ntfs-3g/libntfs-3g/security.c

4956 lines
129 KiB
C

/**
* security.c - Handling security/ACLs in NTFS. Originated from the Linux-NTFS project.
*
* Copyright (c) 2004 Anton Altaparmakov
* Copyright (c) 2005-2006 Szabolcs Szakacsits
* Copyright (c) 2006 Yura Pakhuchiy
* Copyright (c) 2007 Jean-Pierre Andre
*
* This program/include file is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published
* by the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program/include file is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program (in the main directory of the NTFS-3G
* distribution in the file COPYING); if not, write to the Free Software
* Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* JPA configuration modes for this module
* should be moved to some config file
*/
#define FORCE_FORMAT_v1x 0 /* Insert security data as in NTFS v1.x */
#define BUFSZ 1024 /* buffer size to read mapping file */
#define MAPPINGFILE "/NTFS-3G/UserMapping" /* name of mapping file */
#define LINESZ 120 /* maximum useful size of a mapping line */
#define CACHE_SECURID_SIZE 16 /* securid cache, size >= 3 and not too big */
#define CACHE_PERMISSIONS_SIZE 4000 /* think twice before increasing */
#define CACHE_LEGACY_SIZE 8 /* legacy cache size, zero or >= 3 and not too big */
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifdef HAVE_STDIO_H
#include <stdio.h>
#endif
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#endif
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
#include <pwd.h>
#include <grp.h>
#include "types.h"
#include "layout.h"
#include "attrib.h"
#include "index.h"
#include "dir.h"
#include "misc.h"
#include "bitmap.h"
#include "security.h"
/*
* JPA NTFS constants or structs
* should be moved to layout.h
*/
#define ALIGN_SDS_BLOCK 0x40000 /* Alignment for a $SDS block */
#define ALIGN_SDS_ENTRY 16 /* Alignment for a $SDS entry */
#define STUFFSZ 0x4000 /* unitary stuffing size for $SDS */
#define FIRST_SECURITY_ID 0x100 /* Lowest security id */
/*
* Matching of ntfs permissions to Linux permissions
* these constants are adapted to endianness
* when setting, set them all
* when checking, check one is present
* (checks needed)
*/
/* flags which are set to mean exec, write or read */
#define FILE_READ (FILE_READ_DATA | SYNCHRONIZE)
#define FILE_WRITE (FILE_WRITE_DATA | FILE_APPEND_DATA \
| READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_WRITE_EA)
#define FILE_EXEC (FILE_EXECUTE)
#define DIR_READ FILE_LIST_DIRECTORY
#define DIR_WRITE (FILE_ADD_FILE | FILE_ADD_SUBDIRECTORY | FILE_DELETE_CHILD \
| READ_CONTROL | FILE_WRITE_ATTRIBUTES | FILE_WRITE_EA)
#define DIR_EXEC (FILE_TRAVERSE)
/* flags which must be different to mean sticky bit */
#define FILE_STICKY (FILE_WRITE_DATA | FILE_APPEND_DATA)
#define DIR_STICKY (FILE_ADD_SUBDIRECTORY | FILE_DELETE_CHILD)
/* flags which must be different to mean setuid or setgid */
#define FILE_SETUID (FILE_WRITE_ATTRIBUTES | FILE_WRITE_EA)
#define FILE_SETGID (FILE_WRITE_ATTRIBUTES | FILE_WRITE_EA)
/* flags tested for meaning exec, write or read */
/* tests for write allow for interpretation of a sticky bit */
#define FILE_GREAD (FILE_READ_DATA | GENERIC_READ)
#define FILE_GWRITE (FILE_WRITE_DATA | GENERIC_WRITE)
#define FILE_GEXEC (FILE_EXECUTE | GENERIC_EXECUTE)
#define DIR_GREAD (FILE_LIST_DIRECTORY | GENERIC_READ)
#define DIR_GWRITE (FILE_ADD_FILE | GENERIC_WRITE)
#define DIR_GEXEC (FILE_TRAVERSE | GENERIC_EXECUTE)
/* standard owner (and administrator) rights */
#define OWNER_RIGHTS (DELETE | READ_CONTROL | WRITE_DAC | WRITE_OWNER \
| SYNCHRONIZE \
| FILE_READ_ATTRIBUTES | FILE_WRITE_ATTRIBUTES \
| FILE_READ_EA | FILE_WRITE_EA)
/* standard world rights */
#define WORLD_RIGHTS (READ_CONTROL | FILE_READ_ATTRIBUTES | FILE_READ_EA \
| SYNCHRONIZE)
/* inheritance flags for files and directories */
#define FILE_INHERITANCE 0
#define DIR_INHERITANCE (OBJECT_INHERIT_ACE | CONTAINER_INHERIT_ACE)
/*
* JPA The following must be in some library...
* but did not found out where
*/
#define endian_rev16(x) (((x >> 8) & 255) | ((x & 255) << 8))
#define endian_rev32(x) (((x >> 24) & 255) | ((x >> 8) & 0xff00) \
| ((x & 0xff00) << 8) | ((x & 255) << 24))
#define cpu_to_be16(x) endian_rev16(cpu_to_le16(x))
#define cpu_to_be32(x) endian_rev32(cpu_to_le32(x))
struct SII { /* this is an image of an $SII index entry */
le16 offs;
le16 size;
le32 fill1;
le16 indexsz;
le16 indexksz;
le16 flags;
le16 fill2;
le32 keysecurid;
/* did not find official description for the following */
le32 hash;
le32 securid;
le32 dataoffsl; /* documented as badly aligned */
le32 dataoffsh;
le32 datasize;
} ;
struct SDH { /* this is an image of an $SDH index entry */
le16 offs;
le16 size;
le32 fill1;
le16 indexsz;
le16 indexksz;
le16 flags;
le16 fill2;
le32 keyhash;
le32 keysecurid;
/* did not find official description for the following */
le32 hash;
le32 securid;
le32 dataoffsl;
le32 dataoffsh;
le32 datasize;
le32 fill3;
} ;
/*
* Struct to hold the input mapping file
* (private to this module)
*/
struct MAPLIST {
struct MAPLIST *next;
char *uidstr; /* uid text from the same record */
char *gidstr; /* gid text from the same record */
char *sidstr; /* sid text from the same record */
char maptext[LINESZ + 1];
};
/*
* A few useful constants
*/
static ntfschar sii_stream[] = { '$', 'S', 'I', 'I', 0 };
static ntfschar sdh_stream[] = { '$', 'S', 'D', 'H', 0 };
static const char mapping_name[] = MAPPINGFILE;
/*
* The zero GUID.
*/
static const GUID __zero_guid = { const_cpu_to_le32(0), const_cpu_to_le16(0),
const_cpu_to_le16(0), { 0, 0, 0, 0, 0, 0, 0, 0 } };
const GUID *const zero_guid = &__zero_guid;
/*
* SID for world user
*/
static const char worldsidbytes[] = {
1, /* revision */
1, /* auth count */
0, 0, 0, 0, 0, 1, /* base */
0, 0, 0, 0 /* 1st level */
} ;
static const SID *worldsid = (const SID*)worldsidbytes;
/*
* SID for administrator
*/
static const char adminsidbytes[] = {
1, /* revision */
2, /* auth count */
0, 0, 0, 0, 0, 5, /* base */
32, 0, 0, 0, /* 1st level */
32, 2, 0, 0 /* 2nd level */
};
static const SID *adminsid = (const SID*)adminsidbytes;
/*
* SID for system
*/
static const char systemsidbytes[] = {
1, /* revision */
1, /* auth count */
0, 0, 0, 0, 0, 5, /* base */
18, 0, 0, 0 /* 1st level */
};
static const SID *systemsid = (const SID*)systemsidbytes;
/*
* SID for generic creator-owner
* S-1-3-0
*/
static const char ownersidbytes[] = {
1, /* revision */
1, /* auth count */
0, 0, 0, 0, 0, 3, /* base */
0, 0, 0, 0 /* 1st level */
} ;
static const SID *ownersid = (const SID*)ownersidbytes;
/**
* ntfs_guid_is_zero - check if a GUID is zero
* @guid: [IN] guid to check
*
* Return TRUE if @guid is a valid pointer to a GUID and it is the zero GUID
* and FALSE otherwise.
*/
BOOL ntfs_guid_is_zero(const GUID *guid)
{
return (memcmp(guid, zero_guid, sizeof(*zero_guid)));
}
/**
* ntfs_guid_to_mbs - convert a GUID to a multi byte string
* @guid: [IN] guid to convert
* @guid_str: [OUT] string in which to return the GUID (optional)
*
* Convert the GUID pointed to by @guid to a multi byte string of the form
* "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX". Therefore, @guid_str (if not NULL)
* needs to be able to store at least 37 bytes.
*
* If @guid_str is not NULL it will contain the converted GUID on return. If
* it is NULL a string will be allocated and this will be returned. The caller
* is responsible for free()ing the string in that case.
*
* On success return the converted string and on failure return NULL with errno
* set to the error code.
*/
char *ntfs_guid_to_mbs(const GUID *guid, char *guid_str)
{
char *_guid_str;
int res;
if (!guid) {
errno = EINVAL;
return NULL;
}
_guid_str = guid_str;
if (!_guid_str) {
_guid_str = ntfs_malloc(37);
if (!_guid_str)
return _guid_str;
}
res = snprintf(_guid_str, 37,
"%08x-%04x-%04x-%02x%02x-%02x%02x%02x%02x%02x%02x",
(unsigned int)le32_to_cpu(guid->data1),
le16_to_cpu(guid->data2), le16_to_cpu(guid->data3),
guid->data4[0], guid->data4[1],
guid->data4[2], guid->data4[3], guid->data4[4],
guid->data4[5], guid->data4[6], guid->data4[7]);
if (res == 36)
return _guid_str;
if (!guid_str)
free(_guid_str);
errno = EINVAL;
return NULL;
}
/**
* ntfs_sid_to_mbs_size - determine maximum size for the string of a SID
* @sid: [IN] SID for which to determine the maximum string size
*
* Determine the maximum multi byte string size in bytes which is needed to
* store the standard textual representation of the SID pointed to by @sid.
* See ntfs_sid_to_mbs(), below.
*
* On success return the maximum number of bytes needed to store the multi byte
* string and on failure return -1 with errno set to the error code.
*/
int ntfs_sid_to_mbs_size(const SID *sid)
{
int size, i;
if (!ntfs_sid_is_valid(sid)) {
errno = EINVAL;
return -1;
}
/* Start with "S-". */
size = 2;
/*
* Add the SID_REVISION. Hopefully the compiler will optimize this
* away as SID_REVISION is a constant.
*/
for (i = SID_REVISION; i > 0; i /= 10)
size++;
/* Add the "-". */
size++;
/*
* Add the identifier authority. If it needs to be in decimal, the
* maximum is 2^32-1 = 4294967295 = 10 characters. If it needs to be
* in hexadecimal, then maximum is 0x665544332211 = 14 characters.
*/
if (!sid->identifier_authority.high_part)
size += 10;
else
size += 14;
/*
* Finally, add the sub authorities. For each we have a "-" followed
* by a decimal which can be up to 2^32-1 = 4294967295 = 10 characters.
*/
size += (1 + 10) * sid->sub_authority_count;
/* We need the zero byte at the end, too. */
size++;
return size * sizeof(char);
}
/**
* ntfs_sid_to_mbs - convert a SID to a multi byte string
* @sid: [IN] SID to convert
* @sid_str: [OUT] string in which to return the SID (optional)
* @sid_str_size: [IN] size in bytes of @sid_str
*
* Convert the SID pointed to by @sid to its standard textual representation.
* @sid_str (if not NULL) needs to be able to store at least
* ntfs_sid_to_mbs_size() bytes. @sid_str_size is the size in bytes of
* @sid_str if @sid_str is not NULL.
*
* The standard textual representation of the SID is of the form:
* S-R-I-S-S...
* Where:
* - The first "S" is the literal character 'S' identifying the following
* digits as a SID.
* - R is the revision level of the SID expressed as a sequence of digits
* in decimal.
* - I is the 48-bit identifier_authority, expressed as digits in decimal,
* if I < 2^32, or hexadecimal prefixed by "0x", if I >= 2^32.
* - S... is one or more sub_authority values, expressed as digits in
* decimal.
*
* If @sid_str is not NULL it will contain the converted SUID on return. If it
* is NULL a string will be allocated and this will be returned. The caller is
* responsible for free()ing the string in that case.
*
* On success return the converted string and on failure return NULL with errno
* set to the error code.
*/
char *ntfs_sid_to_mbs(const SID *sid, char *sid_str, size_t sid_str_size)
{
u64 u;
char *s;
int i, j, cnt;
/*
* No need to check @sid if !@sid_str since ntfs_sid_to_mbs_size() will
* check @sid, too. 8 is the minimum SID string size.
*/
if (sid_str && (sid_str_size < 8 || !ntfs_sid_is_valid(sid))) {
errno = EINVAL;
return NULL;
}
/* Allocate string if not provided. */
if (!sid_str) {
cnt = ntfs_sid_to_mbs_size(sid);
if (cnt < 0)
return NULL;
s = ntfs_malloc(cnt);
if (!s)
return s;
sid_str = s;
/* So we know we allocated it. */
sid_str_size = 0;
} else {
s = sid_str;
cnt = sid_str_size;
}
/* Start with "S-R-". */
i = snprintf(s, cnt, "S-%hhu-", (unsigned char)sid->revision);
if (i < 0 || i >= cnt)
goto err_out;
s += i;
cnt -= i;
/* Add the identifier authority. */
for (u = i = 0, j = 40; i < 6; i++, j -= 8)
u += (u64)sid->identifier_authority.value[i] << j;
if (!sid->identifier_authority.high_part)
i = snprintf(s, cnt, "%lu", (unsigned long)u);
else
i = snprintf(s, cnt, "0x%llx", (unsigned long long)u);
if (i < 0 || i >= cnt)
goto err_out;
s += i;
cnt -= i;
/* Finally, add the sub authorities. */
for (j = 0; j < sid->sub_authority_count; j++) {
i = snprintf(s, cnt, "-%u", (unsigned int)
le32_to_cpu(sid->sub_authority[j]));
if (i < 0 || i >= cnt)
goto err_out;
s += i;
cnt -= i;
}
return sid_str;
err_out:
if (i >= cnt)
i = EMSGSIZE;
else
i = errno;
if (!sid_str_size)
free(sid_str);
errno = i;
return NULL;
}
/**
* ntfs_generate_guid - generatates a random current guid.
* @guid: [OUT] pointer to a GUID struct to hold the generated guid.
*
* perhaps not a very good random number generator though...
*/
void ntfs_generate_guid(GUID *guid)
{
unsigned int i;
u8 *p = (u8 *)guid;
for (i = 0; i < sizeof(GUID); i++) {
p[i] = (u8)(random() & 0xFF);
if (i == 7)
p[7] = (p[7] & 0x0F) | 0x40;
if (i == 8)
p[8] = (p[8] & 0x3F) | 0x80;
}
}
/**
* ntfs_security_hash - calculate the hash of a security descriptor
* @sd: self-relative security descriptor whose hash to calculate
* @length: size in bytes of the security descritor @sd
*
* Calculate the hash of the self-relative security descriptor @sd of length
* @length bytes.
*
* This hash is used in the $Secure system file as the primary key for the $SDH
* index and is also stored in the header of each security descriptor in the
* $SDS data stream as well as in the index data of both the $SII and $SDH
* indexes. In all three cases it forms part of the SDS_ENTRY_HEADER
* structure.
*
* Return the calculated security hash in little endian.
*/
le32 ntfs_security_hash(const SECURITY_DESCRIPTOR_RELATIVE *sd, const u32 len)
{
const le32 *pos = (const le32*)sd;
const le32 *end = pos + (len >> 2);
u32 hash = 0;
while (pos < end) {
hash = le32_to_cpup(pos) + ntfs_rol32(hash, 3);
pos++;
}
return cpu_to_le32(hash);
}
/*
* The following must be in some library...
