ntfs-3g/ntfsprogs/ntfsfix.c
Erik Larsson 9893ea9ee6 Merge endianness fixes.
Conflicts:
	libntfs-3g/attrib.c
2016-01-28 09:22:42 +01:00

1662 lines
44 KiB
C

/**
* ntfsfix - Part of the Linux-NTFS project.
*
* Copyright (c) 2000-2006 Anton Altaparmakov
* Copyright (c) 2002-2006 Szabolcs Szakacsits
* Copyright (c) 2007 Yura Pakhuchiy
* Copyright (c) 2011-2015 Jean-Pierre Andre
*
* This utility fixes some common NTFS problems, resets the NTFS journal file
* and schedules an NTFS consistency check for the first boot into Windows.
*
* Anton Altaparmakov <aia21@cantab.net>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program (in the main directory of the Linux-NTFS source
* in the file COPYING); if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
/*
* WARNING: This program might not work on architectures which do not allow
* unaligned access. For those, the program would need to start using
* get/put_unaligned macros (#include <asm/unaligned.h>), but not doing it yet,
* since NTFS really mostly applies to ia32 only, which does allow unaligned
* accesses. We might not actually have a problem though, since the structs are
* defined as being packed so that might be enough for gcc to insert the
* correct code.
*
* If anyone using a non-little endian and/or an aligned access only CPU tries
* this program please let me know whether it works or not!
*
* Anton Altaparmakov <aia21@cantab.net>
*/
#include "config.h"
#ifdef HAVE_UNISTD_H
#include <unistd.h>
#endif
#ifdef HAVE_STDLIB_H
#include <stdlib.h>
#endif
#ifdef HAVE_STDIO_H
#include <stdio.h>
#endif
#ifdef HAVE_FCNTL_H
#include <fcntl.h>
#endif
#ifdef HAVE_ERRNO_H
#include <errno.h>
#endif
#ifdef HAVE_STRING_H
#include <string.h>
#endif
#ifdef HAVE_GETOPT_H
#include <getopt.h>
#endif
#include "types.h"
#include "attrib.h"
#include "volume.h"
#include "bootsect.h"
#include "mft.h"
#include "device.h"
#include "logfile.h"
#include "runlist.h"
#include "mst.h"
#include "utils.h"
/* #include "version.h" */
#include "logging.h"
#include "misc.h"
#ifdef NO_NTFS_DEVICE_DEFAULT_IO_OPS
# error "No default device io operations! Cannot build ntfsfix. \
You need to run ./configure without the --disable-default-device-io-ops \
switch if you want to be able to build the NTFS utilities."
#endif
static const char *EXEC_NAME = "ntfsfix";
static const char OK[] = "OK\n";
static const char FAILED[] = "FAILED\n";
static const char FOUND[] = "FOUND\n";
#define DEFAULT_SECTOR_SIZE 512
static struct {
char *volume;
BOOL no_action;
BOOL clear_bad_sectors;
BOOL clear_dirty;
} opt;
/*
* Definitions for fixing the self-located MFT bug
*/
#define SELFLOC_LIMIT 16
struct MFT_SELF_LOCATED {
ntfs_volume *vol;
MFT_RECORD *mft0;
MFT_RECORD *mft1;
MFT_RECORD *mft2;
ATTR_LIST_ENTRY *attrlist;
ATTR_LIST_ENTRY *attrlist_to_ref1;
MFT_REF mft_ref0;
MFT_REF mft_ref1;
LCN attrlist_lcn;
BOOL attrlist_resident;
} ;
/**
* usage
*/
__attribute__((noreturn))
static void usage(int ret)
{
ntfs_log_info("%s v%s (libntfs-3g)\n"
"\n"
"Usage: %s [options] device\n"
" Attempt to fix an NTFS partition.\n"
"\n"
" -b, --clear-bad-sectors Clear the bad sector list\n"
" -d, --clear-dirty Clear the volume dirty flag\n"
" -h, --help Display this help\n"
" -n, --no-action Do not write anything\n"
" -V, --version Display version information\n"
"\n"
"For example: %s /dev/hda6\n\n",
EXEC_NAME, VERSION, EXEC_NAME,
EXEC_NAME);
ntfs_log_info("%s%s", ntfs_bugs, ntfs_home);
exit(ret);
}
/**
* version
*/
__attribute__((noreturn))
static void version(void)
{
ntfs_log_info("%s v%s\n\n"
"Attempt to fix an NTFS partition.\n\n"
"Copyright (c) 2000-2006 Anton Altaparmakov\n"
"Copyright (c) 2002-2006 Szabolcs Szakacsits\n"
"Copyright (c) 2007 Yura Pakhuchiy\n"
"Copyright (c) 2011-2015 Jean-Pierre Andre\n\n",
EXEC_NAME, VERSION);
ntfs_log_info("%s\n%s%s", ntfs_gpl, ntfs_bugs, ntfs_home);
exit(0);
}
/**
* parse_options
*/
static void parse_options(int argc, char **argv)
{
int c;
static const char *sopt = "-bdhnV";
static const struct option lopt[] = {
{ "help", no_argument, NULL, 'h' },
{ "no-action", no_argument, NULL, 'n' },
{ "clear-bad-sectors", no_argument, NULL, 'b' },
{ "clear-dirty", no_argument, NULL, 'd' },
{ "version", no_argument, NULL, 'V' },
{ NULL, 0, NULL, 0 }
};
memset(&opt, 0, sizeof(opt));
