlist for $MFT/$DATA. "
"Bug or corrupt $MFT. Run chkdsk.");
Dprintf("highest_vcn = 0x%llx, last_vcn - 1 = 0x%llx\n",
(long long)highest_vcn,
(long long)last_vcn - 1);
goto io_error_exit;
}
/* Done with the $Mft mft record. */
ntfs_attr_put_search_ctx(ctx);
ctx = NULL;
/*
* The volume is now setup so we can use all read access functions.
*/
vol->mftbmp_na = ntfs_attr_open(vol->mft_ni, AT_BITMAP, AT_UNNAMED, 0);
if (!vol->mftbmp_na) {
Dperror("Failed to open $MFT/$BITMAP");
goto error_exit;
}
return 0;
io_error_exit:
errno = EIO;
error_exit:
eo = errno;
if (ctx)
ntfs_attr_put_search_ctx(ctx);
if (vol->mft_na) {
ntfs_attr_close(vol->mft_na);
vol->mft_na = NULL;
}
if (vol->mft_ni) {
ntfs_inode_close(vol->mft_ni);
vol->mft_ni = NULL;
}
errno = eo;
return -1;
}
/**
* Internal:
*
* ntfs_mftmirr_load - load the $MFTMirr and setup the ntfs volume with it
* @vol: ntfs volume whose $MFTMirr to load
*
* Load $MFTMirr from @vol and setup @vol with it. After calling this function
* the volume @vol is ready for use by all write access functions provided by
* the ntfs library (assuming ntfs_mft_load() has been called successfully
* beforehand).
*
* Return 0 on success and -1 on error with errno set to the error code.
*/
static int ntfs_mftmirr_load(ntfs_volume *vol)
{
int i;
runlist_element rl[2];
vol->mftmirr_ni = ntfs_inode_open(vol, FILE_MFTMirr);
if (!vol->mftmirr_ni) {
Dperror("Failed to open inode $MFTMirr");
return -1;
}
/* Get an ntfs attribute for $MFTMirr/$DATA, too. */
vol->mftmirr_na = ntfs_attr_open(vol->mftmirr_ni, AT_DATA, AT_UNNAMED, 0);
if (!vol->mftmirr_na) {
Dperror("Failed to open $MFTMirr/$DATA");
goto error_exit;
}
if (ntfs_attr_map_runlist(vol->mftmirr_na, 0) < 0) {
Dperror("Failed to map runlist of $MFTMirr/$DATA");
goto error_exit;
}
/* Construct the mft mirror runlist. */
rl[0].vcn = 0;
rl[0].lcn = vol->mftmirr_lcn;
rl[0].length = (vol->mftmirr_size * vol->mft_record_size +
vol->cluster_size - 1) / vol->cluster_size;
rl[1].vcn = rl[0].length;
rl[1].lcn = LCN_ENOENT;
rl[1].length = 0;
/* Compare the two runlists. They must be identical. */
i = 0;
do {
if (rl[i].vcn != vol->mftmirr_na->rl[i].vcn ||
rl[i].lcn != vol->mftmirr_na->rl[i].lcn ||
rl[i].length != vol->mftmirr_na->rl[i].length) {
Dputs("Error: $MFTMirr location mismatch! Run chkdsk.");
errno = EIO;
goto error_exit;
}
} while (rl[i++].length);
return 0;
error_exit:
i = errno;
if (vol->mftmirr_na) {
ntfs_attr_close(vol->mftmirr_na);
vol->mftmirr_na = NULL;
}
ntfs_inode_close(vol->mftmirr_ni);
vol->mftmirr_ni = NULL;
errno = i;
return -1;
}
/**
* ntfs_volume_startup - allocate and setup an ntfs volume
* @dev: device to open
* @rwflag: optional mount flags
*
* Load, verify, and parse bootsector; load and setup $MFT and $MFTMirr. After
* calling this function, the volume is setup sufficiently to call all read
* and write access functions provided by the library.
*
* Return the allocated volume structure on success and NULL on error with
* errno set to the error code.