*/
static unsigned long atoul(const char *p)
{ /* must be somewhere ! */
unsigned long v;
v = 0;
while ((*p >= '0') && (*p <= '9'))
v = v * 10 + (*p++) - '0';
return (v);
}
/*
* Determine the size of a SID
*/
static int sid_size(const SID * sid)
{
return (sid->sub_authority_count * 4 + 8);
}
/*
* Test whether two SID are equal
*/
static BOOL same_sid(const SID *first, const SID *second)
{
int size;
size = sid_size(first);
return ((sid_size(second) == size)
&& !memcmp(first, second, size));
}
/*
* Determine the size of a security attribute
* whatever the order of fields
*/
static unsigned int attr_size(const char *attr)
{
const SECURITY_DESCRIPTOR_RELATIVE *phead;
const ACL *pdacl;
const ACL *psacl;
const SID *psid;
unsigned int offdacl;
unsigned int offsacl;
unsigned int offowner;
unsigned int offgroup;
unsigned int endsid;
unsigned int endsacl;
unsigned int attrsz;
/*
* First check DACL, which is the last field in all descriptors
* we build, and in most descriptors built by Windows
* however missing for "DR Watson"
*/
phead = (const SECURITY_DESCRIPTOR_RELATIVE*)attr;
/* find end of DACL */
offdacl = le32_to_cpu(phead->dacl);
if (offdacl) {
pdacl = (const ACL*)&attr[offdacl];
attrsz = offdacl + le16_to_cpu(pdacl->size);
} else
attrsz = 0;
offowner = le32_to_cpu(phead->owner);
if (offowner >= attrsz) {
/* find end of USID */
psid = (const SID*)&attr[offowner];
endsid = offowner + sid_size(psid);
attrsz = endsid;
}
offgroup = le32_to_cpu(phead->group);
if (offgroup >= attrsz) {
/* find end of GSID */
psid = (const SID*)&attr[offgroup];
endsid = offgroup + sid_size(psid);
if (endsid > attrsz) attrsz = endsid;
}
offsacl = le32_to_cpu(phead->sacl);
if (offsacl >= attrsz) {
/* find end of SACL */
offsacl = le32_to_cpu(phead->sacl);
psacl = (const ACL*)&attr[offsacl];
endsacl = offsacl + le16_to_cpu(psacl->size);
if (endsacl > attrsz)
attrsz = endsacl;
}
return (attrsz);
}
/*
* Do sanity checks on a SID read from storage
* (just check revision and number of authorities)
*/
static BOOL valid_sid(const SID *sid)
{
return ((sid->revision == SID_REVISION)
&& (sid->sub_authority_count >= 1)
&& (sid->sub_authority_count <= 8));
}
/*
* Do sanity checks on security descriptors read from storage
* basically, we make sure that every field holds within
* allocated storage
* Should not be called with a NULL argument
* returns TRUE if considered safe
* if not, error should be logged by caller
*/
static BOOL valid_securattr(const char *securattr, unsigned int attrsz)
{
const SECURITY_DESCRIPTOR_RELATIVE *phead;
const ACL *pacl;
const ACCESS_ALLOWED_ACE *pace;
unsigned int offdacl;
unsigned int offace;
unsigned int acecnt;
unsigned int acesz;
unsigned int nace;
BOOL ok;
ok = TRUE;
/*
* first check overall size if within allocation range
* and a DACL is present
* and owner and group SID are valid
*/
phead = (const SECURITY_DESCRIPTOR_RELATIVE*)securattr;
offdacl = le32_to_cpu(phead->dacl);
pacl = (const ACL*)&securattr[offdacl];
/*
* size check occurs before the above pointers are used
*
* "DR Watson" standard directory on WinXP has an
* old revision and no DACL though SE_DACL_PRESENT is set
*/
if ((attrsz >= sizeof(SECURITY_DESCRIPTOR_RELATIVE))
&& (attr_size(securattr) <= attrsz)
&& (phead->revision == SECURITY_DESCRIPTOR_REVISION)
&& phead->owner
&& phead->group
&& !(phead->owner & cpu_to_le32(3))
&& !(phead->group & cpu_to_le32(3))
&& !(phead->dacl & cpu_to_le32(3))
&& !(phead->sacl & cpu_to_le32(3))
&& valid_sid((const SID*)&securattr[le32_to_cpu(phead->owner)])
&& valid_sid((const SID*)&securattr[le32_to_cpu(phead->group)])
/*
* if there is an ACL, as indicated by offdacl,
* require SE_DACL_PRESENT
* but "Dr Watson" has SE_DACL_PRESENT though no DACL
*/
&& (!offdacl
|| ((pacl->revision == ACL_REVISION)
&& (phead->control & SE_DACL_PRESENT)))) {
/*
* For each ACE, check it is within limits
* and contains a valid SID
* "DR Watson" has no DACL
*/
if (offdacl) {
acecnt = le16_to_cpu(pacl->ace_count);
offace = offdacl + sizeof(ACL);
for (nace = 0; (nace < acecnt) && ok; nace++) {
/* be sure the beginning is within range */
if ((offace + sizeof(ACCESS_ALLOWED_ACE)) > attrsz)
ok = FALSE;
else {
pace = (const ACCESS_ALLOWED_ACE*)
&securattr[offace];
acesz = le16_to_cpu(pace->size);
if (((offace + acesz) > attrsz)
|| !valid_sid(&pace->sid))
ok = FALSE;
offace += acesz;
}
}
}
} else
ok = FALSE;
return (ok);
}
/*
* Build an internal representation of a SID
* Returns a copy in allocated memory if it succeeds
* Currently it does only safety checks on input
*/
static SID *encodesid(const char *sidstr)
{
SID *sid;
int cnt;
union {
SID sid;
char bytes[8 * 4 + 8]; /* maximum size for 8 authorities */
} bigsid;
SID *bsid;
long auth;
const char *p;
sid = (SID*) NULL;
if (!strncmp(sidstr, "S-1-", 4)) {
bsid = &bigsid.sid;
bsid->revision = SID_REVISION;
p = &sidstr[4];
auth = atoul(p);
bsid->identifier_authority.high_part = cpu_to_be16(0);
bsid->identifier_authority.low_part = cpu_to_be32(auth);
cnt = 0;
p = strchr(p, '-');
while (p && (cnt < 8)) {
p++;
bsid->sub_authority[cnt] = cpu_to_le32(atoul(p));
p = strchr(p, '-');
cnt++;
}
bsid->sub_authority_count = cnt;
if (cnt > 0) {
sid = (SID*) ntfs_malloc(4 * cnt + 8);
if (sid)
memcpy(sid, bsid, 4 * cnt + 8);
}
}
return (sid);
}
/*
* Internal read
* copied and pasted from ntfs_fuse_read() and made independent
* of fuse context
*/
static int ntfs_local_read(ntfs_inode *ni,
ntfschar *stream_name, int stream_name_len,
char *buf, size_t size, off_t offset)
{
ntfs_attr *na = NULL;
int res, total = 0;
na = ntfs_attr_open(ni, AT_DATA, stream_name, stream_name_len);
if (!na) {
res = -errno;
goto exit;
}
if ((size_t)offset < (size_t)na->data_size) {
if (offset + size > (size_t)na->data_size)
size = na->data_size - offset;
while (size) {
res = ntfs_attr_pread(na, offset, size, buf);
if ((off_t)res < (off_t)size)
ntfs_log_perror("ntfs_attr_pread partial read "
"(%lld : %lld <> %d)",
(long long)offset,
(long long)size, res);
if (res <= 0) {
res = -errno;
goto exit;
}
size -= res;
offset += res;
total += res;
}
}
res = total;
exit:
if (na)
ntfs_attr_close(na);
return res;
}
/*
* Internal write
* copied and pasted from ntfs_fuse_write() and made independent
* of fuse context
*/
static int ntfs_local_write(ntfs_inode *ni,
ntfschar *stream_name, int stream_name_len,
char *buf, size_t size, off_t offset)
{
ntfs_attr *na = NULL;
int res, total = 0;
na = ntfs_attr_open(ni, AT_DATA, stream_name, stream_name_len);
if (!na) {
res = -errno;
goto exit;
}
while (size) {
res = ntfs_attr_pwrite(na, offset, size, buf);
if (res < (s64)size)
ntfs_log_perror("ntfs_attr_pwrite partial write (%lld: "
"%lld <> %d)", (long long)offset,
(long long)size, res);
if (res <= 0) {
res = -errno;
goto exit;
}
size -= res;
offset += res;
total += res;
}
res = total;
exit:
if (na)
ntfs_attr_close(na);
return res;
}
/*
* Get the first entry of current index block
* cut and pasted form ntfs_ie_get_first() in index.c
*/
static INDEX_ENTRY *ntfs_ie_get_first(INDEX_HEADER *ih)
{
return (INDEX_ENTRY*)((u8*)ih + le32_to_cpu(ih->entries_offset));
}
/*
* Stuff a 256KB block into $SDS before writing descriptors
* into the block.
*
* This prevents $SDS from being automatically declared as sparse
* when the second copy of the first security descriptor is written
* 256KB further ahead.
*
* Having $SDS declared as a sparse file is not wrong by itself
* and chkdsk leaves it as a sparse file. It does however complain
* and add a sparse flag (0x0200) into field file_attributes of
* STANDARD_INFORMATION of $Secure. This probably means that a
* sparse attribute (ATTR_IS_SPARSE) is only allowed in sparse
* files (FILE_ATTR_SPARSE_FILE).
*
* Windows normally does not convert to sparse attribute or sparse
* file. Stuffing is just a way to get to the same result.
*/
static int entersecurity_stuff(ntfs_volume *vol, off_t offs)
{
int res;
int written;
unsigned long total;
char *stuff;
res = 0;
total = 0;
stuff = ntfs_malloc(STUFFSZ);
if (stuff) {
memset(stuff, 0, STUFFSZ);
do {
written = ntfs_local_write(vol->secure_ni,
STREAM_SDS, 4, stuff, STUFFSZ, offs);
if (written == STUFFSZ) {
total += STUFFSZ;
offs += STUFFSZ;
} else {
errno = ENOSPC;
res = -1;
}
} while (!res && (total < ALIGN_SDS_BLOCK));
free(stuff);
} else {
errno = ENOMEM;
res = -1;
}
return (res);
}
/*
* Enter a new security descriptor into $Secure (data only)
* it has to be written twice with an offset of 256KB
*
* Should only be called by entersecurityattr() to ensure consistency
*
* Returns zero if sucessful
*/
static int entersecurity_data(ntfs_volume *vol,
const SECURITY_DESCRIPTOR_RELATIVE *attr, s64 attrsz,
le32 hash, le32 keyid, off_t offs, int gap)
{
int res;
int written1;
int written2;
char *fullattr;
int fullsz;
SECURITY_DESCRIPTOR_HEADER *phsds;
res = -1;
fullsz = attrsz + gap + sizeof(SECURITY_DESCRIPTOR_HEADER);
fullattr = ntfs_malloc(fullsz);
if (fullattr) {
/*
* Clear the gap from previous descriptor
* this could be useful for appending the second
* copy to the end of file. When creating a new
* 256K block, the gap is cleared while writing
* the first copy
*/
if (gap)
memset(fullattr,0,gap);
memcpy(&fullattr[gap + sizeof(SECURITY_DESCRIPTOR_HEADER)],
attr,attrsz);
phsds = (SECURITY_DESCRIPTOR_HEADER*)&fullattr[gap];
phsds->hash = hash;
phsds->security_id = keyid;
phsds->offset = cpu_to_le64(offs);
phsds->length = cpu_to_le32(fullsz - gap);
written1 = ntfs_local_write(vol->secure_ni,
STREAM_SDS, 4, fullattr, fullsz,
offs - gap);
written2 = ntfs_local_write(vol->secure_ni,
STREAM_SDS, 4, fullattr, fullsz,
offs - gap + ALIGN_SDS_BLOCK);
if ((written1 == fullsz)
&& (written2 == written1))
res = 0;
else
errno = ENOSPC;
free(fullattr);
} else
errno = ENOMEM;
return (res);
}
/*
* Enter a new security descriptor in $Secure (indexes only)
*
* Should only be called by entersecurityattr() to ensure consistency
*
* Returns zero if sucessful
*/
static int entersecurity_indexes(ntfs_volume *vol, s64 attrsz,
le32 hash, le32 keyid, off_t offs)
{
union {
struct {
le32 dataoffsl;
le32 dataoffsh;
} parts;
le64 all;
} realign;
int res;
ntfs_index_context *xsii;
ntfs_index_context *xsdh;
struct SII newsii;
struct SDH newsdh;
res = -1;
/* enter a new $SII record */
xsii = vol->secure_xsii;
ntfs_index_ctx_reinit(xsii);
newsii.offs = cpu_to_le16(20);
newsii.size = cpu_to_le16(sizeof(struct SII) - 20);
newsii.fill1 = cpu_to_le32(0);
newsii.indexsz = cpu_to_le16(sizeof(struct SII));
newsii.indexksz = cpu_to_le16(sizeof(SII_INDEX_KEY));
newsii.flags = cpu_to_le16(0);
newsii.fill2 = cpu_to_le16(0);
newsii.keysecurid = keyid;
newsii.hash = hash;
newsii.securid = keyid;
realign.all = cpu_to_le64(offs);
newsii.dataoffsh = realign.parts.dataoffsh;
newsii.dataoffsl = realign.parts.dataoffsl;
newsii.datasize = cpu_to_le32(attrsz
+ sizeof(SECURITY_DESCRIPTOR_HEADER));
if (!ntfs_ie_add(xsii,(INDEX_ENTRY*)&newsii)) {
/* enter a new $SDH record */
xsdh = vol->secure_xsdh;
ntfs_index_ctx_reinit(xsdh);
newsdh.offs = cpu_to_le16(24);
newsdh.size = cpu_to_le16(
sizeof(SECURITY_DESCRIPTOR_HEADER));
newsdh.fill1 = cpu_to_le32(0);
newsdh.indexsz = cpu_to_le16(
sizeof(struct SDH));
newsdh.indexksz = cpu_to_le16(
sizeof(SDH_INDEX_KEY));
newsdh.flags = cpu_to_le16(0);
newsdh.fill2 = cpu_to_le16(0);
newsdh.keyhash = hash;
newsdh.keysecurid = keyid;
newsdh.hash = hash;
newsdh.securid = keyid;
newsdh.dataoffsh = realign.parts.dataoffsh;
newsdh.dataoffsl = realign.parts.dataoffsl;
newsdh.datasize = cpu_to_le32(attrsz
+ sizeof(SECURITY_DESCRIPTOR_HEADER));
/* special filler value, Windows generally */
/* fills with 0x00490049, sometimes with zero */
newsdh.fill3 = cpu_to_le32(0x00490049);
if (!ntfs_ie_add(xsdh,(INDEX_ENTRY*)&newsdh))
res = 0;
}
return (res);
}
/*
* Enter a new security descriptor in $Secure (data and indexes)
* Returns id of entry, or zero if there is a problem.
*
* important : calls have to be serialized, however no locking is
* needed while fuse is not multithreaded
*/
static le32 entersecurityattr(ntfs_volume *vol,
const SECURITY_DESCRIPTOR_RELATIVE *attr, s64 attrsz,
le32 hash)
{
union {
struct {
le32 dataoffsl;
le32 dataoffsh;
} parts;
le64 all;
} realign;
le32 securid;
le32 keyid;
off_t offs;
int gap;
int size;
struct SII *psii;
INDEX_ENTRY *entry;
INDEX_ENTRY *next;
ntfs_index_context *xsii;
ntfs_attr *na;
/* find the first available securid beyond the last key */
/* in $Secure:$SII. This also determines the first */
/* available location in $Secure:$SDS, as this stream */
/* is always appended to and the id's are allocated */
/* in sequence */
securid = cpu_to_le32(0);
xsii = vol->secure_xsii;
ntfs_index_ctx_reinit(xsii);
offs = size = 0;
keyid = cpu_to_le32(-1);
ntfs_index_lookup((char*)&keyid,
sizeof(SII_INDEX_KEY), xsii);
entry = xsii->entry;
psii = (struct SII*)xsii->entry;
if (psii) {
/*
* Get last entry in block, but must get first one
* one first, as we should already be beyond the
* last one. For some reason the search for the last
* entry sometimes does not return the last block...
* we assume this can only happen in root block
*/
if (xsii->is_in_root)
entry = ntfs_ie_get_first
((INDEX_HEADER*)&xsii->ir->index);
else
entry = ntfs_ie_get_first
((INDEX_HEADER*)&xsii->ib->index);
/*
* All index blocks should be at least half full
* so there always is a last entry but one,
* except when creating the first entry in index root.
* A simplified version of next(), limited to
* current index node, could be used
*/
keyid = cpu_to_le32(0);
while (entry) {
next = ntfs_index_next(entry,xsii);
if (next) {
psii = (struct SII*)next;
/* save last key and */
/* available position */
keyid = psii->keysecurid;
realign.parts.dataoffsh
= psii->dataoffsh;
realign.parts.dataoffsl
= psii->dataoffsl;
offs = le64_to_cpu(realign.all);
size = le32_to_cpu(psii->datasize);
}
entry = next;
}
}
if (!keyid) {
/*
* could not find any entry, before creating the first
* entry, make a double check by making sure size of $SII
* is less than needed for one entry
*/
securid = cpu_to_le32(0);
na = ntfs_attr_open(vol->secure_ni,AT_INDEX_ROOT,sii_stream,4);
if (na) {
if ((size_t)na->data_size < sizeof(struct SII)) {
ntfs_log_error("Creating the first security_id\n");
securid = cpu_to_le32(FIRST_SECURITY_ID);
}
ntfs_attr_close(na);
}
if (!securid) {
ntfs_log_error("Error creating a security_id\n");
errno = EIO;
}
} else
securid = cpu_to_le32(le32_to_cpu(keyid) + 1);
/*
* The security attr has to be written twice 256KB
* apart. This implies that offsets like
* 0x40000*odd_integer must be left available for
* the second copy. So align to next block when
* the last byte overflows on a wrong block.
*/
if (securid) {
gap = (-size) & (ALIGN_SDS_ENTRY - 1);
offs += gap + size;
if ((offs + attrsz + sizeof(SECURITY_DESCRIPTOR_HEADER) - 1)
& ALIGN_SDS_BLOCK) {
offs = ((offs + attrsz
+ sizeof(SECURITY_DESCRIPTOR_HEADER) - 1)
| (ALIGN_SDS_BLOCK - 1)) + 1;
}
if (!(offs & (ALIGN_SDS_BLOCK - 1)))
entersecurity_stuff(vol, offs);
/*
* now write the security attr to storage :
* first data, then SII, then SDH
* If failure occurs while writing SDS, data will never
* be accessed through indexes, and will be overwritten
* by the next allocated descriptor
* If failure occurs while writing SII, the id has not
* recorded and will be reallocated later
* If failure occurs while writing SDH, the space allocated
* in SDS or SII will not be reused, an inconsistency
* will persist with no significant consequence
*/
if (entersecurity_data(vol, attr, attrsz, hash, securid, offs, gap)
|| entersecurity_indexes(vol, attrsz, hash, securid, offs))
securid = cpu_to_le32(0);
}
/* inode now is dirty, synchronize it all */
ntfs_index_entry_mark_dirty(vol->secure_xsii);
ntfs_index_ctx_reinit(vol->secure_xsii);
ntfs_index_entry_mark_dirty(vol->secure_xsdh);
ntfs_index_ctx_reinit(vol->secure_xsdh);
NInoSetDirty(vol->secure_ni);
if (ntfs_inode_sync(vol->secure_ni))
ntfs_log_perror("Could not sync $Secure\n");
return (securid);
}
/*
* Find a matching security descriptor in $Secure,
* if none, allocate a new id and write the descriptor to storage
* Returns id of entry, or zero if there is a problem.