while ((c = getopt_long(argc, argv, sopt, lopt, NULL)) != -1) {
switch (c) {
case 1: /* A non-option argument */
if (!opt.volume)
opt.volume = argv[optind - 1];
else {
ntfs_log_info("ERROR: Too many arguments.\n");
usage(1);
}
break;
case 'b':
opt.clear_bad_sectors = TRUE;
break;
case 'd':
opt.clear_dirty = TRUE;
break;
case 'n':
opt.no_action = TRUE;
break;
case 'h':
usage(0);
case '?':
usage(1);
/* fall through */
case 'V':
version();
default:
ntfs_log_info("ERROR: Unknown option '%s'.\n", argv[optind - 1]);
usage(1);
}
}
if (opt.volume == NULL) {
ntfs_log_info("ERROR: You must specify a device.\n");
usage(1);
}
}
/**
* OLD_ntfs_volume_set_flags
*/
static int OLD_ntfs_volume_set_flags(ntfs_volume *vol, const le16 flags)
{
MFT_RECORD *m = NULL;
ATTR_RECORD *a;
VOLUME_INFORMATION *c;
ntfs_attr_search_ctx *ctx;
int ret = -1; /* failure */
if (!vol) {
errno = EINVAL;
return -1;
}
if (ntfs_file_record_read(vol, FILE_Volume, &m, NULL)) {
ntfs_log_perror("Failed to read $Volume");
return -1;
}
/* Sanity check */
if (!(m->flags & MFT_RECORD_IN_USE)) {
ntfs_log_error("$Volume has been deleted. Cannot handle this "
"yet. Run chkdsk to fix this.\n");
errno = EIO;
goto err_exit;
}
/* Get a pointer to the volume information attribute. */
ctx = ntfs_attr_get_search_ctx(NULL, m);
if (!ctx) {
ntfs_log_debug("Failed to allocate attribute search "
"context.\n");
goto err_exit;
}
if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, AT_UNNAMED, 0,
CASE_SENSITIVE, 0, NULL, 0, ctx)) {
ntfs_log_error("Attribute $VOLUME_INFORMATION was not found in "
"$Volume!\n");
goto err_out;
}
a = ctx->attr;
/* Sanity check. */
if (a->non_resident) {
ntfs_log_error("Attribute $VOLUME_INFORMATION must be resident "
"(and it isn't)!\n");
errno = EIO;
goto err_out;
}
/* Get a pointer to the value of the attribute. */
c = (VOLUME_INFORMATION*)(le16_to_cpu(a->value_offset) + (char*)a);
/* Sanity checks. */
if ((char*)c + le32_to_cpu(a->value_length) >
(char*)m + le32_to_cpu(m->bytes_in_use) ||
le16_to_cpu(a->value_offset) +
le32_to_cpu(a->value_length) > le32_to_cpu(a->length)) {
ntfs_log_error("Attribute $VOLUME_INFORMATION in $Volume is "
"corrupt!\n");
errno = EIO;
goto err_out;
}
/* Set the volume flags. */
vol->flags = c->flags = flags;
if (ntfs_mft_record_write(vol, FILE_Volume, m)) {
ntfs_log_perror("Error writing $Volume");
goto err_out;
}
ret = 0; /* success */
err_out:
ntfs_attr_put_search_ctx(ctx);
err_exit:
free(m);
return ret;
}
/**
* set_dirty_flag
*/
static int set_dirty_flag(ntfs_volume *vol)
{
le16 flags;
/* Porting note: We test for the current state of VOLUME_IS_DIRTY. This
* should actually be more appropriate than testing for NVolWasDirty. */
if (vol->flags & VOLUME_IS_DIRTY)
return 0;
ntfs_log_info("Setting required flags on partition... ");
/*
* Set chkdsk flag, i.e. mark the partition dirty so chkdsk will run
* and fix it for us.
*/
flags = vol->flags | VOLUME_IS_DIRTY;
if (!opt.no_action && OLD_ntfs_volume_set_flags(vol, flags)) {
ntfs_log_info(FAILED);
ntfs_log_error("Error setting volume flags.\n");
return -1;
}
vol->flags = flags;
/* Porting note: libntfs-3g does not have the 'WasDirty' flag/property,
* and never touches the 'dirty' bit except when explicitly told to do
* so. Since we just wrote the VOLUME_IS_DIRTY bit to disk, and
* vol->flags is up-to-date, we can just ignore the NVolSetWasDirty
* statement. */
/* NVolSetWasDirty(vol); */
ntfs_log_info(OK);
return 0;
}
/**
* empty_journal
*/
static int empty_journal(ntfs_volume *vol)
{
if (NVolLogFileEmpty(vol))
return 0;
ntfs_log_info("Going to empty the journal ($LogFile)... ");
if (ntfs_logfile_reset(vol)) {
ntfs_log_info(FAILED);
ntfs_log_perror("Failed to reset $LogFile");
return -1;
}
ntfs_log_info(OK);
return 0;
}
/**
* Clear the bad cluster marks (option)
*/
static int clear_badclus(ntfs_volume *vol)
{
static ntfschar badstream[] = {
const_cpu_to_le16('$'), const_cpu_to_le16('B'),
const_cpu_to_le16('a'), const_cpu_to_le16('d')
} ;
ntfs_inode *ni;
ntfs_attr *na;
BOOL ok;
ok = FALSE;
ntfs_log_info("Going to un-mark the bad clusters ($BadClus)... ");
ni = ntfs_inode_open(vol, FILE_BadClus);
if (ni) {
na = ntfs_attr_open(ni, AT_DATA, badstream, 4);
/*
* chkdsk does not adjust the data size when
* moving clusters to $BadClus, so we have to
* check the runlist.