*/
ntfs_volume *ntfs_volume_startup(struct ntfs_device *dev, unsigned long rwflag)
{
LCN mft_zone_size, mft_lcn;
s64 br;
ntfs_volume *vol;
NTFS_BOOT_SECTOR *bs;
int eo;
#ifdef DEBUG
const char *OK = "OK";
const char *FAILED = "FAILED";
BOOL debug = 1;
#else
BOOL debug = 0;
#endif
if (!dev || !dev->d_ops || !dev->d_name) {
errno = EINVAL;
return NULL;
}
/* Allocate the boot sector structure. */
if (!(bs = (NTFS_BOOT_SECTOR *)malloc(sizeof(NTFS_BOOT_SECTOR))))
return NULL;
/* Allocate the volume structure. */
vol = ntfs_volume_alloc();
if (!vol)
goto error_exit;
if ((rwflag & MS_RDONLY) == MS_RDONLY)
NVolSetReadOnly(vol);
Dprintf("Reading bootsector... ");
if (dev->d_ops->open(dev, NVolReadOnly(vol) ? O_RDONLY: O_RDWR)) {
Dputs(FAILED);
Dperror("Error opening partition device");
goto error_exit;
}
/* Attach the device to the volume. */
vol->dev = dev;
/* Now read the bootsector. */
br = ntfs_pread(dev, 0, sizeof(NTFS_BOOT_SECTOR), bs);
if (br != sizeof(NTFS_BOOT_SECTOR)) {
Dputs(FAILED);
if (br != -1)
errno = EINVAL;
if (!br)
Dputs("Error: partition is smaller than bootsector "
"size. Weird!");
else
Dperror("Error reading bootsector");
goto error_exit;
}
Dputs(OK);
if (!ntfs_boot_sector_is_ntfs(bs, !debug)) {
Dprintf("Error: %s is not a valid NTFS partition!\n",
dev->d_name);
errno = EINVAL;
goto error_exit;
}
if (ntfs_boot_sector_parse(vol, bs) < 0) {
Dperror("Failed to parse ntfs bootsector");
goto error_exit;
}
free(bs);
bs = NULL;
/*
* We now initialize the cluster allocator.
*
* FIXME: Move this to its own function? (AIA)
*/
// TODO: Make this tunable at mount time. (AIA)
vol->mft_zone_multiplier = 1;
/* Determine the size of the MFT zone. */
mft_zone_size = vol->nr_clusters;
switch (vol->mft_zone_multiplier) { /* % of volume size in clusters */
case 4:
mft_zone_size >>= 1; /* 50% */
break;
case 3:
mft_zone_size = mft_zone_size * 3 >> 3; /* 37.5% */
break;
case 2:
mft_zone_size >>= 2; /* 25% */
break;
/* case 1: */
default:
mft_zone_size >>= 3; /* 12.5% */
break;
}
/* Setup the mft zone. */
vol->mft_zone_start = vol->mft_zone_pos = vol->mft_lcn;
Dprintf("mft_zone_pos = 0x%llx\n", (long long)vol->mft_zone_pos);
/*
* Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
* source) and if the actual mft_lcn is in the expected place or even
* further to the front of the volume, extend the mft_zone to cover the
* beginning of the volume as well. This is in order to protect the
* area reserved for the mft bitmap as well within the mft_zone itself.
* On non-standard volumes we don't protect it as the overhead would be
* higher than the speed increase we would get by doing it.
*/
mft_lcn = (8192 + 2 * vol->cluster_size - 1) / vol->cluster_size;
if (mft_lcn * vol->cluster_size < 16 * 1024)
mft_lcn = (16 * 1024 + vol->cluster_size - 1) /
vol->cluster_size;
if (vol->mft_zone_start <= mft_lcn)
vol->mft_zone_start = 0;
Dprintf("mft_zone_start = 0x%llx\n", (long long)vol->mft_zone_start);
/*
* Need to cap the mft zone on non-standard volumes so that it does
* not point outside the boundaries of the volume. We do this by
* halving the zone size until we are inside the volume.
*/
vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
while (vol->mft_zone_end >= vol->nr_clusters) {
mft_zone_size >>= 1;
vol->mft_zone_end = vol->mft_lcn + mft_zone_size;
}
Dprintf("mft_zone_end = 0x%llx\n", (long long)vol->mft_zone_end);
/*
* Set the current position within each data zone to the start of the
* respective zone.