*
* important : calls have to be serialized, however no locking is
* needed while fuse is not multithreaded
*/
static le32 setsecurityattr(ntfs_volume *vol,
const SECURITY_DESCRIPTOR_RELATIVE *attr, s64 attrsz)
{
struct SDH *psdh; /* this is an image of index (le) */
union {
struct {
le32 dataoffsl;
le32 dataoffsh;
} parts;
le64 all;
} realign;
BOOL found;
BOOL collision;
size_t size;
size_t rdsize;
s64 offs;
int res;
ntfs_index_context *xsdh;
char *oldattr;
SDH_INDEX_KEY key;
INDEX_ENTRY *entry;
le32 securid;
le32 hash;
hash = ntfs_security_hash(attr,attrsz);
oldattr = (char*)NULL;
securid = cpu_to_le32(0);
res = 0;
xsdh = vol->secure_xsdh;
if (vol->secure_ni && xsdh && !vol->secure_reentry++) {
ntfs_index_ctx_reinit(xsdh);
/*
* find the nearest key as (hash,0)
* (do not search for partial key : in case of collision,
* it could return a key which is not the first one which
* collides)
*/
key.hash = hash;
key.security_id = cpu_to_le32(0);
ntfs_index_lookup((char*)&key, sizeof(SDH_INDEX_KEY), xsdh);
entry = xsdh->entry;
found = FALSE;
/* lookup() may return a node with no data, if so get next */
if (entry->ie_flags & INDEX_ENTRY_END)
entry = ntfs_index_next(entry,xsdh);
do {
collision = FALSE;
psdh = (struct SDH*)entry;
if (psdh)
size = (size_t) le32_to_cpu(psdh->datasize)
- sizeof(SECURITY_DESCRIPTOR_HEADER);
else size = 0;
/* if hash is not the same, the key is not present */
if (psdh && (size > 0)
&& (psdh->keyhash == hash)) {
/* if hash is the same */
/* check the whole record */
realign.parts.dataoffsh = psdh->dataoffsh;
realign.parts.dataoffsl = psdh->dataoffsl;
offs = le64_to_cpu(realign.all)
+ sizeof(SECURITY_DESCRIPTOR_HEADER);
oldattr = (char*)ntfs_malloc(size);
if (oldattr) {
rdsize = ntfs_local_read(
vol->secure_ni,
STREAM_SDS, 4,
oldattr, size, offs);
found = (rdsize == size)
&& !memcmp(oldattr,attr,size);
free(oldattr);
/* if the records do not compare */
/* (hash collision), try next one */
if (!found) {
entry = ntfs_index_next(
entry,xsdh);
collision = TRUE;
}
} else
res = ENOMEM;
}
} while (collision && entry);
if (found)
securid = psdh->keysecurid;
else {
if (res) {
errno = res;
securid = cpu_to_le32(0);
} else {
/* no matching key : have to build a new one */
securid = entersecurityattr(vol,
attr, attrsz, hash);
}
}
}
if (--vol->secure_reentry)
ntfs_log_perror("Reentry error, check no multithreading\n");
return (securid);
}
/*
* Update the security descriptor of a file
* Either as an attribute (complying with pre v3.x NTFS version)
* or, when possible, as an entry in $Secure (for NTFS v3.x)
*
* returns 0 if success
*/
static int update_secur_descr(ntfs_volume *vol,
char *newattr, ntfs_inode *ni)
{
int newattrsz;
int written;
int res;
ntfs_attr *na;
newattrsz = attr_size(newattr);
#if !FORCE_FORMAT_v1x
if ((vol->major_ver < 3) || !vol->secure_ni) {
#endif
/* update for NTFS format v1.x */
/* update the old security attribute */
na = ntfs_attr_open(ni, AT_SECURITY_DESCRIPTOR, AT_UNNAMED, 0);
if (na) {
/* resize attribute */
res = ntfs_attr_truncate(na, (s64) newattrsz);
/* overwrite value */
if (!res) {
written = (int)ntfs_attr_pwrite(na, (s64) 0,
(s64) newattrsz, newattr);
if (written != newattrsz) {
ntfs_log_error("Failed to update "
"a v1.x security descriptor\n");
errno = EIO;
res = -1;
}
}
ntfs_attr_close(na);
/* if old security attribute was found, also */
/* truncate standard information attribute to v1.x */
/* this is needed when security data is wanted */
/* as v1.x though volume is formatted for v3.x */
na = ntfs_attr_open(ni, AT_STANDARD_INFORMATION,
AT_UNNAMED, 0);
if (na) {
clear_nino_flag(ni, v3_Extensions);
/*
* Truncating the record does not sweep extensions
* from copy in memory. Clear security_id to be safe
*/
ni->security_id = cpu_to_le32(0);
res = ntfs_attr_truncate(na, (s64)48);
ntfs_attr_close(na);
clear_nino_flag(ni, v3_Extensions);
}
} else {
/*
* insert the new security attribute if there
* were none
*/
res = ntfs_attr_add(ni, AT_SECURITY_DESCRIPTOR,
AT_UNNAMED, 0, (u8*)newattr,
(s64) newattrsz);
}
#if !FORCE_FORMAT_v1x
} else {
/* update for NTFS format v3.x */
le32 securid;
securid = setsecurityattr(vol,
(const SECURITY_DESCRIPTOR_RELATIVE*)newattr,
(s64)newattrsz);
if (securid) {
na = ntfs_attr_open(ni, AT_STANDARD_INFORMATION,
AT_UNNAMED, 0);
if (na) {
res = 0;
if (!test_nino_flag(ni, v3_Extensions)) {
/* expand standard information attribute to v3.x */
res = ntfs_attr_truncate(na,
(s64)sizeof(STANDARD_INFORMATION));
ni->owner_id = cpu_to_le32(0);
ni->quota_charged = cpu_to_le32(0);
ni->usn = cpu_to_le32(0);
ntfs_attr_remove(ni,
AT_SECURITY_DESCRIPTOR,
AT_UNNAMED, 0);
}
set_nino_flag(ni, v3_Extensions);
ni->security_id = securid;
ntfs_attr_close(na);
} else {
ntfs_log_error("Failed to update "
"standard informations\n");
errno = EIO;
res = -1;
}
} else
res = -1;
}
#endif
/* mark node as dirty */
NInoSetDirty(ni);
ntfs_inode_sync(ni); /* useful ? */
return (res);
}
/*
* Upgrade the security descriptor of a file
* This is intended to allow graceful upgrades for files which
* were created in previous versions, with a security attributes
* and no security id.
*
* It will allocate a security id and replace the individual
* security attribute by a reference to the global one
*
* Special files are not upgraded (currently / and files in
* directories /$*)
*
* Though most code is similar to update_secur_desc() it has
* been kept apart to facilitate the further processing of
* special cases or even to remove it if found dangerous.
*
* returns 0 if success,
* 1 if not upgradable. This is not an error.
* -1 if there is a problem
*/
static int upgrade_secur_desc(ntfs_volume *vol, const char *path,
const char *attr, ntfs_inode *ni)
{
int attrsz;
int res;
le32 securid;
ntfs_attr *na;
/*
* upgrade requires NTFS format v3.x
* also refuse upgrading for special files
*/
if ((vol->major_ver >= 3)
&& (path[0] == '/')
&& (path[1] != '$') && (path[1] != '\0')) {
attrsz = attr_size(attr);
securid = setsecurityattr(vol,
(const SECURITY_DESCRIPTOR_RELATIVE*)attr,
(s64)attrsz);
if (securid) {
na = ntfs_attr_open(ni, AT_STANDARD_INFORMATION,
AT_UNNAMED, 0);
if (na) {
res = 0;
/* expand standard information attribute to v3.x */
res = ntfs_attr_truncate(na,
(s64)sizeof(STANDARD_INFORMATION));
ni->owner_id = cpu_to_le32(0);
ni->quota_charged = cpu_to_le32(0);
ni->usn = cpu_to_le32(0);
ntfs_attr_remove(ni, AT_SECURITY_DESCRIPTOR,
AT_UNNAMED, 0);
set_nino_flag(ni, v3_Extensions);
ni->security_id = securid;
ntfs_attr_close(na);
} else {
ntfs_log_error("Failed to upgrade "
"standard informations\n");
errno = EIO;
res = -1;
}
} else
res = -1;
/* mark node as dirty */
NInoSetDirty(ni);
ntfs_inode_sync(ni); /* useful ? */
} else
res = 1;
return (res);
}
/*
* Find Linux owner mapped to a usid
* Returns 0 (root) if not found
*/
static int findowner(struct SECURITY_CONTEXT *scx, const SID * usid)
{
struct MAPPING *p;
p = scx->usermapping;
while (p && !same_sid(usid, p->sid))
p = p->next;
return (p ? p->xid : 0);
}
/*
* Find Linux group mapped to a gsid
* Returns 0 (root) if not found
*/
static int findgroup(struct SECURITY_CONTEXT *scx, const SID * gsid)
{
struct MAPPING *p;
int gsidsz;
gsidsz = sid_size(gsid);
p = scx->groupmapping;
while (p && !same_sid(gsid, p->sid))
p = p->next;
return (p ? p->xid : 0);
}
/*
* Find usid mapped to a Linux user
* Returns NULL if not found
*/
static const SID *find_usid(struct SECURITY_CONTEXT *scx, uid_t uid)
{
struct MAPPING *p;
const SID *sid;
if (!uid)
sid = adminsid;
else {
p = scx->usermapping;
while (p && ((uid_t)p->xid != uid))
p = p->next;
sid = (p ? p->sid : (const SID*)NULL);
}
return (sid);
}
/*
* Find Linux group mapped to a gsid
* Returns 0 (root) if not found
*/
static const SID *find_gsid(struct SECURITY_CONTEXT *scx, gid_t gid)
{
struct MAPPING *p;
const SID *sid;
if (!gid)
sid = adminsid;
else {
p = scx->groupmapping;
while (p && ((gid_t)p->xid != gid))
p = p->next;
sid = (p ? p->sid : (const SID*)NULL);
}
return (sid);
}
/*
* Cacheing is done two-way :
* - from uid, gid and perm to securid (CACHED_SECURID)
* - from a securid to uid, gid and perm (CACHED_PERMISSIONS)
*
* CACHED_SECURID data is kept in a most-recent-first list
* which should not be too long to be efficient. Its optimal
* size is depends on usage and is hard to determine.
*
* CACHED_PERMISSIONS data is kept in an indexed array. Is
* is optimal at the expense of storage. Use of a most-recent-first
* list would save memory and provide similar performances for
* standard usage, but not for file servers with too many file
* owners
*
* CACHED_PERMISSIONS_LEGACY is a special case for CACHED_PERMISSIONS
* for legacy directories which were not allocated a security_id
* it is organized in a most-recent-first list.
*
* In main caches, data is never invalidated, as the meaning of
* a security_id only changes when user mapping is changed, which
* current implies remounting. However returned entries may be
* overwritten at next update, so data has to be copied elsewhere
* before another cache update is made.
* In legacy cache, data has to be invalidated when protection is
* changed.
*
* Though the same data may be found in both list, they
* must be kept separately : the interpretation of ACL
* in both direction are approximations which could be non
* reciprocal for some configuration of the user mapping data
*/
static struct SECURITY_CACHE *create_caches(struct SECURITY_CONTEXT *scx,
u32 securindex)
{
struct CACHED_SECURID *cachesecurid;
struct SECURITY_CACHE *cache;
#if CACHE_LEGACY_SIZE
struct CACHED_PERMISSIONS_LEGACY *cachelegacy;
#endif
int i;
cache = (struct SECURITY_CACHE*)NULL;
/* create the securid cache first */
cachesecurid = (struct CACHED_SECURID*)
ntfs_malloc(CACHE_SECURID_SIZE*sizeof(struct CACHED_SECURID));
if (cachesecurid) {
/* chain the entries, and mark an invalid mode */
for (i=0; i<(CACHE_SECURID_SIZE - 1); i++) {
cachesecurid[i].next = &cachesecurid[i+1];
cachesecurid[i].dmode = -1;
}
/* special for the last entry */
cachesecurid[CACHE_SECURID_SIZE - 1].next =
(struct CACHED_SECURID*)NULL;
cachesecurid[CACHE_SECURID_SIZE - 1].dmode = -1;
#if CACHE_LEGACY_SIZE
/* create the legacy cache if needed */
cachelegacy = (struct CACHED_PERMISSIONS_LEGACY*)
ntfs_malloc(CACHE_LEGACY_SIZE*
sizeof(struct CACHED_PERMISSIONS_LEGACY));
if (cachelegacy) {
/* chain the entries, and mark an invalid entry */
for (i=0; i<(CACHE_LEGACY_SIZE - 1); i++) {
cachelegacy[i].next = &cachelegacy[i+1];
cachelegacy[i].permissions.valid = 0;
}
/* special for the last entry */
cachelegacy[CACHE_LEGACY_SIZE - 1].next =
(struct CACHED_PERMISSIONS_LEGACY*)NULL;
cachelegacy[CACHE_LEGACY_SIZE - 1].permissions.valid = 0;;
#endif
/* create the first permissions cache entry */
cache = (struct SECURITY_CACHE*)
ntfs_malloc(sizeof(struct SECURITY_CACHE));
if (cache) {
cache->head.first = securindex;
cache->head.last = securindex;
cache->head.p_reads = 0;
cache->head.p_hits = 0;
cache->head.p_writes = 0;
cache->head.s_reads = 0;
cache->head.s_hits = 0;
cache->head.s_writes = 0;
cache->head.s_hops = 0;
*scx->pseccache = cache;
cache->head.first_securid = cachesecurid;
cache->head.most_recent_securid = cachesecurid;
cache->cachetable[0].valid = 0;
#if CACHE_LEGACY_SIZE
cache->head.first_legacy = cachelegacy;
cache->head.most_recent_legacy = cachelegacy;
#endif
}
#if CACHE_LEGACY_SIZE
}
#endif
}
return (cache);
}
/*
* Free memory used by caches
* The only purpose is to facilitate the detection of memory leaks
*/
static void free_caches(struct SECURITY_CONTEXT *scx)
{
if (*scx->pseccache) {
free((*scx->pseccache)->head.first_securid);
#if CACHE_LEGACY_SIZE
free((*scx->pseccache)->head.first_legacy);
#endif
free(*scx->pseccache);
}
}
/*
* Fetch a securid from cache
* returns the cache entry, or NULL if not available
*/
static const struct CACHED_SECURID *fetch_securid(struct SECURITY_CONTEXT *scx,
uid_t uid, gid_t gid, mode_t mode, BOOL isdir)
{
struct SECURITY_CACHE *cache;
struct CACHED_SECURID *current;
struct CACHED_SECURID *previous;
unsigned int dmode; /* mode and directory flag */
cache = *scx->pseccache;
if (cache) {
/*
* Search sequentially in LRU list
*/
dmode = (isdir ? mode | 010000 : mode);
current = cache->head.most_recent_securid;
previous = (struct CACHED_SECURID*)NULL;
while (current
&& ((current->uid != uid)
|| (current->gid != gid)
|| (current->dmode != dmode))) {
cache->head.s_hops++;
previous = current;
current = current->next;
}
if (current)
cache->head.s_hits++;
if (current && previous) {
/*
* found and not at head of list, unlink from current
* position and relink as head of list
*/
previous->next = current->next;
current->next = cache->head.most_recent_securid;
cache->head.most_recent_securid = current;
}
cache->head.s_reads++;
} else /* cache not ready */
current = (struct CACHED_SECURID*)NULL;
return (current);
}
/*
* Enter a securid into cache
* returns the cache entry
*/
static const struct CACHED_SECURID *enter_securid(struct SECURITY_CONTEXT *scx,
uid_t uid, gid_t gid, mode_t mode,
BOOL isdir, le32 securid)
{
struct SECURITY_CACHE *cache;
struct CACHED_SECURID *current;
struct CACHED_SECURID *previous;
struct CACHED_SECURID *before;
unsigned int dmode;
dmode = mode & 07777;
if (isdir) dmode |= 010000;
cache = *scx->pseccache;
if (cache || (cache = create_caches(scx, le32_to_cpu(securid)))) {
/*
* Search sequentially in LRU list to locate the end,
* and find out whether the entry is already in list
* As we normally go to the end, no statitics is
* kept.
*/
current = cache->head.most_recent_securid;
previous = (struct CACHED_SECURID*)NULL;
before = (struct CACHED_SECURID*)NULL;
while (current
&& ((current->uid != uid)
|| (current->gid != gid)
|| (current->dmode != dmode))) {
before = previous;
previous = current;
current = current->next;
}
if (!current) {
/*
* Not in list, reuse the last entry,
* and relink as head of list
* Note : we assume at least three entries, so
* before, previous and first are always different
*/
before->next = (struct CACHED_SECURID*)NULL;
previous->next = cache->head.most_recent_securid;
cache->head.most_recent_securid = previous;
current = previous;
current->uid = uid;
current->gid = gid;
current->dmode = dmode;
current->securid = securid;
}
cache->head.s_writes++;
} else /* cache not available */
current = (struct CACHED_SECURID*)NULL;
return (current);
}
#if CACHE_LEGACY_SIZE
/*
* Fetch a legacy directory from cache
* returns the cache entry, or NULL if not available
*/
static struct CACHED_PERMISSIONS *fetch_legacy(struct SECURITY_CONTEXT *scx,
ntfs_inode *ni)
{
struct SECURITY_CACHE *cache;
struct CACHED_PERMISSIONS_LEGACY *current;
struct CACHED_PERMISSIONS_LEGACY *previous;
struct CACHED_PERMISSIONS *cacheentry;
cacheentry = (struct CACHED_PERMISSIONS*)NULL;
cache = *scx->pseccache;
if (cache
&& (ni->mrec->flags & MFT_RECORD_IS_DIRECTORY)) {
/*
* Search sequentially in LRU list
*/
current = cache->head.most_recent_legacy;
previous = (struct CACHED_PERMISSIONS_LEGACY*)NULL;
while (current
&& (!current->permissions.valid
|| (current->mft_no != ni->mft_no))) {
previous = current;
current = current->next;
}
if (current) {
cache->head.p_hits++;
cacheentry = &current->permissions;
}
if (current && previous) {
/*
* found and not at head of list, unlink from current
* position and relink as head of list
*/
previous->next = current->next;
current->next = cache->head.most_recent_legacy;
cache->head.most_recent_legacy = current;
}
cache->head.p_reads++;
}
return (cacheentry);
}
/*
* Enter a legacy directory into cache
* returns the cache entry
*/
static struct CACHED_PERMISSIONS *enter_legacy(struct SECURITY_CONTEXT *scx,
ntfs_inode *ni, uid_t uid, gid_t gid,
mode_t mode)
{
struct SECURITY_CACHE *cache;
struct CACHED_PERMISSIONS_LEGACY *current;
struct CACHED_PERMISSIONS_LEGACY *previous;
struct CACHED_PERMISSIONS_LEGACY *before;
struct CACHED_PERMISSIONS *cacheentry;
mode &= 07777;
cacheentry = (struct CACHED_PERMISSIONS*)NULL;
cache = *scx->pseccache;
if ((cache || (cache = create_caches(scx, FIRST_SECURITY_ID)))
&& (ni->mrec->flags & MFT_RECORD_IS_DIRECTORY)) {
/*
* Search sequentially in LRU list to locate the end,
* and find out whether the entry is already in list
* As we normally go to the end, no statitics is
* kept.