*/
if (na && !ntfs_attr_map_whole_runlist(na)) {
if (na->rl
&& na->rl[0].length && na->rl[1].length) {
/*
* Truncate the stream to free all its clusters,
* (which requires setting the data size according
* to allocation), then reallocate a sparse stream
* to full size of volume and reset the data size.
*/
na->data_size = na->allocated_size;
na->initialized_size = na->allocated_size;
if (!ntfs_attr_truncate(na,0)
&& !ntfs_attr_truncate(na,vol->nr_clusters
<< vol->cluster_size_bits)) {
na->data_size = 0;
na->initialized_size = 0;
ni->flags |= FILE_ATTR_SPARSE_FILE;
NInoFileNameSetDirty(ni);
ok = TRUE;
} else {
ntfs_log_perror("Failed to un-mark the bad clusters");
}
} else {
ntfs_log_info("No bad clusters...");
ok = TRUE;
}
ntfs_attr_close(na);
} else {
ntfs_log_perror("Failed to open $BadClus::$Bad");
}
ntfs_inode_close(ni);
} else {
ntfs_log_perror("Failed to open inode FILE_BadClus");
}
if (ok)
ntfs_log_info(OK);
return (ok ? 0 : -1);
}
/**
* fix_mftmirr
*/
static int fix_mftmirr(ntfs_volume *vol)
{
s64 l, br;
unsigned char *m, *m2;
int i, ret = -1; /* failure */
BOOL done;
ntfs_log_info("\nProcessing $MFT and $MFTMirr...\n");
/* Load data from $MFT and $MFTMirr and compare the contents. */
m = (u8*)malloc(vol->mftmirr_size << vol->mft_record_size_bits);
if (!m) {
ntfs_log_perror("Failed to allocate memory");
return -1;
}
m2 = (u8*)malloc(vol->mftmirr_size << vol->mft_record_size_bits);
if (!m2) {
ntfs_log_perror("Failed to allocate memory");
free(m);
return -1;
}
ntfs_log_info("Reading $MFT... ");
l = ntfs_attr_mst_pread(vol->mft_na, 0, vol->mftmirr_size,
vol->mft_record_size, m);
if (l != vol->mftmirr_size) {
ntfs_log_info(FAILED);
if (l != -1)
errno = EIO;
ntfs_log_perror("Failed to read $MFT");
goto error_exit;
}
ntfs_log_info(OK);
ntfs_log_info("Reading $MFTMirr... ");
l = ntfs_attr_mst_pread(vol->mftmirr_na, 0, vol->mftmirr_size,
vol->mft_record_size, m2);
if (l != vol->mftmirr_size) {
ntfs_log_info(FAILED);
if (l != -1)
errno = EIO;
ntfs_log_perror("Failed to read $MFTMirr");
goto error_exit;
}
ntfs_log_info(OK);
/*
* FIXME: Need to actually check the $MFTMirr for being real. Otherwise
* we might corrupt the partition if someone is experimenting with
* software RAID and the $MFTMirr is not actually in the position we
* expect it to be... )-:
* FIXME: We should emit a warning it $MFTMirr is damaged and ask
* user whether to recreate it from $MFT or whether to abort. - The
* warning needs to include the danger of software RAID arrays.
* Maybe we should go as far as to detect whether we are running on a
* MD disk and if yes then bomb out right at the start of the program?