*/
vol->data1_zone_pos = vol->mft_zone_end;
Dprintf("data1_zone_pos = 0x%llx\n", vol->data1_zone_pos);
vol->data2_zone_pos = 0;
Dprintf("data2_zone_pos = 0x%llx\n", vol->data2_zone_pos);
/* Set the mft data allocation position to mft record 24. */
vol->mft_data_pos = 24;
/*
* The cluster allocator is now fully operational.
*/
/* Need to setup $MFT so we can use the library read functions. */
Dprintf("Loading $MFT... ");
if (ntfs_mft_load(vol) < 0) {
Dputs(FAILED);
Dperror("Failed to load $MFT");
goto error_exit;
}
Dputs(OK);
/* Need to setup $MFTMirr so we can use the write functions, too. */
Dprintf("Loading $MFTMirr... ");
if (ntfs_mftmirr_load(vol) < 0) {
Dputs(FAILED);
Dperror("Failed to load $MFTMirr");
goto error_exit;
}
Dputs(OK);
return vol;
error_exit:
eo = errno;
free(bs);
if (vol)
__ntfs_volume_release(vol);
errno = eo;
return NULL;
}
/**
* ntfs_device_mount - open ntfs volume
* @dev: device to open
* @rwflag: optional mount flags
*
* This function mounts an ntfs volume. @dev should describe the device which
* to mount as the ntfs volume.
*
* @rwflags is an optional second parameter. The same flags are used as for
* the mount system call (man 2 mount). Currently only the following flag
* is implemented:
* MS_RDONLY - mount volume read-only
*
* The function opens the device @dev and verifies that it contains a valid
* bootsector. Then, it allocates an ntfs_volume structure and initializes
* some of the values inside the structure from the information stored in the
* bootsector. It proceeds to load the necessary system files and completes
* setting up the structure.
*
* Return the allocated volume structure on success and NULL on error with
* errno set to the error code.
*/
ntfs_volume *ntfs_device_mount(struct ntfs_device *dev, unsigned long rwflag)
{
s64 l;
#ifdef DEBUG
const char *OK = "OK";
const char *FAILED = "FAILED";
#endif
ntfs_volume *vol;
u8 *m = NULL, *m2 = NULL;
ntfs_attr_search_ctx *ctx = NULL;
ntfs_inode *ni;
ntfs_attr *na;
ATTR_RECORD *a;
VOLUME_INFORMATION *vinf;
ntfschar *vname;
int i, j, eo;
u32 u;
vol = ntfs_volume_startup(dev, rwflag);
if (!vol) {
Dperror("Failed to startup volume");
return NULL;
}
/* Load data from $MFT and $MFTMirr and compare the contents. */
m = (u8*)malloc(vol->mftmirr_size << vol->mft_record_size_bits);
m2 = (u8*)malloc(vol->mftmirr_size << vol->mft_record_size_bits);
if (!m || !m2) {
Dperror("Failed to allocate memory");
goto error_exit;
}
l = ntfs_attr_mst_pread(vol->mft_na, 0, vol->mftmirr_size,
vol->mft_record_size, m);
if (l != vol->mftmirr_size) {
if (l == -1)
Dperror("Failed to read $MFT");
else {
Dputs("Length of data not equal expected length.");
errno = EIO;
}
goto error_exit;
}
l = ntfs_attr_mst_pread(vol->mftmirr_na, 0, vol->mftmirr_size,
vol->mft_record_size, m2);
if (l != vol->mftmirr_size) {
if (l == -1)
Dperror("Failed to read $MFTMirr");
else {
Dputs("Length of data not equal expected length.");
errno = EIO;
}
goto error_exit;
}
Dprintf("Comparing $MFTMirr to $MFT... ");
for (i = 0; i < vol->mftmirr_size; ++i) {
const char *ESTR[12] = { "$MFT", "$MFTMirr", "$LogFile",