*/
current = cache->head.most_recent_legacy;
previous = (struct CACHED_PERMISSIONS_LEGACY*)NULL;
before = (struct CACHED_PERMISSIONS_LEGACY*)NULL;
while (current
&& (!current->permissions.valid
|| (current->mft_no != ni->mft_no))) {
before = previous;
previous = current;
current = current->next;
}
if (!current) {
/*
* Not in list, reuse the last entry,
* and relink as head of list
* Note : we assume at least three entries, so
* before, previous and first are always different
*/
before->next = (struct CACHED_PERMISSIONS_LEGACY*)NULL;
previous->next = cache->head.most_recent_legacy;
cache->head.most_recent_legacy = previous;
current = previous;
current->mft_no = ni->mft_no;
cacheentry = &current->permissions;
cacheentry->uid = uid;
cacheentry->gid = gid;
cacheentry->mode = mode;
cacheentry->inh_fileid = cpu_to_le32(0);
cacheentry->inh_dirid = cpu_to_le32(0);
cacheentry->valid = 1;
}
cache->head.p_writes++;
}
return (cacheentry);
}
/*
* Invalidate a legacy directory entry in cache
* This is needed after a change in directory protection, when
* no security id has been assigned (only for NTFS 1.x)
*
* returns the cache entry, or NULL if not available
*/
static struct CACHED_PERMISSIONS *invalidate_legacy(struct SECURITY_CONTEXT *scx,
ntfs_inode *ni)
{
struct CACHED_PERMISSIONS *cached;
cached = fetch_legacy(scx, ni);
if (cached) cached->valid = 0;
return (cached);
}
#endif
/*
* Resize permission cache in either direction
* do not call unless resizing is needed
*
* returns pointer to required entry or NULL if not possible
*/
static struct CACHED_PERMISSIONS *resize_cache(
struct SECURITY_CONTEXT *scx,
u32 securindex)
{
struct CACHED_PERMISSIONS *cacheentry;
struct SECURITY_CACHE *oldcache;
struct SECURITY_CACHE *newcache;
int oldcnt;
int newcnt;
BOOL beyond;
unsigned int i;
cacheentry = (struct CACHED_PERMISSIONS*)NULL;
oldcache = *scx->pseccache;
beyond = oldcache->head.last < securindex;
if (beyond)
newcnt = securindex - oldcache->head.first + 1;
else
newcnt = oldcache->head.last - securindex + 1;
if (beyond && (newcnt <= CACHE_PERMISSIONS_SIZE)) {
/* expand cache beyond current end */
#if 1
newcache = (struct SECURITY_CACHE*)
realloc(oldcache,
sizeof(struct SECURITY_CACHE)
+ (newcnt - 1)*sizeof(struct CACHED_PERMISSIONS));
#else
oldcnt = oldcache->head.last - oldcache->head.first + 1;
newcache = (struct SECURITY_CACHE*)
ntfs_malloc(
sizeof(struct SECURITY_CACHE)
+ (newcnt - 1)*sizeof(struct CACHED_PERMISSIONS));
memcpy(newcache,oldcache,
sizeof(struct SECURITY_CACHE)
+ (oldcnt - 1)*sizeof(struct CACHED_PERMISSIONS));
free(oldcache);
#endif
if (newcache) {
/* mark new entries as not valid */
for (i=newcache->head.last+1; i<=securindex; i++)
newcache->cachetable[
i - newcache->head.first].valid = 0;
newcache->head.last = securindex;
*scx->pseccache = newcache;
cacheentry = &newcache->
cachetable[securindex - newcache->head.first];
}
}
if (!beyond && (newcnt <= CACHE_PERMISSIONS_SIZE)) {
/* expand cache before current beginning */
newcache = (struct SECURITY_CACHE*)
ntfs_malloc(sizeof(struct SECURITY_CACHE)
+ (newcnt - 1)*sizeof(struct CACHED_PERMISSIONS));
if (newcache) {
/* mark new entries as not valid */
for (i=securindex; i<oldcache->head.first; i++)
newcache->cachetable[i - securindex].valid = 0;
newcache->head = oldcache->head;
newcache->head.first = securindex;
oldcnt = oldcache->head.last - oldcache->head.first + 1;
memcpy(&newcache->cachetable[oldcache->head.first
- newcache->head.first],
oldcache->cachetable,
oldcnt*sizeof(struct CACHED_PERMISSIONS));
*scx->pseccache = newcache;
free(oldcache);
cacheentry = &newcache->cachetable[0];
}
}
return (cacheentry);
}
/*
* Enter uid, gid and mode into cache, if possible
*
* returns the updated or created cache entry,
* or NULL if not possible (typically if there is no
* security id associated)
*/
static struct CACHED_PERMISSIONS *enter_cache(struct SECURITY_CONTEXT *scx,
ntfs_inode *ni, uid_t uid, gid_t gid, mode_t mode)
{
struct CACHED_PERMISSIONS *cacheentry;
struct SECURITY_CACHE *pcache;
u32 securindex;
/* cacheing is only possible if a security_id has been defined */
if (test_nino_flag(ni, v3_Extensions)
&& (ni->security_id)) {
/*
* Immediately test the most frequent situation
* where the entry exists
*/
securindex = le32_to_cpu(ni->security_id);
pcache = *scx->pseccache;
if (pcache
&& (pcache->head.first <= securindex)
&& (pcache->head.last >= securindex)) {
cacheentry = &pcache->cachetable[securindex
- pcache->head.first];
cacheentry->uid = uid;
cacheentry->gid = gid;
cacheentry->mode = mode & 07777;
cacheentry->inh_fileid = cpu_to_le32(0);
cacheentry->inh_dirid = cpu_to_le32(0);
cacheentry->valid = 1;
pcache->head.p_writes++;
} else {
if (!pcache) {
/* create the first cache entry */
pcache = create_caches(scx, securindex);
cacheentry = &pcache->cachetable[0];
} else {
cacheentry = resize_cache(scx, securindex);
pcache = *scx->pseccache;
}
if (cacheentry) {
cacheentry->uid = uid;
cacheentry->gid = gid;
cacheentry->mode = mode & 07777;
cacheentry->inh_fileid = cpu_to_le32(0);
cacheentry->inh_dirid = cpu_to_le32(0);
cacheentry->valid = 1;
pcache->head.p_writes++;
}
}
} else
#if CACHE_LEGACY_SIZE
cacheentry = enter_legacy(scx, ni, uid, gid, mode);
#else
cacheentry = (struct CACHED_PERMISSIONS*)NULL;
#endif
return (cacheentry);
}
/*
* Fetch owner, group and permission of a file, if cached
*
* Beware : do not use the returned entry after a cache update :
* the cache may be relocated making the returned entry meaningless
*
* returns the cache entry, or NULL if not available
*/
static struct CACHED_PERMISSIONS *fetch_cache(struct SECURITY_CONTEXT *scx,
ntfs_inode *ni)
{
struct CACHED_PERMISSIONS *cacheentry;
struct SECURITY_CACHE *pcache;
u32 securindex;
/* cacheing is only possible if a security_id has been defined */
cacheentry = (struct CACHED_PERMISSIONS*)NULL;
if (test_nino_flag(ni, v3_Extensions)
&& (ni->security_id)) {
securindex = le32_to_cpu(ni->security_id);
pcache = *scx->pseccache;
if (pcache
&& (pcache->head.first <= securindex)
&& (pcache->head.last >= securindex)) {
cacheentry = &pcache->cachetable[securindex
- pcache->head.first];
/* reject if entry is not valid */
if (!cacheentry->valid)
cacheentry = (struct CACHED_PERMISSIONS*)NULL;
else
pcache->head.p_hits++;
if (pcache)
pcache->head.p_reads++;
}
}
#if CACHE_LEGACY_SIZE
else
cacheentry = fetch_legacy(scx, ni);
#endif
return (cacheentry);
}
/*
* Retrieve a security attribute from $Secure
*/
static char *retrievesecurityattr(ntfs_volume *vol, SII_INDEX_KEY id)
{
struct SII *psii;
union {
struct {
le32 dataoffsl;
le32 dataoffsh;
} parts;
le64 all;
} realign;
int found;
size_t size;
size_t rdsize;
s64 offs;
ntfs_inode *ni;
ntfs_index_context *xsii;
char *securattr;
securattr = (char*)NULL;
ni = vol->secure_ni;
xsii = vol->secure_xsii;
if (ni && xsii) {
ntfs_index_ctx_reinit(xsii);
found =
!ntfs_index_lookup((char*)&id,
sizeof(SII_INDEX_KEY), xsii);
if (found) {
psii = (struct SII*)xsii->entry;
size =
(size_t) le32_to_cpu(psii->datasize)
- sizeof(SECURITY_DESCRIPTOR_HEADER);
/* work around bad alignment problem */
realign.parts.dataoffsh = psii->dataoffsh;
realign.parts.dataoffsl = psii->dataoffsl;
offs = le64_to_cpu(realign.all)
+ sizeof(SECURITY_DESCRIPTOR_HEADER);
securattr = (char*)ntfs_malloc(size);
if (securattr) {
rdsize = ntfs_local_read(
ni, STREAM_SDS, 4,
securattr, size, offs);
if ((rdsize != size)
|| !valid_securattr(securattr,
rdsize)) {
/* error to be logged by caller */
free(securattr);
securattr = (char*)NULL;
}
}
}
}
if (!securattr) {
ntfs_log_error("Failed to retrieve a security descriptor\n");
errno = EIO;
}
return (securattr);
}
/*
* Build an ACL composed of several ACE's
* (not expected to fail)
*
* Three schemes are defined :
*
* 1) if root is neither owner nor group up to 7 ACE's are set up :
* - grants to owner (always present)
* - denials to owner (preventing grants to world or group to apply)
* - grants to group (unless groups has same rights as world)
* - denials to group (preventing grants to world to apply)
* - grants to world (unless none)
* - full privileges to administrator, always present
* - full privileges to system, always present
*
* 2) if root is either owner or group, two problems arise :
* - granting full rights to administrator (as needed to transpose
* to Windows rights bypassing granting to root) would imply
* Linux permissions to always be seen as rwx, no matter the chmod
* - there is no different SID to separate an administrator owner
* from an administrator group. Hence Linux permissions for owner
* would always be similar to permissions to group.
*
* as a work-around, up to 5 ACE's are set up if owner or group :
* - grants to owner, always present at first position
* - grants to group, always present
* - grants to world, unless none
* - full privileges to administrator, always present
* - full privileges to system, always present
*
* On Windows, these ACE's are processed normally, though they
* are redundant (owner, group and administrator are the same,
* as a consequence any denials would damage administrator rights)
* but on Linux, privileges to administrator are ignored (they
* are not needed as root has always full privileges), and
* neither grants to group are applied to owner, nor grants to
* world are applied to owner or group.
*
* 3) finally a similar situation arises when group is owner (they
* have the same SID), but is not root.
* In this situation up to 6 ACE's are set up :
*
* - grants to owner (always present)
* - denials to owner (preventing grants to world to apply)
* - grants to group (unless groups has same rights as world)
* - grants to world (unless none)
* - full privileges to administrator, always present
* - full privileges to system, always present
*
* On Windows, these ACE's are processed normally, though they
* are redundant (as owner and group are the same), but this has
* no impact on administrator rights
*
* Special cases :
* - a directory with sticky bit is represented as a directory in
* which world can add directories and not delete or conversely
* - a file with sticky bit is represented as a file which the
* owner can write to and not append or conversely
* - a file with setuid or setgid is represented as a file with
* the right to write extended attributes different from the
* right to write standard attributes
*/
static int buildacls(char *secattr, int offs, mode_t mode, int isdir,
const SID * usid, const SID * gsid)
{
ACL *pacl;
ACCESS_ALLOWED_ACE *pgace;
ACCESS_ALLOWED_ACE *pdace;
BOOL adminowns;
BOOL groupowns;
int pos;
int acecnt;
int usidsz;
int gsidsz;
int wsidsz;
int asidsz;
int ssidsz;
long grants;
long denials;
usidsz = sid_size(usid);
gsidsz = sid_size(gsid);
asidsz = sid_size(adminsid);
ssidsz = sid_size(systemsid);
adminowns = same_sid(usid, adminsid)
|| same_sid(gsid, adminsid);
groupowns = !adminowns && same_sid(usid, gsid);
/* ACL header */
pacl = (ACL*)&secattr[offs];
pacl->revision = ACL_REVISION;
pacl->alignment1 = 0;
pacl->size = cpu_to_le16(sizeof(ACL) + usidsz + 8);
pacl->ace_count = cpu_to_le16(1);
pacl->alignment2 = cpu_to_le16(0);
pos = sizeof(ACL);
acecnt = 0;
/* a grant ACE for owner */
pgace = (ACCESS_ALLOWED_ACE*) &secattr[offs + pos];
pgace->type = ACCESS_ALLOWED_ACE_TYPE;
grants = OWNER_RIGHTS;
if (isdir) {
pgace->flags = DIR_INHERITANCE;
if (mode & S_IXUSR)
grants |= DIR_EXEC;
if (mode & S_IWUSR)
grants |= DIR_WRITE;
if (mode & S_IRUSR)
grants |= DIR_READ;
} else {
pgace->flags = FILE_INHERITANCE;
if (mode & S_IXUSR)
grants |= FILE_EXEC;
if (mode & S_IWUSR)
grants |= FILE_WRITE;
if (mode & S_IRUSR)
grants |= FILE_READ;
if (mode & S_ISVTX)
grants ^= FILE_APPEND_DATA;
}
if (mode & S_ISUID)
grants ^= FILE_WRITE_EA;
pgace->size = cpu_to_le16(usidsz + 8);
pgace->mask = cpu_to_le32(grants);
memcpy((char*)&pgace->sid, usid, usidsz);
pos += usidsz + 8;
acecnt++;
/* a possible ACE to deny owner what he/she would */
/* induely get from administrator, group or world */
/* unless owner is administrator or group */
denials = 0;
pdace = (ACCESS_DENIED_ACE*) &secattr[offs + pos];
if (!adminowns) {
if (!groupowns) {
if (isdir) {
pdace->flags = DIR_INHERITANCE;
if (mode & (S_IXGRP | S_IXOTH))
denials |= DIR_EXEC;
if (mode & (S_IWGRP | S_IWOTH))
denials |= DIR_WRITE;
if (mode & (S_IRGRP | S_IROTH))
denials |= DIR_READ;
} else {
pdace->flags = FILE_INHERITANCE;
if (mode & (S_IXGRP | S_IXOTH))
denials |= FILE_EXEC;
if (mode & (S_IWGRP | S_IWOTH))
denials |= FILE_WRITE;
if (mode & (S_IRGRP | S_IROTH))
denials |= FILE_READ;
}
} else {
if (isdir) {
pdace->flags = DIR_INHERITANCE;
if ((mode & S_IXOTH) && !(mode & S_IXGRP))
denials |= DIR_EXEC;
if ((mode & S_IWOTH) && !(mode & S_IWGRP))
denials |= DIR_WRITE;
if ((mode & S_IROTH) && !(mode & S_IRGRP))
denials |= DIR_READ;
} else {
pdace->flags = FILE_INHERITANCE;
if ((mode & S_IXOTH) && !(mode & S_IXGRP))
denials |= FILE_EXEC;
if ((mode & S_IWOTH) && !(mode & S_IWGRP))
denials |= FILE_WRITE;
if ((mode & S_IROTH) && !(mode & S_IRGRP))
denials |= FILE_READ;
}
}
denials &= ~grants;
if (denials) {
pdace->type = ACCESS_DENIED_ACE_TYPE;
pdace->size = cpu_to_le16(usidsz + 8);
pdace->mask = cpu_to_le32(denials);
memcpy((char*)&pdace->sid, usid, usidsz);
pos += usidsz + 8;
acecnt++;
}
}
/* a grant ACE for group */
/* unless group has the same rights as world */
/* but present if group is owner or owner is administrator */
if (adminowns
|| groupowns
|| (((mode >> 3) ^ mode) & 7)
|| (mode & (S_ISGID | S_ISUID))) {
pgace = (ACCESS_ALLOWED_ACE*)&secattr[offs + pos];
pgace->type = ACCESS_ALLOWED_ACE_TYPE;
grants = WORLD_RIGHTS;
if (isdir) {
pgace->flags = DIR_INHERITANCE;
if (mode & S_IXGRP)
grants |= DIR_EXEC;
if (mode & S_IWGRP)
grants |= DIR_WRITE;
if (mode & S_IRGRP)
grants |= DIR_READ;
} else {
pgace->flags = FILE_INHERITANCE;
if (mode & S_IXGRP)
grants |= FILE_EXEC;
if (mode & S_IWGRP)
grants |= FILE_WRITE;
if (mode & S_IRGRP)
grants |= FILE_READ;
if (mode & S_ISVTX)
grants ^= FILE_APPEND_DATA;
}
if (mode & S_ISGID)
grants ^= FILE_WRITE_EA;
pgace->size = cpu_to_le16(gsidsz + 8);
pgace->mask = cpu_to_le32(grants);
memcpy((char*)&pgace->sid, gsid, gsidsz);
pos += gsidsz + 8;
acecnt++;
/* a possible ACE to deny group what it would get from world */
/* or administrator, unless owner is administrator or group */
denials = 0;
pdace = (ACCESS_ALLOWED_ACE*)&secattr[offs + pos];
if (!adminowns && !groupowns) {
if (isdir) {
pdace->flags = DIR_INHERITANCE;
if (mode & S_IXOTH)
denials |= DIR_EXEC;
if (mode & S_IWOTH)
denials |= DIR_WRITE;
if (mode & S_IROTH)
denials |= DIR_READ;
} else {
pdace->flags = FILE_INHERITANCE;
if (mode & S_IXOTH)
denials |= FILE_EXEC;
if (mode & S_IWOTH)
denials |= FILE_WRITE;
if (mode & S_IROTH)
denials |= FILE_READ;
}
denials &= ~grants;
if (denials) {
pdace->type = ACCESS_DENIED_ACE_TYPE;
pdace->size = cpu_to_le16(gsidsz + 8);
pdace->mask = cpu_to_le32(denials);
memcpy((char*)&pdace->sid, gsid, gsidsz);
pos += gsidsz + 8;
acecnt++;
}
}
}
/* an ACE for world users */
wsidsz = sid_size(worldsid);
pgace = (ACCESS_ALLOWED_ACE*)&secattr[offs + pos];
pgace->type = ACCESS_ALLOWED_ACE_TYPE;
grants = WORLD_RIGHTS;
if (isdir) {
pgace->flags = DIR_INHERITANCE;
if (mode & S_IXOTH)
grants |= DIR_EXEC;
if (mode & S_IWOTH)
grants |= DIR_WRITE;
if (mode & S_IROTH)
grants |= DIR_READ;
if (mode & S_ISVTX)
grants ^= FILE_ADD_SUBDIRECTORY;
} else {
pgace->flags = FILE_INHERITANCE;
if (mode & S_IXOTH)
grants |= FILE_EXEC;
if (mode & S_IWOTH)
grants |= FILE_WRITE;
if (mode & S_IROTH)
grants |= FILE_READ;
}
pgace->size = cpu_to_le16(wsidsz + 8);
pgace->mask = cpu_to_le32(grants);
memcpy((char*)&pgace->sid, worldsid, wsidsz);
pos += wsidsz + 8;
acecnt++;
/* an ACE for administrators */
/* always full access */
pgace = (ACCESS_ALLOWED_ACE*)&secattr[offs + pos];
pgace->type = ACCESS_ALLOWED_ACE_TYPE;
if (isdir)
pgace->flags = DIR_INHERITANCE;
else
pgace->flags = FILE_INHERITANCE;
pgace->size = cpu_to_le16(asidsz + 8);
grants = OWNER_RIGHTS | FILE_READ | FILE_WRITE | FILE_EXEC;
pgace->mask = cpu_to_le32(grants);
memcpy((char*)&pgace->sid, adminsid, asidsz);
pos += asidsz + 8;
acecnt++;
/* an ACE for system (needed ?) */
/* always full access */
pgace = (ACCESS_ALLOWED_ACE*)&secattr[offs + pos];
pgace->type = ACCESS_ALLOWED_ACE_TYPE;
if (isdir)
pgace->flags = DIR_INHERITANCE;
else
pgace->flags = FILE_INHERITANCE;
pgace->size = cpu_to_le16(ssidsz + 8);
grants = OWNER_RIGHTS | FILE_READ | FILE_WRITE | FILE_EXEC;
pgace->mask = cpu_to_le32(grants);
memcpy((char*)&pgace->sid, systemsid, ssidsz);
pos += ssidsz + 8;
acecnt++;
/* fix ACL header */
pacl->size = cpu_to_le16(pos);
pacl->ace_count = cpu_to_le16(acecnt);
return (pos);
}
/*
* Build a full security descriptor
* returns descriptor in allocated memory, must free() after use
*/
static char *build_secur_descr(mode_t mode,
int isdir, const SID * usid, const SID * gsid)
{
int newattrsz;
SECURITY_DESCRIPTOR_RELATIVE *pnhead;
char *newattr;
int aclsz;
int usidsz;
int gsidsz;
int wsidsz;
int asidsz;
int ssidsz;
usidsz = sid_size(usid);
gsidsz = sid_size(gsid);
wsidsz = sid_size(worldsid);
asidsz = sid_size(adminsid);
ssidsz = sid_size(systemsid);
/* allocate enough space for the new security attribute */
newattrsz = sizeof(SECURITY_DESCRIPTOR_RELATIVE) /* header */
+ usidsz + gsidsz /* usid and gsid */
+ sizeof(ACL) /* acl header */
+ 2*(8 + usidsz) /* two possible ACE for user */
+ 2*(8 + gsidsz) /* two possible ACE for group */
+ 8 + wsidsz /* one ACE for world */
+ 8 + asidsz /* one ACE for admin */
+ 8 + ssidsz; /* one ACE for system */
newattr = (char*)ntfs_malloc(newattrsz);
if (newattr) {
/* build the main header part */
pnhead = (SECURITY_DESCRIPTOR_RELATIVE*) newattr;
pnhead->revision = SECURITY_DESCRIPTOR_REVISION;
pnhead->alignment = 0;
pnhead->control = SE_DACL_PRESENT | SE_SELF_RELATIVE;
/*
* Windows prefers ACL first, do the same to
* get the same hash value and avoid duplication
*/
/* build permissions */
aclsz = buildacls(newattr,
sizeof(SECURITY_DESCRIPTOR_RELATIVE),
mode, isdir, usid, gsid);
if ((aclsz + usidsz + gsidsz) <= newattrsz) {
/* append usid and gsid */
memcpy(&newattr[sizeof(SECURITY_DESCRIPTOR_RELATIVE)
+ aclsz], usid, usidsz);
memcpy(&newattr[sizeof(SECURITY_DESCRIPTOR_RELATIVE)
+ aclsz + usidsz], gsid, gsidsz);
/* positions of ACL, USID and GSID into header */
pnhead->owner =
cpu_to_le32(sizeof(SECURITY_DESCRIPTOR_RELATIVE)
+ aclsz);
pnhead->group =
cpu_to_le32(sizeof(SECURITY_DESCRIPTOR_RELATIVE)
+ aclsz + usidsz);
pnhead->sacl = cpu_to_le32(0);
pnhead->dacl =
cpu_to_le32(sizeof(SECURITY_DESCRIPTOR_RELATIVE));
} else {
/* hope error was detected before overflowing */
free(newattr);
newattr = (char*)NULL;
ntfs_log_error("Security descriptor is longer than expected\n");
errno = EIO;
}
} else
errno = ENOMEM;
return (newattr);
}
/*
* Get the security descriptor associated to a file
*
* Either :
* - read the security descriptor attribute (v1.x format)
* - or find the descriptor in $Secure:$SDS (v3.x format)
*
* in both case, sanity checks are done on the attribute and
* the descriptor can be assumed safe
*
* The returned descriptor is dynamically allocated and has to be freed
*/
static char *getsecurityattr(ntfs_volume *vol,
const char *path, ntfs_inode *ni)
{
SII_INDEX_KEY securid;
char *securattr;
s64 readallsz;
/*
* Warning : in some situations, after fixing by chkdsk,
* v3_Extensions are marked present (long standard informations)
* with a default security descriptor inserted in an
* attribute
*/
if (test_nino_flag(ni, v3_Extensions) && ni->security_id) {
/* get v3.x descriptor in $Secure */
securid.security_id = ni->security_id;
securattr = retrievesecurityattr(vol,securid);
if (!securattr)
ntfs_log_error("Bad security descriptor for 0x%lx\n",
(long)le32_to_cpu(ni->security_id));
} else {
/* get v1.x security attribute */
readallsz = 0;
securattr = ntfs_attr_readall(ni, AT_SECURITY_DESCRIPTOR,
AT_UNNAMED, 0, &readallsz);
if (securattr && !valid_securattr(securattr, readallsz)) {
ntfs_log_error("Bad security descriptor for %s\n",
path);
free(securattr);
securattr = (char*)NULL;
}
}
if (!securattr) {
/*
* in some situations, there is no security
* descriptor, and chkdsk does not detect or fix
* anything. This could be a normal situation.