*/
ntfs_log_info("Comparing $MFTMirr to $MFT... ");
done = FALSE;
for (i = 0; i < vol->mftmirr_size; ++i) {
MFT_RECORD *mrec, *mrec2;
const char *ESTR[12] = { "$MFT", "$MFTMirr", "$LogFile",
"$Volume", "$AttrDef", "root directory", "$Bitmap",
"$Boot", "$BadClus", "$Secure", "$UpCase", "$Extend" };
const char *s;
BOOL use_mirr;
if (i < 12)
s = ESTR[i];
else if (i < 16)
s = "system file";
else
s = "mft record";
use_mirr = FALSE;
mrec = (MFT_RECORD*)(m + i * vol->mft_record_size);
if (mrec->flags & MFT_RECORD_IN_USE) {
if (ntfs_is_baad_record(mrec->magic)) {
ntfs_log_info(FAILED);
ntfs_log_error("$MFT error: Incomplete multi "
"sector transfer detected in "
"%s.\nCannot handle this yet. "
")-:\n", s);
goto error_exit;
}
if (!ntfs_is_mft_record(mrec->magic)) {
ntfs_log_info(FAILED);
ntfs_log_error("$MFT error: Invalid mft "
"record for %s.\nCannot "
"handle this yet. )-:\n", s);
goto error_exit;
}
}
mrec2 = (MFT_RECORD*)(m2 + i * vol->mft_record_size);
if (mrec2->flags & MFT_RECORD_IN_USE) {
if (ntfs_is_baad_record(mrec2->magic)) {
ntfs_log_info(FAILED);
ntfs_log_error("$MFTMirr error: Incomplete "
"multi sector transfer "
"detected in %s.\n", s);
goto error_exit;
}
if (!ntfs_is_mft_record(mrec2->magic)) {
ntfs_log_info(FAILED);
ntfs_log_error("$MFTMirr error: Invalid mft "
"record for %s.\n", s);
goto error_exit;
}
/* $MFT is corrupt but $MFTMirr is ok, use $MFTMirr. */
if (!(mrec->flags & MFT_RECORD_IN_USE) &&
!ntfs_is_mft_record(mrec->magic))
use_mirr = TRUE;
}
if (memcmp(mrec, mrec2, ntfs_mft_record_get_data_size(mrec))) {
if (!done) {
done = TRUE;
ntfs_log_info(FAILED);
}
ntfs_log_info("Correcting differences in $MFT%s "
"record %d...", use_mirr ? "" : "Mirr",
i);
br = ntfs_mft_record_write(vol, i,
use_mirr ? mrec2 : mrec);
if (br) {
ntfs_log_info(FAILED);
ntfs_log_perror("Error correcting $MFT%s",
use_mirr ? "" : "Mirr");
goto error_exit;
}
ntfs_log_info(OK);
}
}
if (!done)
ntfs_log_info(OK);
ntfs_log_info("Processing of $MFT and $MFTMirr completed "
"successfully.\n");
ret = 0;
error_exit:
free(m);
free(m2);
return ret;
}
/*
* Rewrite the $UpCase file as default
*
* Returns 0 if could be written
*/
static int rewrite_upcase(ntfs_volume *vol, ntfs_attr *na)
{
s64 l;
int res;
/* writing the $UpCase may require bitmap updates */
res = -1;
vol->lcnbmp_ni = ntfs_inode_open(vol, FILE_Bitmap);
if (!vol->lcnbmp_ni) {
ntfs_log_perror("Failed to open bitmap inode");
} else {
vol->lcnbmp_na = ntfs_attr_open(vol->lcnbmp_ni, AT_DATA,
AT_UNNAMED, 0);
if (!vol->lcnbmp_na) {
ntfs_log_perror("Failed to open bitmap data attribute");
} else {
/* minimal consistency check on the bitmap */
if (((vol->lcnbmp_na->data_size << 3)
< vol->nr_clusters)
|| ((vol->lcnbmp_na->data_size << 3)
>= (vol->nr_clusters << 1))
|| (vol->lcnbmp_na->data_size
> vol->lcnbmp_na->allocated_size)) {
ntfs_log_error("Corrupt cluster map size %lld"
" (allocated %lld minimum %lld)\n",
(long long)vol->lcnbmp_na->data_size,
(long long)vol->lcnbmp_na->allocated_size,
(long long)(vol->nr_clusters + 7) >> 3);
} else {
ntfs_log_info("Rewriting $UpCase file\n");
l = ntfs_attr_pwrite(na, 0, vol->upcase_len*2,
vol->upcase);
if (l != vol->upcase_len*2) {
ntfs_log_error("Failed to rewrite $UpCase\n");
} else {
ntfs_log_info("$UpCase has been set to default\n");
res = 0;
}
}
ntfs_attr_close(vol->lcnbmp_na);
vol->lcnbmp_na = (ntfs_attr*)NULL;
}
ntfs_inode_close(vol->lcnbmp_ni);
vol->lcnbmp_ni = (ntfs_inode*)NULL;
}
return (res);
}
/*
* Fix the $UpCase file
*
* Returns 0 if the table is valid or has been fixed
*/
static int fix_upcase(ntfs_volume *vol)
{
ntfs_inode *ni;
ntfs_attr *na;
ntfschar *upcase;
s64 l;
u32 upcase_len;
u32 k;
int res;
res = -1;
ni = (ntfs_inode*)NULL;
na = (ntfs_attr*)NULL;
/* Now load the upcase table from $UpCase. */
ntfs_log_debug("Loading $UpCase...\n");
ni = ntfs_inode_open(vol, FILE_UpCase);
if (!ni) {
ntfs_log_perror("Failed to open inode FILE_UpCase");
goto error_exit;
}
/* Get an ntfs attribute for $UpCase/$DATA. */
na = ntfs_attr_open(ni, AT_DATA, AT_UNNAMED, 0);
if (!na) {
ntfs_log_perror("Failed to open ntfs attribute");
goto error_exit;
}
/*
* Note: Normally, the upcase table has a length equal to 65536
* 2-byte Unicode characters but allow for different cases, so no
* checks done. Just check we don't overflow 32-bits worth of Unicode
* characters.