"$Volume", "$AttrDef", "root directory", "$Bitmap",
"$Boot", "$BadClus", "$Secure", "$UpCase", "$Extend" };
const char *s;
if (i < 12)
s = ESTR[i];
else if (i < 16)
s = "system file";
else
s = "mft record";
if (ntfs_is_baad_recordp(m + i * vol->mft_record_size)) {
Dputs("FAILED");
Dprintf("$MFT error: Incomplete multi sector transfer "
"detected in %s.\n", s);
goto io_error_exit;
}
if (!ntfs_is_mft_recordp(m + i * vol->mft_record_size)) {
Dputs("FAILED");
Dprintf("$MFT error: Invalid mft record for %s.\n", s);
goto io_error_exit;
}
if (ntfs_is_baad_recordp(m2 + i * vol->mft_record_size)) {
Dputs("FAILED");
Dprintf("$MFTMirr error: Incomplete multi sector "
"transfer detected in %s.\n", s);
goto io_error_exit;
}
if (!ntfs_is_mft_recordp(m2 + i * vol->mft_record_size)) {
Dputs("FAILED");
Dprintf("$MFTMirr error: Invalid mft record for %s.\n",
s);
goto io_error_exit;
}
if (memcmp((u8*)m + i * vol->mft_record_size, (u8*)m2 +
i * vol->mft_record_size,
ntfs_mft_record_get_data_size((MFT_RECORD*)(
(u8*)m + i * vol->mft_record_size)))) {
Dputs(FAILED);
Dputs("$MFTMirr does not match $MFT. Run chkdsk.");
goto io_error_exit;
}
}
Dputs(OK);
free(m2);
free(m);
m = m2 = NULL;
/* Now load the bitmap from $Bitmap. */
Dprintf("Loading $Bitmap... ");
vol->lcnbmp_ni = ntfs_inode_open(vol, FILE_Bitmap);
if (!vol->lcnbmp_ni) {
Dputs(FAILED);
Dperror("Failed to open inode");
goto error_exit;
}
/* Get an ntfs attribute for $Bitmap/$DATA. */
vol->lcnbmp_na = ntfs_attr_open(vol->lcnbmp_ni, AT_DATA, AT_UNNAMED, 0);
if (!vol->lcnbmp_na) {
Dputs(FAILED);
Dperror("Failed to open ntfs attribute");
goto error_exit;
}
/* Done with the $Bitmap mft record. */
Dputs(OK);
/* Now load the upcase table from $UpCase. */
Dprintf("Loading $UpCase... ");
ni = ntfs_inode_open(vol, FILE_UpCase);
if (!ni) {
Dputs(FAILED);
Dperror("Failed to open inode");
goto error_exit;
}
/* Get an ntfs attribute for $UpCase/$DATA. */
na = ntfs_attr_open(ni, AT_DATA, AT_UNNAMED, 0);
if (!na) {
Dputs(FAILED);
Dperror("Failed to open ntfs attribute");
goto error_exit;
}
/*
* Note: Normally, the upcase table has a length equal to 65536
* 2-byte Unicode characters but allow for different cases, so no
* checks done. Just check we don't overflow 32-bits worth of Unicode
* characters.
*/
if (na->data_size & ~0x1ffffffffULL) {
Dputs(FAILED);
Dputs("Error: Upcase table is too big (max 32-bit allowed).");
errno = EINVAL;
goto error_exit;
}
vol->upcase_len = na->data_size >> 1;
vol->upcase = (ntfschar*)malloc(na->data_size);
if (!vol->upcase) {
Dputs(FAILED);
Dputs("Not enough memory to load $UpCase.");
goto error_exit;
}
/* Read in the $DATA attribute value into the buffer. */
l = ntfs_attr_pread(na, 0, na->data_size, vol->upcase);
if (l != na->data_size) {
Dputs(FAILED);
Dputs("Amount of data read does not correspond to expected "
"length!");
errno = EIO;
goto error_exit;
}
/* Done with the $UpCase mft record. */
Dputs(OK);
ntfs_attr_close(na);
if (ntfs_inode_close(ni))
Dperror("Failed to close inode, leaking memory");
/*
* Now load $Volume and set the version information and flags in the
* vol structure accordingly.