* When this happens, simulate a descriptor with
* minimum rights, so that a real descriptor can
* be created by chown or chmod
*/
ntfs_log_error("No security descriptor found for %s\n",path);
securattr = build_secur_descr(0, 0, adminsid, adminsid);
}
return (securattr);
}
/*
* Test whether a SID means "world user"
* Local users group also recognized as world
*/
static int is_world_sid(const SID * usid)
{
return (
/* check whether S-1-1-0 : world */
((usid->sub_authority_count == 1)
&& (usid->identifier_authority.high_part == cpu_to_be32(0))
&& (usid->identifier_authority.low_part == cpu_to_be32(1))
&& (usid->sub_authority[0] == 0))
/* check whether S-1-5-32-545 : local user */
|| ((usid->sub_authority_count == 2)
&& (usid->identifier_authority.high_part == cpu_to_be32(0))
&& (usid->identifier_authority.low_part == cpu_to_be32(5))
&& (usid->sub_authority[0] == cpu_to_le32(32))
&& (usid->sub_authority[1] == cpu_to_le32(545)))
);
}
/*
* Test whether a SID means "some user"
* Currently we only check for S-1-5-21... but we should
* probably test for other configurations
*/
static int is_user_sid(const SID * usid)
{
return ((usid->sub_authority_count == 5)
&& (usid->identifier_authority.high_part == cpu_to_be32(0))
&& (usid->identifier_authority.low_part == cpu_to_be32(5))
&& (usid->sub_authority[0] == cpu_to_le32(21)));
}
/*
* Create a mode_t permission set
* from owner, group and world grants as represented in ACEs
*/
static int merge_permissions(ntfs_inode *ni,
le32 owner, le32 group, le32 world)
{
int perm;
perm = 0;
/* build owner permission */
if (owner) {
if (ni->mrec->flags & MFT_RECORD_IS_DIRECTORY) {
/* exec if any of list, traverse */
if (owner & DIR_GEXEC)
perm |= S_IXUSR;
/* write if any of addfile, adddir, delchild */
if (owner & DIR_GWRITE)
perm |= S_IWUSR;
/* read if any of list */
if (owner & DIR_GREAD)
perm |= S_IRUSR;
} else {
/* exec if execute or generic execute */
if (owner & FILE_GEXEC)
perm |= S_IXUSR;
/* write if any of writedata or generic write */
if (owner & FILE_GWRITE)
perm |= S_IWUSR;
/* read if any of readdata or generic read */
if (owner & FILE_GREAD)
perm |= S_IRUSR;
/* sticky if write different from append */
if (((owner & FILE_STICKY)
&& ((owner & FILE_STICKY) != FILE_STICKY)))
perm |= S_ISVTX;
}
/* setuid if write_ea different from write_attr */
if (((owner & FILE_SETUID)
&& ((owner & FILE_SETUID) != FILE_SETUID)))
perm |= S_ISUID;
}
/* build group permission */
if (group) {
if (ni->mrec->flags & MFT_RECORD_IS_DIRECTORY) {
/* exec if any of list, traverse */
if (group & DIR_GEXEC)
perm |= S_IXGRP;
/* write if any of addfile, adddir, delchild */
if (group & DIR_GWRITE)
perm |= S_IWGRP;
/* read if any of list */
if (group & DIR_GREAD)
perm |= S_IRGRP;
} else {
/* exec if execute */
if (group & FILE_GEXEC)
perm |= S_IXGRP;
/* write if any of writedata, appenddata */
if (group & FILE_GWRITE)
perm |= S_IWGRP;
/* read if any of readdata */
if (group & FILE_GREAD)
perm |= S_IRGRP;
}
/* setgid if write_ea different from write_attr */
if (((group & FILE_SETGID)
&& ((group & FILE_SETGID) != FILE_SETGID)))
perm |= S_ISGID;
}
/* build world permission */
if (world) {
if (ni->mrec->flags & MFT_RECORD_IS_DIRECTORY) {
/* exec if any of list, traverse */
if (world & DIR_GEXEC)
perm |= S_IXOTH;
/* write if any of addfile, adddir, delchild */
if (world & DIR_GWRITE)
perm |= S_IWOTH;
/* read if any of list */
if (world & DIR_GREAD)
perm |= S_IROTH;
/* sticky if adddir different from delete_child */
if (((world & DIR_STICKY)
&& ((world & DIR_STICKY) != DIR_STICKY)))
perm |= S_ISVTX;
} else {
/* exec if execute */
if (world & FILE_GEXEC)
perm |= S_IXOTH;
/* write if any of writedata, appenddata */
if (world & FILE_GWRITE)
perm |= S_IWOTH;
/* read if any of readdata */
if (world & FILE_GREAD)
perm |= S_IROTH;
}
}
return (perm);
}
/*
* Interpret an ACL and extract meaningful grants
* (standard case : different owner, group and administrator)
*/
static int build_std_permissions(const char *securattr, ntfs_inode *ni)
{
const SECURITY_DESCRIPTOR_RELATIVE *phead;
const ACL *pacl;
const ACCESS_ALLOWED_ACE *pace;
const SID *usid; /* owner of file/directory */
const SID *gsid; /* group of file/directory */
int offdacl;
int offace;
int acecnt;
int nace;
le32 allowown, allowgrp, allowall;
le32 denyown, denygrp, denyall;
phead = (const SECURITY_DESCRIPTOR_RELATIVE*)securattr;
usid = (const SID*)&securattr[le32_to_cpu(phead->owner)];
gsid = (const SID*)&securattr[le32_to_cpu(phead->group)];
offdacl = le32_to_cpu(phead->dacl);
pacl = (const ACL*)&securattr[offdacl];
allowown = allowgrp = allowall = cpu_to_le32(0);
denyown = denygrp = denyall = cpu_to_le32(0);
if (offdacl) {
acecnt = le16_to_cpu(pacl->ace_count);
offace = offdacl + sizeof(ACL);
} else
acecnt = 0;
for (nace = 0; nace < acecnt; nace++) {
pace = (const ACCESS_ALLOWED_ACE*)&securattr[offace];
if (same_sid(usid, &pace->sid)
|| same_sid(ownersid, &pace->sid)) {
if (pace->type == ACCESS_ALLOWED_ACE_TYPE)
allowown |= pace->mask;
else if (pace->type == ACCESS_DENIED_ACE_TYPE)
denyown |= pace->mask;
} else
if (same_sid(gsid, &pace->sid)) {
if (pace->type == ACCESS_ALLOWED_ACE_TYPE)
allowgrp |= pace->mask;
else if (pace->type == ACCESS_DENIED_ACE_TYPE)
denygrp |= pace->mask;
} else
if (is_world_sid((const SID*)&pace->sid)) {
if (pace->type == ACCESS_ALLOWED_ACE_TYPE)
allowall |= pace->mask;
else
if (pace->type == ACCESS_DENIED_ACE_TYPE)
denyall |= pace->mask;
}
offace += le16_to_cpu(pace->size);
}
/*
* Add to owner rights granted to group or world
* unless denied personaly, and add to group rights
* granted to world unless denied specifically
*/
allowown |= (allowgrp | allowall) & ~FILE_SETUID;
allowgrp |= allowall & ~FILE_SETUID;
return (merge_permissions(ni,
allowown & ~denyown,
allowgrp & ~denygrp,
allowall & ~denyall));
}
/*
* Interpret an ACL and extract meaningful grants
* (special case : owner and group are the same,
* and not administrator)
*/
static int build_owngrp_permissions(const char *securattr, ntfs_inode *ni)
{
const SECURITY_DESCRIPTOR_RELATIVE *phead;
const ACL *pacl;
const ACCESS_ALLOWED_ACE *pace;
const SID *usid; /* owner and group of file/directory */
int offdacl;
int offace;
int acecnt;
int nace;
le32 allowown, allowgrp, allowall;
le32 denyown, denygrp, denyall;
phead = (const SECURITY_DESCRIPTOR_RELATIVE*)securattr;
usid = (const SID*)&securattr[le32_to_cpu(phead->owner)];
offdacl = le32_to_cpu(phead->dacl);
pacl = (const ACL*)&securattr[offdacl];
allowown = allowgrp = allowall = cpu_to_le32(0);
denyown = denygrp = denyall = cpu_to_le32(0);
if (offdacl) {
acecnt = le16_to_cpu(pacl->ace_count);
offace = offdacl + sizeof(ACL);
} else
acecnt = 0;
for (nace = 0; nace < acecnt; nace++) {
pace = (const ACCESS_ALLOWED_ACE*)&securattr[offace];
if ((same_sid(usid, &pace->sid)
|| same_sid(ownersid, &pace->sid))
&& (pace->mask & WRITE_OWNER)) {
if (pace->type == ACCESS_ALLOWED_ACE_TYPE)
allowown |= pace->mask;
} else
if (same_sid(usid, &pace->sid)
&& (!(pace->mask & WRITE_OWNER))) {
if (pace->type == ACCESS_ALLOWED_ACE_TYPE)
allowgrp |= pace->mask;
} else
if (is_world_sid((const SID*)&pace->sid)) {
if (pace->type == ACCESS_ALLOWED_ACE_TYPE)
allowall |= pace->mask;
else
if (pace->type == ACCESS_DENIED_ACE_TYPE)
denyall |= pace->mask;
}
offace += le16_to_cpu(pace->size);
}
return (merge_permissions(ni,
allowown & ~denyown,
allowgrp & ~denygrp,
allowall & ~denyall));
}
/*
* Interpret an ACL and extract meaningful grants
* (special case : owner or/and group is administrator)
*/
static int build_ownadmin_permissions(const char *securattr, ntfs_inode *ni)
{
const SECURITY_DESCRIPTOR_RELATIVE *phead;
const ACL *pacl;
const ACCESS_ALLOWED_ACE *pace;
const SID *usid; /* owner of file/directory */
const SID *gsid; /* group of file/directory */
int offdacl;
int offace;
int acecnt;
int nace;
le32 allowown, allowgrp, allowall;
le32 denyown, denygrp, denyall;
phead = (const SECURITY_DESCRIPTOR_RELATIVE*)securattr;
usid = (const SID*)&securattr[le32_to_cpu(phead->owner)];
gsid = (const SID*)&securattr[le32_to_cpu(phead->group)];
offdacl = le32_to_cpu(phead->dacl);
pacl = (const ACL*)&securattr[offdacl];
allowown = allowgrp = allowall = cpu_to_le32(0);
denyown = denygrp = denyall = cpu_to_le32(0);
if (offdacl) {
acecnt = le16_to_cpu(pacl->ace_count);
offace = offdacl + sizeof(ACL);
} else
acecnt = 0;
for (nace = 0; nace < acecnt; nace++) {
pace = (const ACCESS_ALLOWED_ACE*)&securattr[offace];
if ((same_sid(usid, &pace->sid)
|| same_sid(ownersid, &pace->sid))
&& (((pace->mask & WRITE_OWNER) && !nace))) {
if (pace->type == ACCESS_ALLOWED_ACE_TYPE)
allowown |= pace->mask;
else
if (pace->type == ACCESS_DENIED_ACE_TYPE)
denyown |= pace->mask;
} else
if (same_sid(gsid, &pace->sid)
&& (!(pace->mask & WRITE_OWNER))) {
if (pace->type == ACCESS_ALLOWED_ACE_TYPE)
allowgrp |= pace->mask;
else
if (pace->type == ACCESS_DENIED_ACE_TYPE)
denygrp |= pace->mask;
} else if (is_world_sid((const SID*)&pace->sid)) {
if (pace->type == ACCESS_ALLOWED_ACE_TYPE)
allowall |= pace->mask;
else
if (pace->type == ACCESS_DENIED_ACE_TYPE)
denyall |= pace->mask;
}
offace += le16_to_cpu(pace->size);
}
return (merge_permissions(ni,
allowown & ~denyown,
allowgrp & ~denygrp,
allowall & ~denyall));
}
/*
* Special case for files owned by administrator with full
* access granted to a mapped user : consider this user as the tenant
* of the file.
*
* This situation cannot be represented with Linux concepts and can
* only be found for files or directories created by Windows.
* Typical situation : directory "Documents and Settings/user" which
* is on the path to user's files and must be given access to user
* only.
*
* Check file is owned by administrator and no user has rights before
* calling.
* Returns the uid of tenant or zero if none
*/
static uid_t find_tenant(struct SECURITY_CONTEXT *scx,
const char *securattr)
{
const SECURITY_DESCRIPTOR_RELATIVE *phead;
const ACL *pacl;
const ACCESS_ALLOWED_ACE *pace;
int offdacl;
int offace;
int acecnt;
int nace;
uid_t tid;
uid_t xid;
phead = (const SECURITY_DESCRIPTOR_RELATIVE*)securattr;
offdacl = le32_to_cpu(phead->dacl);
pacl = (const ACL*)&securattr[offdacl];
tid = 0;
if (offdacl) {
acecnt = le16_to_cpu(pacl->ace_count);
offace = offdacl + sizeof(ACL);
} else
acecnt = 0;
for (nace = 0; nace < acecnt; nace++) {
pace = (const ACCESS_ALLOWED_ACE*)&securattr[offace];
if ((pace->type == ACCESS_ALLOWED_ACE_TYPE)
&& (pace->mask & DIR_WRITE)) {
xid = findowner(scx, &pace->sid);
if (xid) tid = xid;
}
offace += le16_to_cpu(pace->size);
}
return (tid);
}
/*
* Build unix-style (mode_t) permissions from an ACL
* returns the requested permissions
* or a negative result (with errno set) if there is a problem
*/
static int build_permissions(const char *securattr, ntfs_inode *ni)
{
const SECURITY_DESCRIPTOR_RELATIVE *phead;
const SID *usid; /* owner of file/directory */
const SID *gsid; /* group of file/directory */
int perm;
BOOL adminowns;
BOOL groupowns;
phead = (const SECURITY_DESCRIPTOR_RELATIVE*)securattr;
usid = (const SID*)&securattr[le32_to_cpu(phead->owner)];
gsid = (const SID*)&securattr[le32_to_cpu(phead->group)];
adminowns = same_sid(usid,adminsid)
|| same_sid(gsid,adminsid);
groupowns = !adminowns && same_sid(gsid,usid);
if (adminowns)
perm = build_ownadmin_permissions(securattr, ni);
else
if (groupowns)
perm = build_owngrp_permissions(securattr, ni);
else
perm = build_std_permissions(securattr, ni);
return (perm);
}
/*
* Get permissions to access a file
* Takes into account the relation of user to file (owner, group, ...)