*/
if (na->data_size & ~0x1ffffffffULL) {
ntfs_log_error("Error: Upcase table is too big (max 32-bit "
"allowed).\n");
errno = EINVAL;
goto error_exit;
}
upcase_len = na->data_size >> 1;
upcase = (ntfschar*)ntfs_malloc(na->data_size);
if (!upcase)
goto error_exit;
/* Read in the $DATA attribute value into the buffer. */
l = ntfs_attr_pread(na, 0, na->data_size, upcase);
if (l != na->data_size) {
ntfs_log_error("Failed to read $UpCase, unexpected length "
"(%lld != %lld).\n", (long long)l,
(long long)na->data_size);
errno = EIO;
goto error_exit;
}
/* Consistency check of $UpCase, restricted to plain ASCII chars */
k = 0x20;
while ((k < upcase_len)
&& (k < 0x7f)
&& (le16_to_cpu(upcase[k])
== ((k < 'a') || (k > 'z') ? k : k + 'A' - 'a')))
k++;
if (k < 0x7f) {
ntfs_log_error("Corrupted file $UpCase\n");
if (!opt.no_action) {
/* rewrite the $UpCase file from default */
res = rewrite_upcase(vol, na);
/* free the bad upcase record */
if (!res)
free(upcase);
} else {
/* keep the default upcase but return an error */
free(upcase);
}
} else {
/* accept the upcase table read from $UpCase */
free(vol->upcase);
vol->upcase = upcase;
vol->upcase_len = upcase_len;
res = 0;
}
error_exit :
/* Done with the $UpCase mft record. */
if (na)
ntfs_attr_close(na);
if (ni && ntfs_inode_close(ni)) {
ntfs_log_perror("Failed to close $UpCase");
}
return (res);
}
/*
* Rewrite the boot sector
*
* Returns 0 if successful
*/
static int rewrite_boot(struct ntfs_device *dev, char *full_bs,
s32 sector_size)
{
s64 bw;
int res;
res = -1;
ntfs_log_info("Rewriting the bootsector\n");
bw = ntfs_pwrite(dev, 0, sector_size, full_bs);
if (bw == sector_size)
res = 0;
else {
if (bw != -1)
errno = EINVAL;
if (!bw)
ntfs_log_error("Failed to rewrite the bootsector (size=0)\n");
else
ntfs_log_perror("Error rewriting the bootsector");
}
return (res);
}
/*
* Locate an unnamed attribute in an MFT record
*
* Returns NULL if not found (with no error message)
*/
static ATTR_RECORD *find_unnamed_attr(MFT_RECORD *mrec, ATTR_TYPES type)
{
ATTR_RECORD *a;
u32 offset;
/* fetch the requested attribute */
offset = le16_to_cpu(mrec->attrs_offset);
a = (ATTR_RECORD*)((char*)mrec + offset);
while ((offset < le32_to_cpu(mrec->bytes_in_use))
&& (a->type != AT_END)
&& ((a->type != type) || a->name_length)) {
offset += le32_to_cpu(a->length);
a = (ATTR_RECORD*)((char*)mrec + offset);
}
if ((offset >= le32_to_cpu(mrec->bytes_in_use))
|| (a->type != type)
|| a->name_length)
a = (ATTR_RECORD*)NULL;
return (a);
}
/*
* First condition for having a self-located MFT :
* only 16 MFT records are defined in MFT record 0
*
* Only low-level library functions can be used.
*
* Returns TRUE if the condition is met.
*/
static BOOL short_mft_selfloc_condition(struct MFT_SELF_LOCATED *selfloc)
{
BOOL ok;
ntfs_volume *vol;
MFT_RECORD *mft0;
ATTR_RECORD *a;
runlist_element *rl;
u16 seqn;
ok = FALSE;
vol = selfloc->vol;
mft0 = selfloc->mft0;
if ((ntfs_pread(vol->dev,
vol->mft_lcn << vol->cluster_size_bits,
vol->mft_record_size, mft0)
== vol->mft_record_size)
&& !ntfs_mst_post_read_fixup((NTFS_RECORD*)mft0,
vol->mft_record_size)) {
a = find_unnamed_attr(mft0,AT_DATA);
if (a
&& a->non_resident
&& (((sle64_to_cpu(a->highest_vcn) + 1)
<< vol->cluster_size_bits)
== (SELFLOC_LIMIT*vol->mft_record_size))) {
rl = ntfs_mapping_pairs_decompress(vol, a, NULL);
if (rl) {
/*
* The first error condition is having only
* 16 entries mapped in the first MFT record.
*/
if ((rl[0].lcn >= 0)
&& ((rl[0].length << vol->cluster_size_bits)
== SELFLOC_LIMIT*vol->mft_record_size)
&& (rl[1].vcn == rl[0].length)
&& (rl[1].lcn == LCN_RL_NOT_MAPPED)) {
ok = TRUE;
seqn = le16_to_cpu(
mft0->sequence_number);
selfloc->mft_ref0
= ((MFT_REF)seqn) << 48;
}
free(rl);
}
}
}
return (ok);
}
/*
* Second condition for having a self-located MFT :
* The 16th MFT record is defined in MFT record >= 16
*
* Only low-level library functions can be used.