*/
Dprintf("Loading $Volume... ");
ni = ntfs_inode_open(vol, FILE_Volume);
if (!ni) {
Dputs(FAILED);
Dperror("Failed to open inode");
goto error_exit;
}
/* Get a search context for the $Volume/$VOLUME_INFORMATION lookup. */
ctx = ntfs_attr_get_search_ctx(ni, NULL);
if (!ctx) {
Dputs(FAILED);
Dperror("Failed to allocate attribute search context");
goto error_exit;
}
/* Find the $VOLUME_INFORMATION attribute. */
if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, AT_UNNAMED, 0, 0, 0, NULL,
0, ctx)) {
Dputs(FAILED);
Dputs("$VOLUME_INFORMATION attribute not found in "
"$Volume?!?");
goto error_exit;
}
a = ctx->attr;
/* Has to be resident. */
if (a->non_resident) {
Dputs(FAILED);
Dputs("Error: Attribute $VOLUME_INFORMATION must be resident "
"(and it isn't)!");
errno = EIO;
goto error_exit;
}
/* Get a pointer to the value of the attribute. */
vinf = (VOLUME_INFORMATION*)(le16_to_cpu(a->value_offset) + (char*)a);
/* Sanity checks. */
if ((char*)vinf + le32_to_cpu(a->value_length) > (char*)ctx->mrec +
le32_to_cpu(ctx->mrec->bytes_in_use) ||
le16_to_cpu(a->value_offset) + le32_to_cpu(
a->value_length) > le32_to_cpu(a->length)) {
Dputs(FAILED);
Dputs("Error: Attribute $VOLUME_INFORMATION in $Volume is "
"corrupt!");
errno = EIO;
goto error_exit;
}
/* Setup vol from the volume information attribute value. */
vol->major_ver = vinf->major_ver;
vol->minor_ver = vinf->minor_ver;
/* Do not use le16_to_cpu() macro here as our VOLUME_FLAGS are
defined using cpu_to_le16() macro and hence are consistent. */
vol->flags = vinf->flags;
/*
* Reinitialize the search context for the $Volume/$VOLUME_NAME lookup.
*/
ntfs_attr_reinit_search_ctx(ctx);
if (ntfs_attr_lookup(AT_VOLUME_NAME, AT_UNNAMED, 0, 0, 0, NULL, 0,
ctx)) {
if (errno != ENOENT) {
Dputs(FAILED);
Dputs("Error: Lookup of $VOLUME_NAME attribute in "
"$Volume failed. This probably means "
"something is corrupt. Run chkdsk.");
goto error_exit;
}
/*
* Attribute not present. This has been seen in the field.
* Treat this the same way as if the attribute was present but
* had zero length.
*/
vol->vol_name = malloc(1);
if (!vol->vol_name) {
Dputs(FAILED);
Dputs("Error: Unable to allocate memory for volume "
"name!");
goto error_exit;
}
vol->vol_name[0] = '\0';
} else {
a = ctx->attr;
/* Has to be resident. */
if (a->non_resident) {
Dputs(FAILED);
Dputs("Error: Attribute $VOLUME_NAME must be "
"resident!");
errno = EIO;
goto error_exit;
}
/* Get a pointer to the value of the attribute. */
vname = (ntfschar*)(le16_to_cpu(a->value_offset) + (char*)a);
u = le32_to_cpu(a->value_length) / 2;
/*
* Convert Unicode volume name to current locale multibyte
* format.
*/
vol->vol_name = NULL;
if (ntfs_ucstombs(vname, u, &vol->vol_name, 0) == -1) {
Dperror("Error: Volume name could not be converted to "
"current locale");
Dputs("Forcing name into ASCII by replacing non-ASCII "
"characters with underscores.");
vol->vol_name = malloc(u + 1);
if (!vol->vol_name) {
Dputs(FAILED);
Dputs("Error: Unable to allocate memory for "
"volume name!");
goto error_exit;
}
for (j = 0; j < (s32)u; j++) {
ntfschar uc = le16_to_cpu(vname[j]);
if (uc > 0xff)
uc = (ntfschar)'_';
vol->vol_name[j] = (char)uc;
}
vol->vol_name[u] = '\0';
}
}
Dputs(OK);
ntfs_attr_put_search_ctx(ctx);
ctx = NULL;
if (ntfs_inode_close(ni))
Dperror("Failed to close inode, leaking memory");
/* Now load the attribute definitions from $AttrDef. */
Dprintf("Loading $AttrDef... ");
ni = ntfs_inode_open(vol, FILE_AttrDef);
if (!ni) {
Dputs(FAILED);
Dperror("Failed to open inode");
goto error_exit;
}
/* Get an ntfs attribute for $AttrDef/$DATA. */
na = ntfs_attr_open(ni, AT_DATA, AT_UNNAMED, 0);
if (!na) {
Dputs(FAILED);
Dperror("Failed to open ntfs attribute");
goto error_exit;
}
/* Check we don't overflow 32-bits. */
if (na->data_size > 0xffffffffLL) {
Dputs(FAILED);
Dputs("Error: Attribute definition table is too big "
"(max 32-bit allowed).");
errno = EINVAL;
goto error_exit;
}