* Do no use as mode of the file
*
* returns -1 if there is a problem
*/
static int ntfs_get_perm(struct SECURITY_CONTEXT *scx,
const char *path, ntfs_inode * ni)
{
const SECURITY_DESCRIPTOR_RELATIVE *phead;
const struct CACHED_PERMISSIONS *cached;
char *securattr;
const SID *usid; /* owner of file/directory */
const SID *gsid; /* group of file/directory */
uid_t uid;
gid_t gid;
int perm;
if (!scx->usermapping || !scx->uid)
perm = 07777;
else {
/* check whether available in cache */
cached = fetch_cache(scx,ni);
if (cached) {
perm = cached->mode;
uid = cached->uid;
gid = cached->gid;
} else {
perm = 0; /* default to no permission */
securattr = getsecurityattr(scx->vol, path, ni);
if (securattr) {
perm = build_permissions(securattr, ni);
phead = (const SECURITY_DESCRIPTOR_RELATIVE*)
securattr;
usid = (const SID*)&
securattr[le32_to_cpu(phead->owner)];
if (!perm && same_sid(usid, adminsid)) {
uid = find_tenant(scx, securattr);
if (uid)
perm = 0700;
} else
uid = findowner(scx,usid);
/*
* Create a security id if there were none
* and upgrade option is selected
*/
if (!test_nino_flag(ni, v3_Extensions)
&& (perm >= 0)
&& (scx->vol->flags
& (1 << SECURITY_ADDSECURIDS))) {
upgrade_secur_desc(scx->vol, path,
securattr, ni);
/*
* fetch owner and group for cacheing
* if there is a securid
*/
}
if (test_nino_flag(ni, v3_Extensions)
&& (perm >= 0)) {
gsid = (const SID*)&
securattr[le32_to_cpu(phead->group)];
gid = findgroup(scx,gsid);
enter_cache(scx, ni, uid,
gid, perm);
}
free(securattr);
} else
perm = -1;
uid = gid = 0;
}
if (perm >= 0) {
if (uid == scx->uid)
perm &= 07700;
else
if (gid == scx->gid)
perm &= 07070;
else
perm &= 07007;
}
}
return (perm);
}
/*
* Get owner, group and permissions in an stat structure
* returns permissions, or -1 if there is a problem
*/
int ntfs_get_owner_mode(struct SECURITY_CONTEXT *scx,
const char *path, ntfs_inode * ni,
struct stat *stbuf)
{
const SECURITY_DESCRIPTOR_RELATIVE *phead;
char *securattr;
const SID *usid; /* owner of file/directory */
const SID *gsid; /* group of file/directory */
const struct CACHED_PERMISSIONS *cached;
int perm;
if (!scx->usermapping)
perm = 07777;
else {
/* check whether available in cache */
cached = fetch_cache(scx,ni);
if (cached) {
perm = cached->mode;
stbuf->st_uid = cached->uid;
stbuf->st_gid = cached->gid;
stbuf->st_mode = (stbuf->st_mode & ~07777) + perm;
} else {
perm = -1; /* default to error */
securattr = getsecurityattr(scx->vol, path, ni);
if (securattr) {
perm = build_permissions(securattr, ni);
/*
* fetch owner and group for cacheing
*/
if (perm >= 0) {
/*
* Create a security id if there were none
* and upgrade option is selected
*/
if (!test_nino_flag(ni, v3_Extensions)
&& (scx->vol->flags
& (1 << SECURITY_ADDSECURIDS))) {
upgrade_secur_desc(scx->vol,
path, securattr, ni);
}
phead =
(const SECURITY_DESCRIPTOR_RELATIVE*)
securattr;
usid = (const SID*)&
securattr[le32_to_cpu(phead->owner)];
gsid = (const SID*)&
securattr[le32_to_cpu(phead->group)];
if (!perm && same_sid(usid, adminsid)) {
stbuf->st_uid =
find_tenant(scx,
securattr);
if (stbuf->st_uid)
perm = 0700;
} else
stbuf->st_uid = findowner(scx,usid);
stbuf->st_gid = findgroup(scx,gsid);
stbuf->st_mode =
(stbuf->st_mode & ~07777) + perm;
enter_cache(scx, ni, stbuf->st_uid,
stbuf->st_gid, perm);
}
free(securattr);
}
}
}
return (perm);
}
/*
* Allocate a security_id for a file being created
*
* Returns zero if not possible (NTFS v3.x required)
*/
le32 ntfs_alloc_securid(struct SECURITY_CONTEXT *scx,
uid_t uid, gid_t gid, mode_t mode, BOOL isdir)
{
const struct CACHED_SECURID *cached;
char *newattr;
int newattrsz;
const SID *usid;
const SID *gsid;
le32 securid;
securid = cpu_to_le32(0);
#if !FORCE_FORMAT_v1x
/* check whether target securid is known in cache */
cached = fetch_securid(scx, uid, gid, mode & 07777, isdir);
/* quite simple, if we are lucky */
if (cached)
securid = cached->securid;
/* not in cache : make sure we can create ids */
if (!cached && (scx->vol->major_ver >= 3)) {
usid = find_usid(scx,uid);
gsid = find_gsid(scx,gid);
if (!usid || !gsid) {
ntfs_log_error("File created by an unmapped user/group %d/%d\n",
(int)uid, (int)gid);
usid = gsid = adminsid;
}
newattr = build_secur_descr(mode, isdir, usid, gsid);
if (newattr) {
newattrsz = attr_size(newattr);
securid = setsecurityattr(scx->vol,
(const SECURITY_DESCRIPTOR_RELATIVE*)newattr,
newattrsz);
if (securid) {
/* update cache, for subsequent use */
enter_securid(scx, uid,
gid, mode, isdir,
securid);
}
free(newattr);
} else {
/*
* could not build new security attribute
* errno set by build_secur_descr()
*/
}
}
#endif
return (securid);
}
/*
* Update ownership and mode of a file, reusing an existing
* security descriptor when possible
*
* Returns zero if successful
*/
int ntfs_set_owner_mode(struct SECURITY_CONTEXT *scx, ntfs_inode *ni,
uid_t uid, gid_t gid, mode_t mode)
{
int res;
const struct CACHED_SECURID *cached;
char *newattr;
const SID *usid;
const SID *gsid;
BOOL isdir;
res = 0;
/* check whether target securid is known in cache */
isdir = (ni->mrec->flags & MFT_RECORD_IS_DIRECTORY) != 0;
if (test_nino_flag(ni, v3_Extensions)) {
cached = fetch_securid(scx, uid, gid, mode & 07777, isdir);
/* quite simple, if we are lucky */
if (cached) {
ni->security_id = cached->securid;
NInoSetDirty(ni);
}
} else cached = (struct CACHED_SECURID*)NULL;
if (!cached) {
/*
* Do not use usid and gsid from former attributes,
* but recompute them to get repeatable results
* which can be kept in cache.
*/
usid = find_usid(scx,uid);
gsid = find_gsid(scx,gid);
if (!usid || !gsid) {
ntfs_log_error("File made owned by an unmapped user/group %d/%d\n",
uid, gid);
usid = gsid = adminsid;
}
newattr = build_secur_descr(mode,
isdir, usid, gsid);
if (newattr) {
res = update_secur_descr(scx->vol, newattr, ni);
if (!res) {
/* update cache, for subsequent use */
if (test_nino_flag(ni, v3_Extensions))
enter_securid(scx, uid,
gid, mode, isdir,
ni->security_id);
#if CACHE_LEGACY_SIZE
/* also invalidate legacy cache */
if (isdir && !ni->security_id)
invalidate_legacy(scx, ni);
#endif
}
free(newattr);
} else {
/*
* could not build new security attribute
* errno set by build_secur_descr()
*/
res = -1;
}
}
return (res);
}
/*
* Set new permissions to a file
* Checks user mapping has been defined before request for setting
*
* rejected if request is not originated by owner or root
*
* returns 0 on success
* -1 on failure, with errno = EIO
*/
int ntfs_set_mode(struct SECURITY_CONTEXT *scx,
const char *path, ntfs_inode *ni, mode_t mode)
{
const SECURITY_DESCRIPTOR_RELATIVE *phead;
const struct CACHED_PERMISSIONS *cached;
char *oldattr;
const SID *usid;
const SID *gsid;
uid_t uid;
uid_t fileuid;
uid_t filegid;
int res;
/* get the current owner, either from cache or from old attribute */
res = 0;
usid = (const SID*)NULL;
cached = fetch_cache(scx, ni);
if (cached) {
fileuid = cached->uid;
filegid = cached->gid;
} else {
oldattr = getsecurityattr(scx->vol,path, ni);
if (oldattr) {
phead = (const SECURITY_DESCRIPTOR_RELATIVE*)oldattr;
usid = (const SID*)&oldattr[le32_to_cpu(phead->owner)];
gsid = (const SID*)&oldattr[le32_to_cpu(phead->group)];
fileuid = findowner(scx,usid);
filegid = findowner(scx,gsid);
free(oldattr);
} else
res = -1;
}
if (!res) {
uid = scx->uid;
if (!uid || (fileuid == uid)) {
/*
* clear setgid if file group does
* not match process group
*/
if (uid && (filegid != scx->gid))
mode &= ~S_ISGID;
ntfs_set_owner_mode(scx, ni,
fileuid, filegid, mode);
} else {
errno = EPERM;
res = -1; /* neither owner nor root */
}
} else {
/*
* Should not happen : a default descriptor is generated
* by getsecurityattr() when there are none
*/
ntfs_log_error("File has no security descriptor\n");
res = -1;
errno = EIO;
}
return (res ? -1 : 0);
}
/*
* Create a default security descriptor for files whose descriptor
* cannot be inherited
*/
int ntfs_sd_add_everyone(ntfs_inode *ni)
{
/* JPA SECURITY_DESCRIPTOR_ATTR *sd; */
SECURITY_DESCRIPTOR_RELATIVE *sd;
ACL *acl;
ACCESS_ALLOWED_ACE *ace;
SID *sid;
int ret, sd_len;
/* Create SECURITY_DESCRIPTOR attribute (everyone has full access). */
/*
* Calculate security descriptor length. We have 2 sub-authorities in
* owner and group SIDs, but structure SID contain only one, so add
* 4 bytes to every SID.
*/
sd_len = sizeof(SECURITY_DESCRIPTOR_ATTR) + 2 * (sizeof(SID) + 4) +
sizeof(ACL) + sizeof(ACCESS_ALLOWED_ACE);
sd = ntfs_calloc(sd_len);
if (!sd)
return -1;
sd->revision = SECURITY_DESCRIPTOR_REVISION;
sd->control = SE_DACL_PRESENT | SE_SELF_RELATIVE;
sid = (SID*)((u8*)sd + sizeof(SECURITY_DESCRIPTOR_ATTR));
sid->revision = SID_REVISION;
sid->sub_authority_count = 2;
sid->sub_authority[0] = cpu_to_le32(SECURITY_BUILTIN_DOMAIN_RID);
sid->sub_authority[1] = cpu_to_le32(DOMAIN_ALIAS_RID_ADMINS);
sid->identifier_authority.value[5] = 5;
sd->owner = cpu_to_le32((u8*)sid - (u8*)sd);
sid = (SID*)((u8*)sid + sizeof(SID) + 4);
sid->revision = SID_REVISION;
sid->sub_authority_count = 2;
sid->sub_authority[0] = cpu_to_le32(SECURITY_BUILTIN_DOMAIN_RID);
sid->sub_authority[1] = cpu_to_le32(DOMAIN_ALIAS_RID_ADMINS);
sid->identifier_authority.value[5] = 5;
sd->group = cpu_to_le32((u8*)sid - (u8*)sd);
acl = (ACL*)((u8*)sid + sizeof(SID) + 4);
acl->revision = ACL_REVISION;
acl->size = cpu_to_le16(sizeof(ACL) + sizeof(ACCESS_ALLOWED_ACE));
acl->ace_count = cpu_to_le16(1);
sd->dacl = cpu_to_le32((u8*)acl - (u8*)sd);
ace = (ACCESS_ALLOWED_ACE*)((u8*)acl + sizeof(ACL));
ace->type = ACCESS_ALLOWED_ACE_TYPE;
ace->flags = OBJECT_INHERIT_ACE | CONTAINER_INHERIT_ACE;
ace->size = cpu_to_le16(sizeof(ACCESS_ALLOWED_ACE));
ace->mask = cpu_to_le32(0x1f01ff); /* FIXME */
ace->sid.revision = SID_REVISION;
ace->sid.sub_authority_count = 1;
ace->sid.sub_authority[0] = cpu_to_le32(0);
ace->sid.identifier_authority.value[5] = 1;
ret = ntfs_attr_add(ni, AT_SECURITY_DESCRIPTOR, AT_UNNAMED, 0, (u8*)sd,
sd_len);
if (ret)
ntfs_log_perror("Failed to add initial SECURITY_DESCRIPTOR\n");
free(sd);
return ret;
}
/*
* Check whether user can access a file in a specific way
*
* Returns 1 if access is allowed, including user is root or no
* user mapping defined
* 2 if sticky and accesstype is S_IWRITE + S_IEXEC + S_ISVTX
* 0 and sets errno if there is a problem or if access
* is not allowed
*/
int ntfs_allowed_access(struct SECURITY_CONTEXT *scx,
const char *path, ntfs_inode *ni,
int accesstype) /* access type required (S_Ixxx values) */
{
mode_t perm;
int allow;
/*
* Always allow for root. From the user's point of view,
* testing X_OK for a file with no x flag should return
* not allowed, but this is checked somewhere else (fuse ?)
* and we need not care about it.