*
* Returns TRUE if the condition is met.
*/
static BOOL attrlist_selfloc_condition(struct MFT_SELF_LOCATED *selfloc)
{
ntfs_volume *vol;
ATTR_RECORD *a;
ATTR_LIST_ENTRY *attrlist;
ATTR_LIST_ENTRY *al;
runlist_element *rl;
VCN vcn;
leVCN levcn;
u32 length;
int ok;
ok = FALSE;
length = 0;
vol = selfloc->vol;
a = find_unnamed_attr(selfloc->mft0,AT_ATTRIBUTE_LIST);
if (a) {
selfloc->attrlist_resident = !a->non_resident;
selfloc->attrlist_lcn = 0;
if (a->non_resident) {
attrlist = selfloc->attrlist;
rl = ntfs_mapping_pairs_decompress(vol, a, NULL);
if (rl
&& (rl->lcn >= 0)
&& (sle64_to_cpu(a->data_size) < vol->cluster_size)
&& (ntfs_pread(vol->dev,
rl->lcn << vol->cluster_size_bits,
vol->cluster_size, attrlist) == vol->cluster_size)) {
selfloc->attrlist_lcn = rl->lcn;
al = attrlist;
length = sle64_to_cpu(a->data_size);
}
} else {
al = (ATTR_LIST_ENTRY*)
((char*)a + le16_to_cpu(a->value_offset));
length = le32_to_cpu(a->value_length);
}
if (length) {
/* search for a data attribute defining entry 16 */
vcn = (SELFLOC_LIMIT*vol->mft_record_size)
>> vol->cluster_size_bits;
levcn = cpu_to_sle64(vcn);
while ((length > 0)
&& al->length
&& ((al->type != AT_DATA)
|| ((leVCN)al->lowest_vcn != levcn))) {
length -= le16_to_cpu(al->length);
al = (ATTR_LIST_ENTRY*)
((char*)al + le16_to_cpu(al->length));
}
if ((length > 0)
&& al->length
&& (al->type == AT_DATA)
&& !al->name_length
&& ((leVCN)al->lowest_vcn == levcn)
&& (MREF_LE(al->mft_reference) >= SELFLOC_LIMIT)) {
selfloc->mft_ref1
= le64_to_cpu(al->mft_reference);
selfloc->attrlist_to_ref1 = al;
ok = TRUE;
}
}
}
return (ok);
}
/*
* Third condition for having a self-located MFT :
* The location of the second part of the MFT is defined in itself
*
* To locate the second part, we have to assume the first and the
* second part of the MFT data are contiguous.
*
* Only low-level library functions can be used.
*
* Returns TRUE if the condition is met.
*/
static BOOL self_mapped_selfloc_condition(struct MFT_SELF_LOCATED *selfloc)
{
BOOL ok;
s64 inum;
u64 offs;
VCN lowest_vcn;
MFT_RECORD *mft1;
ATTR_RECORD *a;
ntfs_volume *vol;
runlist_element *rl;
ok = FALSE;
vol = selfloc->vol;
mft1 = selfloc->mft1;
inum = MREF(selfloc->mft_ref1);
offs = (vol->mft_lcn << vol->cluster_size_bits)
+ (inum << vol->mft_record_size_bits);
if ((ntfs_pread(vol->dev, offs, vol->mft_record_size,
mft1) == vol->mft_record_size)
&& !ntfs_mst_post_read_fixup((NTFS_RECORD*)mft1,
vol->mft_record_size)) {
lowest_vcn = (SELFLOC_LIMIT*vol->mft_record_size)
>> vol->cluster_size_bits;
a = find_unnamed_attr(mft1,AT_DATA);
if (a
&& (mft1->flags & MFT_RECORD_IN_USE)
&& ((VCN)sle64_to_cpu(a->lowest_vcn) == lowest_vcn)
&& (le64_to_cpu(mft1->base_mft_record)
== selfloc->mft_ref0)
&& ((u16)MSEQNO(selfloc->mft_ref1)
== le16_to_cpu(mft1->sequence_number))) {
rl = ntfs_mapping_pairs_decompress(vol, a, NULL);
if ((rl[0].lcn == LCN_RL_NOT_MAPPED)
&& !rl[0].vcn
&& (rl[0].length == lowest_vcn)
&& (rl[1].vcn == lowest_vcn)
&& ((u64)(rl[1].lcn << vol->cluster_size_bits)
<= offs)
&& ((u64)((rl[1].lcn + rl[1].length)
<< vol->cluster_size_bits) > offs)) {
ok = TRUE;
}
}
}
return (ok);
}
/*
* Fourth condition, to be able to fix a self-located MFT :
* The MFT record 15 must be available.
*
* The MFT record 15 is expected to be marked in use, we assume
* it is available if it has no parent, no name and no attr list.
*
* Only low-level library functions can be used.
*
* Returns TRUE if the condition is met.