vol->attrdef_len = na->data_size;
vol->attrdef = (ATTR_DEF*)malloc(na->data_size);
if (!vol->attrdef) {
Dputs(FAILED);
Dputs("Not enough memory to load $AttrDef.");
goto error_exit;
}
/* Read in the $DATA attribute value into the buffer. */
l = ntfs_attr_pread(na, 0, na->data_size, vol->attrdef);
if (l != na->data_size) {
Dputs(FAILED);
Dputs("Amount of data read does not correspond to expected "
"length!");
errno = EIO;
goto error_exit;
}
/* Done with the $AttrDef mft record. */
Dputs(OK);
ntfs_attr_close(na);
if (ntfs_inode_close(ni))
Dperror("Failed to close inode, leaking memory");
return vol;
io_error_exit:
errno = EIO;
error_exit:
eo = errno;
if (ctx)
ntfs_attr_put_search_ctx(ctx);
if (m)
free(m);
if (m2)
free(m2);
__ntfs_volume_release(vol);
errno = eo;
return NULL;
}
/**
* ntfs_mount - open ntfs volume
* @name: name of device/file to open
* @rwflag: optional mount flags
*
* This function mounts an ntfs volume. @name should contain the name of the
* device/file to mount as the ntfs volume.
*
* @rwflags is an optional second parameter. The same flags are used as for
* the mount system call (man 2 mount). Currently only the following flag
* is implemented:
* MS_RDONLY - mount volume read-only
*
* The function opens the device or file @name and verifies that it contains a
* valid bootsector. Then, it allocates an ntfs_volume structure and initializes
* some of the values inside the structure from the information stored in the
* bootsector. It proceeds to load the necessary system files and completes
* setting up the structure.
*
* Return the allocated volume structure on success and NULL on error with
* errno set to the error code.
*
* Note, that a copy is made of @name, and hence it can be discarded as
* soon as the function returns.
*/
ntfs_volume *ntfs_mount(const char *name __attribute__((unused)),
unsigned long rwflag __attribute__((unused)))
{
#ifndef NO_NTFS_DEVICE_DEFAULT_IO_OPS
struct ntfs_device *dev;
ntfs_volume *vol;
/* Allocate an ntfs_device structure. */
dev = ntfs_device_alloc(name, 0, &ntfs_device_default_io_ops, NULL);
if (!dev)
return NULL;
/* Call ntfs_device_mount() to do the actual mount. */
vol = ntfs_device_mount(dev, rwflag);
if (!vol) {
int eo = errno;
ntfs_device_free(dev);
errno = eo;
}
return vol;
#else
/*
* ntfs_mount() makes no sense if NO_NTFS_DEVICE_DEFAULT_IO_OPS is
* defined as there are no device operations available in libntfs in
* this case.
*/
errno = ENOTSUP;
return NULL;
#endif
}
/**
* ntfs_device_umount - close ntfs volume
* @vol: address of ntfs_volume structure of volume to close
* @force: if true force close the volume even if it is busy
*
* Deallocate all structures (including @vol itself) associated with the ntfs
* volume @vol.
*
* Note it is up to the caller to destroy the device associated with the volume
* being unmounted after this function returns.
*
* Return 0 on success. On error return -1 with errno set appropriately
* (most likely to one of EAGAIN, EBUSY or EINVAL). The EAGAIN error means that
* an operation is in progress and if you try the close later the operation
* might be completed and the close succeed.
*
* If @force is true (i.e. not zero) this function will close the volume even
* if this means that data might be lost.
*
* @vol must have previously been returned by a call to ntfs_device_mount().
*
* @vol itself is deallocated and should no longer be dereferenced after this
* function returns success. If it returns an error then nothing has been done
* so it is safe to continue using @vol.
*/
int ntfs_device_umount(ntfs_volume *vol,
const BOOL force __attribute__((unused)))
{
if (!vol) {
errno = EINVAL;
return -1;
}
__ntfs_volume_release(vol);
return 0;
}
/**
* ntfs_umount - close ntfs volume
* @vol: address of ntfs_volume structure of volume to close
* @force: if true force close the volume even if it is busy
*
* Deallocate all structures (including @vol itself) associated with the ntfs
* volume @vol.