* Also always allow if no mapping has been defined
*/
if (!scx->usermapping || !scx->uid)
allow = 1;
else {
perm = ntfs_get_perm(scx, path, ni);
switch (accesstype) {
case S_IEXEC:
allow = (perm & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0;
break;
case S_IWRITE:
allow = (perm & (S_IWUSR | S_IWGRP | S_IWOTH)) != 0;
break;
case S_IWRITE + S_IEXEC:
allow = ((perm & (S_IWUSR | S_IWGRP | S_IWOTH)) != 0)
&& ((perm & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0);
break;
case S_IREAD:
allow = (perm & (S_IRUSR | S_IRGRP | S_IROTH)) != 0;
break;
case S_IREAD + S_IEXEC:
allow = ((perm & (S_IRUSR | S_IRGRP | S_IROTH)) != 0)
&& ((perm & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0);
break;
case S_IREAD + S_IWRITE:
allow = ((perm & (S_IRUSR | S_IRGRP | S_IROTH)) != 0)
&& ((perm & (S_IWUSR | S_IWGRP | S_IWOTH)) != 0);
break;
case S_IWRITE + S_IEXEC + S_ISVTX:
if (perm & S_ISVTX)
allow = 2;
else
allow = ((perm & (S_IWUSR | S_IWGRP | S_IWOTH)) != 0)
&& ((perm & (S_IXUSR | S_IXGRP | S_IXOTH)) != 0);
break;
default: /* BUG ! */
allow = 0;
break;
}
if (!allow)
errno = EACCES;
}
return (allow);
}
/*
* Check whether user can access the parent directory
* of a file in a specific way
*
* Returns true if access is allowed, including user is root and
* no user mapping defined
*
* Sets errno if there is a problem or if not allowed
*/
BOOL ntfs_allowed_dir_access(struct SECURITY_CONTEXT *scx,
const char *path, int accesstype)
{
int allow;
char *dirpath;
char *name;
ntfs_inode *ni;
ntfs_inode *dir_ni;
allow = 0;
dirpath = strdup(path);
if (dirpath) {
/* the root of file system is seen as a parent of itself */
/* is that correct ? */
name = strrchr(dirpath, '/');
*++name = 0;
dir_ni = ntfs_pathname_to_inode(scx->vol, NULL, dirpath);
if (dir_ni) {
allow = ntfs_allowed_access(scx,dirpath,
dir_ni, accesstype);
ntfs_inode_close(dir_ni);
/*
* for a sticky directory, have to retry
* and check whether file itself is writeable
*/
if ((accesstype == (S_IWRITE + S_IEXEC + S_ISVTX))
&& (allow == 2)) {
ni = ntfs_pathname_to_inode(scx->vol, NULL,
path);
if (ni) {
allow = ntfs_allowed_access(scx,path,
ni, S_IWRITE);
ntfs_inode_close(ni);
}
}
}
free(dirpath);
}
return (allow); /* errno is set if not allowed */
}
/*
* Define a new owner/group to a file
*
* returns zero if successful
*/
int ntfs_set_owner(struct SECURITY_CONTEXT *scx,
const char *path, ntfs_inode *ni, uid_t uid, gid_t gid)
{
const SECURITY_DESCRIPTOR_RELATIVE *phead;
const struct CACHED_PERMISSIONS *cached;
char *oldattr;
const SID *usid;
const SID *gsid;
uid_t fileuid;
uid_t filegid;
mode_t mode;
int perm;
int res;
res = 0;
/* get the current owner and mode from cache or security attributes */
oldattr = (char*)NULL;
cached = fetch_cache(scx,ni);
if (cached) {
fileuid = cached->uid;
filegid = cached->gid;
mode = cached->mode;
} else {
fileuid = 0;
filegid = 0;
mode = 0;
oldattr = getsecurityattr(scx->vol, path, ni);
if (oldattr) {
mode = perm = build_permissions(oldattr, ni);
if (perm >= 0) {
phead = (const SECURITY_DESCRIPTOR_RELATIVE*)
oldattr;
usid = (const SID*)
&oldattr[le32_to_cpu(phead->owner)];
gsid = (const SID*)
&oldattr[le32_to_cpu(phead->group)];
fileuid = findowner(scx,usid);
filegid = findowner(scx,gsid);
} else
res = -1;
free(oldattr);
} else
res = -1;
}
if (!res) {
/* check requested by root */
/* or chgrp requested by owner */
if (!scx->uid
|| (((int)uid < 0)
&& (gid == scx->gid)
&& (fileuid == scx->uid))) {
/* replace by the new usid and gsid */
/* or reuse old gid and sid for cacheing */
if ((int)uid < 0)
uid = fileuid;
if ((int)gid < 0)
gid = filegid;
/* clear setuid and setgid if owner has changed */
/* unless request originated by root */
if (uid && (fileuid != uid))
mode &= 01777;
ntfs_set_owner_mode(scx, ni, uid, gid, mode);
} else {
res = -1; /* neither owner nor root */
errno = EPERM;
}
} else {
/*
* Should not happen : a default descriptor is generated
* by getsecurityattr() when there are none
*/
ntfs_log_error("File has no security descriptor\n");
res = -1;
errno = EIO;
}
return (res ? -1 : 0);
}
/*
* Copy the inheritable parts of an ACL
*
* Returns the size of the new ACL
* or zero if nothing is inheritable
*/
static int inherit_acl(const ACL *oldacl, ACL *newacl, BOOL fordir)
{
unsigned int src;
unsigned int dst;
int oldcnt;
int newcnt;
unsigned int selection;
int nace;
int acesz;
const ACCESS_ALLOWED_ACE *poldace;
ACCESS_ALLOWED_ACE *pnewace;
/* ACL header */
newacl->revision = ACL_REVISION;
newacl->alignment1 = 0;
newacl->alignment2 = cpu_to_le16(0);
src = dst = sizeof(ACL);
selection = (fordir ? CONTAINER_INHERIT_ACE : OBJECT_INHERIT_ACE);
newcnt = 0;
oldcnt = le16_to_cpu(oldacl->ace_count);
for (nace = 0; nace < oldcnt; nace++) {
poldace = (const ACCESS_ALLOWED_ACE*)((const char*)oldacl + src);
acesz = le16_to_cpu(poldace->size);
if (poldace->flags & selection) {
pnewace = (ACCESS_ALLOWED_ACE*)
((char*)newacl + dst);
memcpy(pnewace,poldace,acesz);
/* remove inheritance flags if not a directory */
if (!fordir)
pnewace->flags &= ~(OBJECT_INHERIT_ACE
| CONTAINER_INHERIT_ACE);
dst += acesz;
newcnt++;
}
src += acesz;
}
/*
* Adjust header if something was inherited
*/
if (dst > sizeof(ACL)) {
newacl->ace_count = cpu_to_le16(newcnt);
newacl->size = cpu_to_le16(dst);
} else
dst = 0;
return (dst);
}
/*
* Build a security id for descriptor inherited from
* parent directory
*/
static le32 build_inherited_id(struct SECURITY_CONTEXT *scx,
const char *parentattr, BOOL fordir)
{
const SECURITY_DESCRIPTOR_RELATIVE *pphead;
const ACL *ppacl;
const SID *usid;
const SID *gsid;
int offpacl;
int offowner;
int offgroup;
SECURITY_DESCRIPTOR_RELATIVE *pnhead;
ACL *pnacl;
int parentattrsz;
char *newattr;
int newattrsz;
int aclsz;
int usidsz;
int gsidsz;
int pos;
le32 securid;
parentattrsz = attr_size(parentattr);
if (scx->usermapping) {
usid = find_usid(scx, scx->uid);
gsid = find_gsid(scx, scx->gid);
} else
usid = gsid = (const SID*)NULL;
/*
* new attribute is smaller than parent's
* except for differences in SIDs
*/
newattrsz = parentattrsz;
if (usid) newattrsz += sid_size(usid);
if (gsid) newattrsz += sid_size(gsid);
newattr = (char*)ntfs_malloc(parentattrsz);
if (newattr) {
pphead = (const SECURITY_DESCRIPTOR_RELATIVE*)parentattr;
pnhead = (SECURITY_DESCRIPTOR_RELATIVE*)newattr;
pnhead->revision = SECURITY_DESCRIPTOR_REVISION;
pnhead->alignment = 0;
pnhead->control = SE_SELF_RELATIVE;
pos = sizeof(SECURITY_DESCRIPTOR_RELATIVE);
/*
* locate and inherit DACL
* do not test SE_DACL_PRESENT (wrong for "DR Watson")
*/
pnhead->dacl = cpu_to_le32(0);
if (pphead->dacl) {
offpacl = le32_to_cpu(pphead->dacl);
ppacl = (const ACL*)&parentattr[offpacl];
pnacl = (ACL*)&newattr[pos];
aclsz = inherit_acl(ppacl, pnacl, fordir);
if (aclsz) {
pnhead->dacl = cpu_to_le32(pos);
pos += aclsz;
pnhead->control |= SE_DACL_PRESENT;
}
}
/*
* locate and inherit SACL
*/
pnhead->sacl = cpu_to_le32(0);
if (pphead->sacl) {
offpacl = le32_to_cpu(pphead->sacl);
ppacl = (const ACL*)&parentattr[offpacl];
pnacl = (ACL*)&newattr[pos];
aclsz = inherit_acl(ppacl, pnacl, fordir);
if (aclsz) {
pnhead->sacl = cpu_to_le32(pos);
pos += aclsz;
pnhead->control |= SE_SACL_PRESENT;
}
}
/*
* inherit or redefine owner
*/
if (!usid) {
offowner = le32_to_cpu(pphead->owner);
usid = (const SID*)&parentattr[offowner];
}
usidsz = sid_size(usid);
memcpy(&newattr[pos],usid,usidsz);
pnhead->owner = cpu_to_le32(pos);
pos += usidsz;
/*
* inherit or redefine group
*/
if (!gsid) {
offgroup = le32_to_cpu(pphead->group);
gsid = (const SID*)&parentattr[offgroup];
}
gsidsz = sid_size(gsid);
memcpy(&newattr[pos],gsid,gsidsz);
pnhead->group = cpu_to_le32(pos);
pos += usidsz;
securid = setsecurityattr(scx->vol,
(SECURITY_DESCRIPTOR_RELATIVE*)newattr, pos);
free(newattr);
} else
securid = cpu_to_le32(0);
return (securid);
}
/*
* Get an inherited security id
*
* For Windows compatibility, the normal initial permission setting
* may be inherited from the parent directory instead of being
* defined by the creation arguments.
*
* The following creates an inherited id for that purpose.
*
* Note : the owner and group of parent directory are also
* inherited (which is not the case on Windows) if no user mapping
* is defined.
*
* Returns the inherited id, or zero if not possible (eg on NTFS 1.x)
*/
le32 ntfs_inherited_id(struct SECURITY_CONTEXT *scx,
const char *dir_path, ntfs_inode *dir_ni, BOOL fordir)
{
struct CACHED_PERMISSIONS *cached;
char *parentattr;
le32 securid;
securid = cpu_to_le32(0);
cached = (struct CACHED_PERMISSIONS*)NULL;
/*
* Try to get inherited id from cache
*/
if (test_nino_flag(dir_ni, v3_Extensions)
&& dir_ni->security_id) {
cached = fetch_cache(scx, dir_ni);
if (cached)
securid = (fordir ? cached->inh_dirid
: cached->inh_fileid);
}
/*
* Not cached or not available in cache, compute it all
* Note : if parent directory has no id, it is not cacheable
*/
if (!securid) {
parentattr = getsecurityattr(scx->vol, dir_path, dir_ni);
if (parentattr) {
securid = build_inherited_id(scx,
parentattr, fordir);
free(parentattr);
/*
* Store the result into cache for further use
*/
if (securid) {
cached = fetch_cache(scx, dir_ni);
if (cached) {
if (fordir)
cached->inh_dirid = securid;
else
cached->inh_fileid = securid;
}
}
}
}
return (securid);
}
/*
* Get a single mapping item from buffer
*
* Always reads a full line, truncating long lines
* Refills buffer when exhausted
* Returns pointer to item, or NULL when there is no more
*/
static struct MAPLIST *getmappingitem(
ntfs_inode *ni, off_t *poffs, char *buf,
int *psrc, s64 *psize)
{
int src;
int dst;
char *p;
char *q;
int gotend;
struct MAPLIST *item;
src = *psrc;
dst = 0;
/* allocate and get a full line */
item = (struct MAPLIST*)ntfs_malloc(sizeof(struct MAPLIST));
if (item) {
do {
gotend = 0;
while ((src < *psize)
&& (buf[src] != '\n')) {
if (dst < LINESZ)
item->maptext[dst] = buf[src];
dst++;
src++;
}
if (buf[src] != '\n') {
*poffs += *psize;
*psize = ntfs_local_read(ni,
AT_UNNAMED, 0,
buf, (size_t)BUFSZ, *poffs);
src = 0;
} else {
gotend = 1;
src++;
item->maptext[dst] = '\0';
dst = 0;
}
} while (*psize && ((item->maptext[0] == '#') || !gotend));
if (gotend) {
/* decompose into uid, gid and sid */
p = item->maptext;
item->uidstr = item->maptext;
item->gidstr = strchr(item->uidstr, ':');
if (item->gidstr) {
*item->gidstr++ = '\0';
item->sidstr = strchr(item->gidstr, ':');
if (item->sidstr) {
*item->sidstr++ = 0;
q = strchr(item->sidstr, ':');
if (q) *q = 0;
} else
p = (char*)NULL;
} else
p = (char*)NULL; /* bad line, stop */
if (!p) {
free(item);
item = (struct MAPLIST*)NULL;
}
} else {
free(item); /* free unused item */
item = (struct MAPLIST*)NULL;
}
}
*psrc = src;
return (item);
}
/*
* Read user mapping file and split into their attribute.
* Parameters are kept as text in a chained list until logins
* are converted to uid.
* Returns the head of list, if any
*
* Basic IO routines are called since we are still mounting
* and we have not entered the fuse loop yet.
*/
static struct MAPLIST *readmapping(struct SECURITY_CONTEXT *scx)
{
char buf[BUFSZ];
struct MAPLIST *item;
struct MAPLIST *firstitem;
struct MAPLIST *lastitem;
ntfs_inode *ni;
int src;
off_t offs;
s64 size;
firstitem = (struct MAPLIST*)NULL;
lastitem = (struct MAPLIST*)NULL;
offs = 0;
ni = ntfs_pathname_to_inode(scx->vol, NULL, mapping_name);
if (ni) {
size = ntfs_local_read(ni, AT_UNNAMED, 0,
buf, (size_t)BUFSZ, offs);
if (size > 0) {
src = 0;
do {
item = getmappingitem(ni,&offs,
buf,&src,&size);
if (item) {
item->next = (struct MAPLIST*)NULL;
if (lastitem)
lastitem->next = item;
else
firstitem = item;
lastitem = item;
}
} while (item);
}
ntfs_inode_close(ni);
}
return (firstitem);
}
/*
* Free memory used to store the user mapping
* The only purpose is to facilitate the detection of memory leaks
*/
static void free_mapping(struct SECURITY_CONTEXT *scx)
{
struct MAPPING *user;
struct MAPPING *group;
/* free user mappings */
while (scx->usermapping) {
user = scx->usermapping;
/* do not free SIDs used for group mappings */
group = scx->groupmapping;
while (group && (group->sid != user->sid))
group = group->next;
if (!group)
free(user->sid);
/* unchain item and free */
scx->usermapping = user->next;
free(user);
}
/* free group mappings */
while (scx->groupmapping) {
group = scx->groupmapping;
free(group->sid);
/* unchain item and free */
scx->groupmapping = group->next;
free(group);
}
}
/*
* Build the user mapping list
* user identification may be given in symbolic or numeric format
*
* ! Note ! : does getpwnam() read /etc/passwd or some other file ?
* if so there is a possible recursion into fuse if this
* file is on NTFS, and fuse is not recursion safe.
*/
static struct MAPPING *ntfs_do_user_mapping(struct MAPLIST *firstitem)
{
struct MAPLIST *item;
struct MAPPING *firstmapping;
struct MAPPING *lastmapping;
struct MAPPING *mapping;
struct passwd *pwd;
SID *sid;
int uid;
firstmapping = (struct MAPPING*)NULL;
lastmapping = (struct MAPPING*)NULL;
for (item = firstitem; item; item = item->next) {
if ((item->uidstr[0] >= '0') && (item->uidstr[0] <= '9'))
uid = atoi(item->uidstr);
else {
uid = 0;
if (item->uidstr[0]) {
pwd = getpwnam(item->uidstr);
if (pwd) uid = pwd->pw_uid;
}
}
if (uid) {
sid = encodesid(item->sidstr);
if (sid) {
mapping =
(struct MAPPING*)
ntfs_malloc(sizeof(struct MAPPING));
if (mapping) {
mapping->sid = sid;
mapping->xid = uid;
mapping->next = (struct MAPPING*)NULL;
if (lastmapping)
lastmapping->next = mapping;
else
firstmapping = mapping;
lastmapping = mapping;
}
}
}
}
return (firstmapping);
}
/*
* Build the group mapping list
* group identification may be given in symbolic or numeric format
*
* gid not associated to a uid are processed first in order
* to favour real groups
*
* ! Note ! : does getgrnam() read /etc/group or some other file ?
* if so there is a possible recursion into fuse if this
* file is on NTFS, and fuse is not recursion safe.