*/
static BOOL spare_record_selfloc_condition(struct MFT_SELF_LOCATED *selfloc)
{
BOOL ok;
s64 inum;
u64 offs;
MFT_RECORD *mft2;
ntfs_volume *vol;
ok = FALSE;
vol = selfloc->vol;
mft2 = selfloc->mft2;
inum = SELFLOC_LIMIT - 1;
offs = (vol->mft_lcn << vol->cluster_size_bits)
+ (inum << vol->mft_record_size_bits);
if ((ntfs_pread(vol->dev, offs, vol->mft_record_size,
mft2) == vol->mft_record_size)
&& !ntfs_mst_post_read_fixup((NTFS_RECORD*)mft2,
vol->mft_record_size)) {
if (!mft2->base_mft_record
&& (mft2->flags & MFT_RECORD_IN_USE)
&& !find_unnamed_attr(mft2,AT_ATTRIBUTE_LIST)
&& !find_unnamed_attr(mft2,AT_FILE_NAME)) {
ok = TRUE;
}
}
return (ok);
}
/*
* Fix a self-located MFT by swapping two MFT records
*
* Only low-level library functions can be used.
*
* Returns 0 if the MFT corruption could be fixed.
*/
static int fix_selfloc_conditions(struct MFT_SELF_LOCATED *selfloc)
{
MFT_RECORD *mft1;
MFT_RECORD *mft2;
ATTR_RECORD *a;
ATTR_LIST_ENTRY *al;
ntfs_volume *vol;
s64 offs;
s64 offsm;
s64 offs1;
s64 offs2;
s64 inum;
u16 usa_ofs;
int res;
res = 0;
/*
* In MFT1, we must fix :
* - the self-reference, if present,
* - its own sequence number, must be 15
* - the sizes of the data attribute.
*/
vol = selfloc->vol;
mft1 = selfloc->mft1;
mft2 = selfloc->mft2;
usa_ofs = le16_to_cpu(mft1->usa_ofs);
if (usa_ofs >= 48)
mft1->mft_record_number = const_cpu_to_le32(SELFLOC_LIMIT - 1);
mft1->sequence_number = const_cpu_to_le16(SELFLOC_LIMIT - 1);
a = find_unnamed_attr(mft1,AT_DATA);
if (a) {
a->allocated_size = const_cpu_to_sle64(0);
a->data_size = const_cpu_to_sle64(0);
a->initialized_size = const_cpu_to_sle64(0);
} else
res = -1; /* bug : it has been found earlier */
/*
* In MFT2, we must fix :
* - the self-reference, if present
*/
usa_ofs = le16_to_cpu(mft2->usa_ofs);
if (usa_ofs >= 48)
mft2->mft_record_number = cpu_to_le32(MREF(selfloc->mft_ref1));
/*
* In the attribute list, we must fix :
* - the reference to MFT1
*/
al = selfloc->attrlist_to_ref1;
al->mft_reference = MK_LE_MREF(SELFLOC_LIMIT - 1, SELFLOC_LIMIT - 1);
/*
* All fixes done, we can write all if allowed
*/
if (!res && !opt.no_action) {
inum = SELFLOC_LIMIT - 1;
offs2 = (vol->mft_lcn << vol->cluster_size_bits)
+ (inum << vol->mft_record_size_bits);
inum = MREF(selfloc->mft_ref1);
offs1 = (vol->mft_lcn << vol->cluster_size_bits)
+ (inum << vol->mft_record_size_bits);
/* rewrite the attribute list */
if (selfloc->attrlist_resident) {
/* write mft0 and mftmirr if it is resident */
offs = vol->mft_lcn << vol->cluster_size_bits;
offsm = vol->mftmirr_lcn << vol->cluster_size_bits;
if (ntfs_mst_pre_write_fixup(
(NTFS_RECORD*)selfloc->mft0,
vol->mft_record_size)
|| (ntfs_pwrite(vol->dev, offs, vol->mft_record_size,
selfloc->mft0) != vol->mft_record_size)
|| (ntfs_pwrite(vol->dev, offsm, vol->mft_record_size,
selfloc->mft0) != vol->mft_record_size))
res = -1;
} else {
/* write a full cluster if non resident */
offs = selfloc->attrlist_lcn << vol->cluster_size_bits;
if (ntfs_pwrite(vol->dev, offs, vol->cluster_size,
selfloc->attrlist) != vol->cluster_size)
res = -1;
}
/* replace MFT2 by MFT1 and replace MFT1 by MFT2 */
if (!res
&& (ntfs_mst_pre_write_fixup((NTFS_RECORD*)selfloc->mft1,
vol->mft_record_size)
|| ntfs_mst_pre_write_fixup((NTFS_RECORD*)selfloc->mft2,
vol->mft_record_size)
|| (ntfs_pwrite(vol->dev, offs2, vol->mft_record_size,
mft1) != vol->mft_record_size)
|| (ntfs_pwrite(vol->dev, offs1, vol->mft_record_size,
mft2) != vol->mft_record_size)))
res = -1;
}
return (res);
}
/*
* Detect and fix a Windows XP bug, leading to a corrupt MFT
*
* Windows cannot boot anymore, so chkdsk cannot be started, which
* is a good point, because chkdsk would have deleted all the files.
* Older ntfs-3g fell into an endless recursion (recent versions
* refuse to mount).
*
* This situation is very rare, but it was fun to fix it.