*
* Return 0 on success. On error return -1 with errno set appropriately
* (most likely to one of EAGAIN, EBUSY or EINVAL). The EAGAIN error means that
* an operation is in progress and if you try the close later the operation
* might be completed and the close succeed.
*
* If @force is true (i.e. not zero) this function will close the volume even
* if this means that data might be lost.
*
* @vol must have previously been returned by a call to ntfs_mount().
*
* @vol itself is deallocated and should no longer be dereferenced after this
* function returns success. If it returns an error then nothing has been done
* so it is safe to continue using @vol.
*/
int ntfs_umount(ntfs_volume *vol,
const BOOL force __attribute__((unused)))
{
struct ntfs_device *dev;
if (!vol) {
errno = EINVAL;
return -1;
}
dev = vol->dev;
__ntfs_volume_release(vol);
ntfs_device_free(dev);
return 0;
}
#ifdef HAVE_MNTENT_H
/**
* Internal:
*
* ntfs_mntent_check - desc
*
* If you are wanting to use this, you actually wanted to use
* ntfs_check_if_mounted(), you just didn't realize. (-:
*
* See description of ntfs_check_if_mounted(), below.
*/
static int ntfs_mntent_check(const char *file, unsigned long *mnt_flags)
{
struct mntent *mnt;
FILE *f;
if (!(f = setmntent(MOUNTED, "r")))
return -1;
while ((mnt = getmntent(f)))
if (!strcmp(file, mnt->mnt_fsname))
break;
endmntent(f);
if (!mnt)
return 0;
*mnt_flags = NTFS_MF_MOUNTED;
if (!strcmp(mnt->mnt_dir, "/"))
*mnt_flags |= NTFS_MF_ISROOT;
#ifdef HAVE_HASMNTOPT
if (hasmntopt(mnt, "ro") && !hasmntopt(mnt, "rw"))
*mnt_flags |= NTFS_MF_READONLY;
#endif
return 0;
}
#endif /* HAVE_MNTENT_H */
/**
* ntfs_check_if_mounted - check if an ntfs volume is currently mounted
* @file: device file to check
* @mnt_flags: pointer into which to return the ntfs mount flags (see volume.h)
*
* If the running system does not support the {set,get,end}mntent() calls,
* just return 0 and set *@mnt_flags to zero.
*
* When the system does support the calls, ntfs_check_if_mounted() first tries
* to find the device @file in /etc/mtab (or wherever this is kept on the
* running system). If it is not found, assume the device is not mounted and
* return 0 and set *@mnt_flags to zero.
*
* If the device @file is found, set the NTFS_MF_MOUNTED flags in *@mnt_flags.
*
* Further if @file is mounted as the file system root ("/"), set the flag
* NTFS_MF_ISROOT in *@mnt_flags.
*
* Finally, check if the file system is mounted read-only, and if so set the
* NTFS_MF_READONLY flag in *@mnt_flags.
*
* On sucess return 0 with *@mnt_flags set to the ntfs mount flags.
*
* On error return -1 with errno set to the error code.
*/
int ntfs_check_if_mounted(const char *file __attribute__((unused)),
unsigned long *mnt_flags)
{
*mnt_flags = 0;
#ifdef HAVE_MNTENT_H
return ntfs_mntent_check(file, mnt_flags);
#else
return 0;
#endif
}
/**
* ntfs_version_is_supported - check if NTFS version is supported.
* @vol: ntfs volume whose version we're interested in.
*
* The function checks if the NTFS volume version is known or not.
* Version 1.1 and 1.2 are used by Windows NT3.x and NT4.
* Version 2.x is used by Windows 2000 Betas.
* Version 3.0 is used by Windows 2000.
* Version 3.1 is used by Windows XP and Windows Server 2003.
*
* Return 0 if NTFS version is supported otherwise -1 with errno set.
*
* The following error codes are defined:
* ENOTSUP Unknown NTFS version
* EINVAL Invalid argument
*/
int ntfs_version_is_supported(ntfs_volume *vol)
{
u8 major, minor;
if (!vol) {
errno = EINVAL;
return -1;
}
major = vol->major_ver;
minor = vol->minor_ver;
if (NTFS_V1_1(major, minor) || NTFS_V1_2(major, minor))
return 0;
if (NTFS_V2_X(major, minor))
return 0;
if (NTFS_V3_0(major, minor) || NTFS_V3_1(major, minor))
return 0;
errno = ENOTSUP;
return -1;
}
/**
* ntfs_logfile_reset - "empty" $LogFile data attribute value
* @vol: ntfs volume whose $LogFile we intend to reset.