*/
static struct MAPPING *ntfs_do_group_mapping(struct MAPLIST *firstitem)
{
struct MAPLIST *item;
struct MAPPING *firstmapping;
struct MAPPING *lastmapping;
struct MAPPING *mapping;
struct group *grp;
BOOL uidpresent;
BOOL ok;
int step;
SID *sid;
int gid;
firstmapping = (struct MAPPING*)NULL;
lastmapping = (struct MAPPING*)NULL;
for (step=1; step<=2; step++) {
for (item = firstitem; item; item = item->next) {
uidpresent = (item->uidstr[0] != '\0');
ok = (step == 1 ? !uidpresent : uidpresent);
if ((item->gidstr[0] >= '0')
&& (item->gidstr[0] <= '9'))
gid = atoi(item->gidstr);
else {
gid = 0;
if (item->gidstr[0]) {
grp = getgrnam(item->gidstr);
if (grp) gid = grp->gr_gid;
}
}
if (gid && ok) {
sid = encodesid(item->sidstr);
if (sid) {
mapping = (struct MAPPING*)
ntfs_malloc(sizeof(struct MAPPING));
if (mapping) {
mapping->sid = sid;
mapping->xid = gid;
mapping->next = (struct MAPPING*)NULL;
if (lastmapping)
lastmapping->next = mapping;
else
firstmapping = mapping;
lastmapping = mapping;
}
}
}
}
}
return (firstmapping);
}
/*
* Apply default single user mapping
* returns zero if successful
*/
static int ntfs_do_default_mapping(struct SECURITY_CONTEXT *scx,
const SID *usid)
{
struct MAPPING *usermapping;
struct MAPPING *groupmapping;
SID *sid;
int sidsz;
int res;
res = -1;
sidsz = sid_size(usid);
sid = (SID*)ntfs_malloc(sidsz);
if (sid) {
memcpy(sid,usid,sidsz);
usermapping = (struct MAPPING*)ntfs_malloc(sizeof(struct MAPPING));
if (usermapping) {
groupmapping = (struct MAPPING*)ntfs_malloc(sizeof(struct MAPPING));
if (groupmapping) {
usermapping->sid = sid;
usermapping->xid = scx->uid;
usermapping->next = (struct MAPPING*)NULL;
groupmapping->sid = sid;
groupmapping->xid = scx->uid;
groupmapping->next = (struct MAPPING*)NULL;
scx->usermapping = usermapping;
scx->groupmapping = groupmapping;
res = 0;
}
}
}
return (res);
}
/*
* Make sure there are no ambiguous mapping
* Ambiguous mapping may lead to undesired configurations and
* we had rather be safe until the consequences are understood
*/
#if 0 /* not activated for now */
static BOOL check_mapping(const struct MAPPING *usermapping,
const struct MAPPING *groupmapping)
{
const struct MAPPING *mapping1;
const struct MAPPING *mapping2;
BOOL ambiguous;
ambiguous = FALSE;
for (mapping1=usermapping; mapping1; mapping1=mapping1->next)
for (mapping2=mapping1->next; mapping2; mapping1=mapping2->next)
if (same_sid(mapping1->sid,mapping2->sid)) {
if (mapping1->xid != mapping2->xid)
ambiguous = TRUE;
} else {
if (mapping1->xid == mapping2->xid)
ambiguous = TRUE;
}
for (mapping1=groupmapping; mapping1; mapping1=mapping1->next)
for (mapping2=mapping1->next; mapping2; mapping1=mapping2->next)
if (same_sid(mapping1->sid,mapping2->sid)) {
if (mapping1->xid != mapping2->xid)
ambiguous = TRUE;
} else {
if (mapping1->xid == mapping2->xid)
ambiguous = TRUE;
}
return (ambiguous);
}
#endif
/*
* Try and apply default single user mapping
* returns zero if successful
*/
static int ntfs_default_mapping(struct SECURITY_CONTEXT *scx)
{
const SECURITY_DESCRIPTOR_RELATIVE *phead;
ntfs_inode *ni;
char *securattr;
const SID *usid;
int res;
res = -1;
ni = ntfs_pathname_to_inode(scx->vol, NULL, "/.");
if (ni) {
securattr = getsecurityattr(scx->vol,"/.",ni);
if (securattr) {
phead = (const SECURITY_DESCRIPTOR_RELATIVE*)securattr;
usid = (SID*)&securattr[le32_to_cpu(phead->owner)];
if (is_user_sid(usid))
res = ntfs_do_default_mapping(scx,usid);
free(securattr);
}
ntfs_inode_close(ni);
}
return (res);
}
/*
* Build the user mapping
* - according to $Mapping file if present,
* - or try default single user mapping if possible
*
* The mapping is specific to a mounted device
* No locking done, mounting assumed non multithreaded
*
* returns zero if mapping is successful
* (failure should not be interpreted as an error)
*/
int ntfs_build_mapping(struct SECURITY_CONTEXT *scx)
{
struct MAPLIST *item;
struct MAPLIST *firstitem;
struct MAPPING *usermapping;
struct MAPPING *groupmapping;
/* be sure not to map anything until done */
scx->usermapping = (struct MAPPING*)NULL;
scx->groupmapping = (struct MAPPING*)NULL;
firstitem = readmapping(scx);
if (firstitem) {
usermapping = ntfs_do_user_mapping(firstitem);
groupmapping = ntfs_do_group_mapping(firstitem);
if (usermapping && groupmapping) {
scx->usermapping = usermapping;
scx->groupmapping = groupmapping;
} else
ntfs_log_error("There were no valid user or no valid group\n");
/* now we can free the memory copy of input text */
/* and rely on internal representation */
while (firstitem) {
item = firstitem->next;
free(firstitem);
firstitem = item;
}
} else {
/* no mapping file, try default mapping */
if (scx->uid && scx->gid) {
if (!ntfs_default_mapping(scx))
ntfs_log_info("Using default user mapping\n");
}
}
return (!scx->usermapping);
}
/*
* Open $Secure once for all
* returns zero if it succeeds
* non-zero if it fails. This is not an error (on NTFS v1.x)
*/
int ntfs_open_secure(ntfs_volume *vol)
{
ntfs_inode *ni;
int res;
res = -1;
vol->secure_ni = (ntfs_inode*)NULL;
ni = ntfs_pathname_to_inode(vol, NULL, "$Secure");
if (ni) {
vol->secure_reentry = 0;
vol->secure_xsii = ntfs_index_ctx_get(ni, sii_stream, 4);
vol->secure_xsdh = ntfs_index_ctx_get(ni, sdh_stream, 4);
if (ni && vol->secure_xsii && vol->secure_xsdh) {
vol->secure_ni = ni;
res = 0;
}
}
return (res);
}
/*
* Final cleaning
* Allocated memory is freed to facilitate the detection of memory leaks
*/
void ntfs_close_secure(struct SECURITY_CONTEXT *scx)
{
ntfs_volume *vol;
vol = scx->vol;
if (vol->secure_ni) {
ntfs_index_ctx_put(vol->secure_xsii);
ntfs_index_ctx_put(vol->secure_xsdh);
ntfs_inode_close(vol->secure_ni);
}
free_mapping(scx);
free_caches(scx);
}
/*
* API for direct access to security descriptors
* based on Win32 API
*/
/*
* Selective feeding of a security descriptor into user buffer
*
* Returns TRUE if successful
*/
static BOOL feedsecurityattr(const char *attr, u32 selection,
char *buf, u32 buflen, u32 *psize)
{
const SECURITY_DESCRIPTOR_RELATIVE *phead;
SECURITY_DESCRIPTOR_RELATIVE *pnhead;
const ACL *pdacl;
const ACL *psacl;
const SID *pusid;
const SID *pgsid;
unsigned int offdacl;
unsigned int offsacl;
unsigned int offowner;
unsigned int offgroup;
unsigned int daclsz;
unsigned int saclsz;
unsigned int usidsz;
unsigned int gsidsz;
unsigned int size; /* size of requested attributes */
BOOL ok;
unsigned int pos;
unsigned int avail;
/*
* First check DACL, which is the last field in all descriptors
* we build, and in most descriptors built by Windows
*/
avail = 0;
phead = (const SECURITY_DESCRIPTOR_RELATIVE*)attr;
size = sizeof(SECURITY_DESCRIPTOR_RELATIVE);
/* locate DACL if requested and available */
if (phead->dacl && (selection & DACL_SECURITY_INFORMATION)) {
offdacl = le32_to_cpu(phead->dacl);
pdacl = (const ACL*)&attr[offdacl];
daclsz = le16_to_cpu(pdacl->size);
size += daclsz;
avail |= DACL_SECURITY_INFORMATION;
} else
offdacl = daclsz = 0;
/* locate owner if requested and available */
offowner = le32_to_cpu(phead->owner);
if (offowner && (selection & OWNER_SECURITY_INFORMATION)) {
/* find end of USID */
pusid = (const SID*)&attr[offowner];
usidsz = sid_size(pusid);
size += usidsz;
avail |= OWNER_SECURITY_INFORMATION;
} else
offowner = usidsz = 0;
/* locate group if requested and available */
offgroup = le32_to_cpu(phead->group);
if (offgroup && (selection & GROUP_SECURITY_INFORMATION)) {
/* find end of GSID */
pgsid = (const SID*)&attr[offgroup];
gsidsz = sid_size(pgsid);
size += gsidsz;
avail |= GROUP_SECURITY_INFORMATION;
} else
offgroup = gsidsz = 0;
/* locate SACL if requested and available */
if (phead->dacl && (selection & SACL_SECURITY_INFORMATION)) {
/* find end of SACL */
offsacl = le32_to_cpu(phead->sacl);
psacl = (const ACL*)&attr[offsacl];
saclsz = le16_to_cpu(psacl->size);
size += saclsz;
avail |= SACL_SECURITY_INFORMATION;
} else
offsacl = saclsz = 0;
/*
* Check whether not requesting unavailable information
* and having enough size in destination buffer
* (required size is returned nevertheless so that
* the request can be reissued with adequate size)
*/
if ((selection & ~avail)
|| (size > buflen)) {
*psize = size;
errno = EINVAL;
ok = FALSE;
} else {
/* copy header and feed new flags */
memcpy(buf,attr,sizeof(SECURITY_DESCRIPTOR_RELATIVE));
pnhead = (SECURITY_DESCRIPTOR_RELATIVE*)buf;
pnhead->control = cpu_to_le16(avail);
pos = sizeof(SECURITY_DESCRIPTOR_RELATIVE);
/* copy DACL if requested */
if (selection & DACL_SECURITY_INFORMATION) {
pnhead->dacl = cpu_to_le32(pos);
memcpy(&buf[pos],&attr[offdacl],daclsz);
pos += daclsz;
} else
pnhead->dacl = cpu_to_le32(0);
/* copy SACL if requested */
if (selection & SACL_SECURITY_INFORMATION) {
pnhead->sacl = cpu_to_le32(pos);
memcpy(&buf[pos],&attr[offsacl],saclsz);
pos += saclsz;
} else
pnhead->sacl = cpu_to_le32(0);
/* copy owner if requested */
if (selection & OWNER_SECURITY_INFORMATION) {
pnhead->owner = cpu_to_le32(pos);
memcpy(&buf[pos],&attr[offowner],usidsz);
pos += usidsz;
} else
pnhead->owner = cpu_to_le32(0);
/* copy group if requested */
if (selection & GROUP_SECURITY_INFORMATION) {
pnhead->group = cpu_to_le32(pos);
memcpy(&buf[pos],&attr[offgroup],gsidsz);
pos += gsidsz;
} else
pnhead->group = cpu_to_le32(0);
if (pos != size)
ntfs_log_error("Error in security descriptor size\n");
*psize = size;
ok = TRUE;
}
return (ok);
}
/*
* Merge a new security descriptor into the old one
* and assign to designated file
*
* Returns TRUE if successful
*/
static BOOL mergesecurityattr(ntfs_volume *vol, const char *oldattr,
const char *newattr, u32 selection, ntfs_inode *ni)
{
const SECURITY_DESCRIPTOR_RELATIVE *oldhead;
const SECURITY_DESCRIPTOR_RELATIVE *newhead;
SECURITY_DESCRIPTOR_RELATIVE *targhead;
const ACL *pdacl;
const ACL *psacl;
const SID *powner;
const SID *pgroup;
int offdacl;
int offsacl;
int offowner;
int offgroup;
unsigned int present;
unsigned int size;
char *target;
int pos;
int oldattrsz;
int newattrsz;
BOOL ok;
ok = FALSE; /* default return */
oldhead = (const SECURITY_DESCRIPTOR_RELATIVE*)oldattr;
newhead = (const SECURITY_DESCRIPTOR_RELATIVE*)newattr;
oldattrsz = attr_size(oldattr);
newattrsz = attr_size(newattr);
target = (char*)ntfs_malloc(oldattrsz + newattrsz);
if (target) {
targhead = (SECURITY_DESCRIPTOR_RELATIVE*)target;
pos = sizeof(SECURITY_DESCRIPTOR_RELATIVE);
present = 0;
if (oldhead->sacl)
present |= SACL_SECURITY_INFORMATION;
if (oldhead->dacl)
present |= DACL_SECURITY_INFORMATION;
if (oldhead->owner)
present |= OWNER_SECURITY_INFORMATION;
if (oldhead->group)
present |= GROUP_SECURITY_INFORMATION;
/*
* copy new DACL if selected
* or keep old DACL if any
*/
if ((selection | present) & DACL_SECURITY_INFORMATION) {
if (selection & DACL_SECURITY_INFORMATION) {
offdacl = le32_to_cpu(newhead->dacl);
pdacl = (const ACL*)&newattr[offdacl];
} else {
offdacl = le32_to_cpu(oldhead->dacl);
pdacl = (const ACL*)&oldattr[offdacl];
}
size = le16_to_cpu(pdacl->size);
memcpy(&target[pos], pdacl, size);
targhead->dacl = cpu_to_le32(pos);
pos += size;
} else
targhead->dacl = cpu_to_le32(0);
/*
* copy new SACL if selected
* or keep old SACL if any
*/
if ((selection | present) & SACL_SECURITY_INFORMATION) {
if (selection & SACL_SECURITY_INFORMATION) {
offsacl = le32_to_cpu(newhead->sacl);
psacl = (const ACL*)&newattr[offsacl];
} else {
offsacl = le32_to_cpu(oldhead->sacl);
psacl = (const ACL*)&oldattr[offsacl];
}
size = le16_to_cpu(psacl->size);
memcpy(&target[pos], psacl, size);
targhead->sacl = cpu_to_le32(pos);
pos += size;
} else
targhead->sacl = cpu_to_le32(0);
/*
* copy new OWNER if selected
* or keep old OWNER if any
*/
if ((selection | present) & OWNER_SECURITY_INFORMATION) {
if (selection & OWNER_SECURITY_INFORMATION) {
offowner = le32_to_cpu(newhead->owner);
powner = (const SID*)&newattr[offowner];
} else {
offowner = le32_to_cpu(oldhead->owner);
powner = (const SID*)&oldattr[offowner];
}
size = sid_size(powner);
memcpy(&target[pos], powner, size);
targhead->owner = cpu_to_le32(pos);
pos += size;
} else
targhead->owner = cpu_to_le32(0);
/*
* copy new GROUP if selected
* or keep old GROUP if any
*/
if ((selection | present) & GROUP_SECURITY_INFORMATION) {
if (selection & GROUP_SECURITY_INFORMATION) {
offgroup = le32_to_cpu(newhead->group);
pgroup = (const SID*)&newattr[offgroup];
} else {
offgroup = le32_to_cpu(oldhead->group);
pgroup = (const SID*)&oldattr[offgroup];
}
size = sid_size(pgroup);
memcpy(&target[pos], pgroup, size);
targhead->group = cpu_to_le32(pos);
pos += size;
} else
targhead->group = cpu_to_le32(0);
targhead->revision = SECURITY_DESCRIPTOR_REVISION;
targhead->alignment = 0;
targhead->control = cpu_to_le16(SE_SELF_RELATIVE
| ((present | selection)
& (SACL_SECURITY_INFORMATION
| DACL_SECURITY_INFORMATION)));
ok = !update_secur_descr(vol, target, ni);
free(target);
}
return (ok);
}
/*
* Return the security descriptor of a file
* This is intended to be similar to GetFileSecurity() from Win32
* in order to facilitate the development of portable tools
*
* returns zero if unsuccessful (following Win32 conventions)
* -1 if no securid
* the securid if any
*
* The Win32 API is :
*
* BOOL WINAPI GetFileSecurity(
* __in LPCTSTR lpFileName,
* __in SECURITY_INFORMATION RequestedInformation,
* __out_opt PSECURITY_DESCRIPTOR pSecurityDescriptor,
* __in DWORD nLength,
* __out LPDWORD lpnLengthNeeded
* );
*
*/
uid_t getuid(void);
gid_t getgid(void);
int ntfs_get_file_security(struct SECURITY_API *scapi,
const char *path, u32 selection,
char *buf, u32 buflen, u32 *psize)
{
ntfs_inode *ni;
char *attr;
int res;
res = 0; /* default return */
if (scapi && (scapi->magic == MAGIC_API)) {
ni = ntfs_pathname_to_inode(scapi->security.vol, NULL, path);
if (ni) {
attr = getsecurityattr(scapi->security.vol, path, ni);
if (attr) {
if (feedsecurityattr(attr,selection,
buf,buflen,psize)) {
if (test_nino_flag(ni, v3_Extensions))
res = le32_to_cpu(
ni->security_id);
else
res = -1;
}
free(attr);
}
ntfs_inode_close(ni);
} else
errno = ENOENT;
if (!res) *psize = 0;
} else
errno = EINVAL; /* do not clear *psize */
return (res);
}
/*
* Set the security descriptor of a file or directory
* This is intended to be similar to SetFileSecurity() from Win32
* in order to facilitate the development of portable tools
*
* returns zero if unsuccessful (following Win32 conventions)
* -1 if no securid
* the securid if any
*
* The Win32 API is :
*
* BOOL WINAPI SetFileSecurity(
* __in LPCTSTR lpFileName,
* __in SECURITY_INFORMATION SecurityInformation,
* __in PSECURITY_DESCRIPTOR pSecurityDescriptor
* );
*/
int ntfs_set_file_security(struct SECURITY_API *scapi,
const char *path, u32 selection, const char *attr)
{
const SECURITY_DESCRIPTOR_RELATIVE *phead;
ntfs_inode *ni;
int attrsz;
unsigned int provided;
char *oldattr;
int res;
res = 0; /* default return */
if (scapi && (scapi->magic == MAGIC_API) && attr) {
phead = (const SECURITY_DESCRIPTOR_RELATIVE*)attr;
attrsz = attr_size(attr);
provided = 0;
if (phead->sacl)
provided |= SACL_SECURITY_INFORMATION;
if (phead->dacl)
provided |= DACL_SECURITY_INFORMATION;
if (phead->owner)
provided |= OWNER_SECURITY_INFORMATION;
if (phead->group)
provided |= GROUP_SECURITY_INFORMATION;
if (valid_securattr(attr, attrsz)
/* selected items must be provided */
&& (!(selection & ~provided))) {
ni = ntfs_pathname_to_inode(scapi->security.vol,
NULL, path);
if (ni) {
oldattr = getsecurityattr(scapi->security.vol,
path, ni);
if (oldattr) {
if (mergesecurityattr(
scapi->security.vol,
oldattr, attr,
selection, ni)) {
if (test_nino_flag(ni,
v3_Extensions))
res = le32_to_cpu(
ni->security_id);
else
res = -1;
}
free(oldattr);
}
ntfs_inode_close(ni);
}
}
}
return (res);
}
BOOL ntfs_read_directory(struct SECURITY_API *scapi,
const char *path, ntfs_filldir_t callback, void *context)
{
ntfs_inode *ni;
BOOL ok;
s64 pos;
ok = FALSE; /* default return */
if (scapi && (scapi->magic == MAGIC_API) && callback) {
ni = ntfs_pathname_to_inode(scapi->security.vol, NULL, path);
if (ni) {
if (ni->mrec->flags & MFT_RECORD_IS_DIRECTORY) {
pos = 0;
ntfs_readdir(ni,&pos,context,callback);
ntfs_inode_close(ni);
ok = TRUE; /* clarification needed */
} else
errno = ENOTDIR;
} else
errno = ENOENT;
} else
errno = EINVAL; /* do not clear *psize */
return (ok);
}
/*
* read $SDS (for auditing security data)
*/
int ntfs_read_sds(struct SECURITY_API *scapi,
char *buf, u32 size, u32 offset)
{
int got;
got = 0; /* default return */
if (scapi && (scapi->magic == MAGIC_API)) {
got = ntfs_local_read(scapi->security.vol->secure_ni,
STREAM_SDS, 4, buf, size, offset);
} else
errno = EINVAL;
return (got);
}
/*
* read $SII (for auditing security data)
*/
INDEX_ENTRY *ntfs_read_sii(struct SECURITY_API *scapi,
INDEX_ENTRY *entry)
{
SII_INDEX_KEY key;
ntfs_index_context *xsii;
if (scapi && (scapi->magic == MAGIC_API)) {
xsii = scapi->security.vol->secure_xsii;
if (!entry) {
key.security_id = cpu_to_le32(0);
ntfs_index_lookup((char*)&key,
sizeof(SII_INDEX_KEY), xsii);
entry = xsii->entry;
} else
entry = ntfs_index_next(entry,xsii);
if (!entry)
errno = ENODATA;
} else {
entry = (INDEX_ENTRY*)NULL;
errno = EINVAL;
}
return (entry);
}
/*
* read $SDH (for auditing security data)
*/
INDEX_ENTRY *ntfs_read_sdh(struct SECURITY_API *scapi,
INDEX_ENTRY *entry)
{
SDH_INDEX_KEY key;
ntfs_index_context *xsdh;
if (scapi && (scapi->magic == MAGIC_API)) {
xsdh = scapi->security.vol->secure_xsdh;
if (!entry) {
key.hash = cpu_to_le32(0);
key.security_id = cpu_to_le32(0);
ntfs_index_lookup((char*)&key,
sizeof(SDH_INDEX_KEY), xsdh);
entry = xsdh->entry;
} else
entry = ntfs_index_next(entry,xsdh);
if (!entry)
errno = ENODATA;
} else {
entry = (INDEX_ENTRY*)NULL;
errno = EINVAL;
}
return (entry);
}
/*
* Initializations before calling ntfs_get_file_security()
* ntfs_set_file_security() and ntfs_read_directory()
*
* Only allowed for root
*
* Returns an (obscured) struct SECURITY_API* needed for further calls
* NULL if not root (EPERM) or device is mounted (EBUSY)
*/
struct SECURITY_API *ntfs_initialize_file_security(const char *device,
int flags)
{
ntfs_volume *vol;
unsigned long mntflag;
int mnt;
struct SECURITY_API *scapi;
struct SECURITY_CONTEXT *scx;
scapi = (struct SECURITY_API*)NULL;
mnt = ntfs_check_if_mounted(device, &mntflag);
if (!mnt && !(mntflag & NTFS_MF_MOUNTED) && !getuid()) {
vol = ntfs_mount(device, flags);
if (vol) {
scapi = (struct SECURITY_API*)
ntfs_malloc(sizeof(struct SECURITY_API));
if (scapi) {
scapi->magic = MAGIC_API;
scx = &scapi->security;
scx->vol = vol;
scx->uid = getuid();
scx->gid = getgid();
scx->pseccache = &scapi->seccache;
scx->vol->secure_flags = 0;
if (ntfs_build_mapping(scx)
|| ntfs_open_secure(vol)) {
free(scapi);
scapi = (struct SECURITY_API*)NULL;
}
} else
errno = ENOMEM;
}
} else
if (getuid())
errno = EPERM;
else
errno = EBUSY;
return (scapi);
}
/*
* Leaving after ntfs_initialize_file_security()
*
* Returns FALSE if FAILED
*/
BOOL ntfs_leave_file_security(struct SECURITY_API *scapi)
{
int ok;
ntfs_volume *vol;
ok = FALSE;
if (scapi && (scapi->magic == MAGIC_API) && scapi->security.vol) {
vol = scapi->security.vol;
ntfs_close_secure(&scapi->security);
free(scapi);
if (!ntfs_umount(vol, 0))
ok = TRUE;
}
return (ok);
}