*
* Fill the value of the $LogFile data attribute, i.e. the contents of
* the file, with 0xff's, thus marking the journal as empty.
*
* FIXME(?): We might need to zero the LSN field of every single mft
* record as well. (But, first try without doing that and see what
* happens, since chkdsk might pickup the pieces and do it for us...)
*
* On success return 0.
*
* On error return -1 with errno set to the error code.
*/
int ntfs_logfile_reset(ntfs_volume *vol)
{
ntfs_inode *ni;
ntfs_attr *na;
int eo;
if (!vol) {
errno = EINVAL;
return -1;
}
if ((ni = ntfs_inode_open(vol, FILE_LogFile)) == NULL) {
Dperror("Failed to open inode FILE_LogFile.\n");
return -1;
}
if ((na = ntfs_attr_open(ni, AT_DATA, AT_UNNAMED, 0)) == NULL) {
eo = errno;
Dperror("Failed to open $FILE_LogFile/$DATA\n");
goto error_exit;
}
if (ntfs_empty_logfile(na)) {
eo = errno;
Dperror("Failed to empty $FILE_LogFile/$DATA\n");
ntfs_attr_close(na);
goto error_exit;
}
ntfs_attr_close(na);
return ntfs_inode_close(ni);
error_exit:
ntfs_inode_close(ni);
errno = eo;
return -1;
}
/**
* ntfs_volume_set_flags - set the flags of an ntfs volume
* @vol: ntfs volume where we set the volume flags
* @flags: new flags
*
* Set the on-disk volume flags in the mft record of $Volume and
* on volume @vol to @flags.
*
* Return 0 if successful and -1 if not with errno set to the error code.
*/
int ntfs_volume_set_flags(ntfs_volume *vol, const u16 flags)
{
MFT_RECORD *m = NULL;
ATTR_RECORD *r;
VOLUME_INFORMATION *c;
ntfs_attr_search_ctx *ctx;
int ret = -1; /* failure */
if (!vol) {
errno = EINVAL;
return -1;
}
if (ntfs_file_record_read(vol, FILE_Volume, &m, NULL)) {
Dperror("Failed to read $Volume");
return -1;
}
/* Sanity check */
if (!(m->flags & MFT_RECORD_IN_USE)) {
Dprintf("Error: $Volume has been deleted. Cannot "
"handle this yet. Run chkdsk to fix this.\n");
errno = EIO;
goto err_exit;
}
/* Get a pointer to the volume information attribute. */
ctx = ntfs_attr_get_search_ctx(NULL, m);
if (!ctx) {
Dperror("Failed to allocate attribute search context");
goto err_exit;
}
if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, AT_UNNAMED, 0, 0, 0, NULL,
0, ctx)) {
Dputs("Error: Attribute $VOLUME_INFORMATION was not found in "
"$Volume!");
goto err_out;
}
r = ctx->attr;
/* Sanity check. */
if (r->non_resident) {
Dputs("Error: Attribute $VOLUME_INFORMATION must be resident "
"(and it isn't)!");
errno = EIO;
goto err_out;
}
/* Get a pointer to the value of the attribute. */
c = (VOLUME_INFORMATION*)(le16_to_cpu(r->value_offset) + (char*)r);
/* Sanity checks. */
if ((char*)c + le32_to_cpu(r->value_length) >
le16_to_cpu(m->bytes_in_use) + (char*)m ||
le16_to_cpu(r->value_offset) +
le32_to_cpu(r->value_length) > le32_to_cpu(r->length)) {
Dputs("Error: Attribute $VOLUME_INFORMATION in $Volume is "
"corrupt!");
errno = EIO;
goto err_out;
}
/* Set the volume flags. */
vol->flags = c->flags = cpu_to_le16(flags);
if (ntfs_mft_record_write(vol, FILE_Volume, m)) {
Dperror("Error writing $Volume");
goto err_out;
}
ret = 0; /* success */
err_out:
ntfs_attr_put_search_ctx(ctx);
err_exit:
if (m)
free(m);
return ret;
}