*
* The corrupted condition is :
* - MFT entry 0 has only the runlist for MFT entries 0-15
* - The attribute list for MFT shows the second part
* in an MFT record beyond 15
* Of course, this record has to be read in order to know where it is.
*
* Sample case, met in 2011 (Windows XP) :
* MFT record 0 has : stdinfo, nonres attrlist, the first
* part of MFT data (entries 0-15), and bitmap
* MFT record 16 has the name
* MFT record 17 has the third part of MFT data (16-117731)
* MFT record 18 has the second part of MFT data (117732-170908)
*
* Assuming the second part of the MFT is contiguous to the first
* part, we can find it, and fix the condition by relocating it
* and swapping it with MFT record 15.
* This record number 15 appears to be hardcoded into Windows NTFS.
*
* Only low-level library functions can be used.
*
* Returns 0 if the conditions for the error was met and
* this error could be fixed,
* -1 if the condition was not met or some error
* which could not be fixed was encountered.
*/
static int fix_self_located_mft(ntfs_volume *vol)
{
struct MFT_SELF_LOCATED selfloc;
BOOL res;
ntfs_log_info("Checking for self-located MFT segment... ");
res = -1;
selfloc.vol = vol;
selfloc.mft0 = (MFT_RECORD*)malloc(vol->mft_record_size);
selfloc.mft1 = (MFT_RECORD*)malloc(vol->mft_record_size);
selfloc.mft2 = (MFT_RECORD*)malloc(vol->mft_record_size);
selfloc.attrlist = (ATTR_LIST_ENTRY*)malloc(vol->cluster_size);
if (selfloc.mft0 && selfloc.mft1 && selfloc.mft2
&& selfloc.attrlist) {
if (short_mft_selfloc_condition(&selfloc)
&& attrlist_selfloc_condition(&selfloc)
&& self_mapped_selfloc_condition(&selfloc)
&& spare_record_selfloc_condition(&selfloc)) {
ntfs_log_info(FOUND);
ntfs_log_info("Fixing the self-located MFT segment... ");
res = fix_selfloc_conditions(&selfloc);
ntfs_log_info(res ? FAILED : OK);
} else {
ntfs_log_info(OK);
res = -1;
}
free(selfloc.mft0);
free(selfloc.mft1);
free(selfloc.mft2);
free(selfloc.attrlist);
}
return (res);
}
/*
* Try an alternate boot sector and fix the real one
*
* Only after successful checks is the boot sector rewritten.
*
* The alternate boot sector is not rewritten, either because it
* was found correct, or because we truncated the file system
* and the last actual sector might be part of some file.
*
* Returns 0 if successful
*/
static int try_fix_boot(ntfs_volume *vol, char *full_bs,
s64 read_sector, s64 fix_sectors, s32 sector_size)
{
s64 br;
int res;
s64 got_sectors;
le16 sector_size_le;
NTFS_BOOT_SECTOR *bs;
res = -1;
br = ntfs_pread(vol->dev, read_sector*sector_size,
sector_size, full_bs);
if (br != sector_size) {
if (br != -1)
errno = EINVAL;
if (!br)
ntfs_log_error("Failed to read alternate bootsector (size=0)\n");
else
ntfs_log_perror("Error reading alternate bootsector");
} else {
bs = (NTFS_BOOT_SECTOR*)full_bs;
got_sectors = sle64_to_cpu(bs->number_of_sectors);
bs->number_of_sectors = cpu_to_sle64(fix_sectors);
/* alignment problem on Sparc, even doing memcpy() */
sector_size_le = cpu_to_le16(sector_size);
if (!memcmp(&sector_size_le, &bs->bpb.bytes_per_sector,2)
&& ntfs_boot_sector_is_ntfs(bs)
&& !ntfs_boot_sector_parse(vol, bs)) {
ntfs_log_info("The alternate bootsector is usable\n");
if (fix_sectors != got_sectors)
ntfs_log_info("Set sector count to %lld instead of %lld\n",
(long long)fix_sectors,
(long long)got_sectors);
/* fix the normal boot sector */
if (!opt.no_action) {
res = rewrite_boot(vol->dev, full_bs,
sector_size);
} else
res = 0;
}
if (!res && !opt.no_action)
ntfs_log_info("The boot sector has been rewritten\n");
}
return (res);
}
/*
* Try the alternate boot sector if the normal one is bad
*
* Actually :
* - first try the last sector of the partition (expected location)
* - then try the last sector as shown in the main boot sector,
* (could be meaningful for an undersized partition)
* - finally try truncating the file system actual size of partition
* (could be meaningful for an oversized partition)
*
* if successful, rewrite the normal boot sector accordingly
*
* Returns 0 if successful
*/
static int try_alternate_boot(ntfs_volume *vol, char *full_bs,
s32 sector_size, s64 shown_sectors)
{
s64 actual_sectors;
int res;
res = -1;
ntfs_log_info("Trying the alternate boot sector\n");
/*
* We do not rely on the sector size defined in the
* boot sector, supposed to be corrupt, so we try to get
* the actual sector size and defaulting to 512 if failed
* to get. This value is only used to guess the alternate
* boot sector location and it is checked against the
* value found in the sector itself. It should not damage
* anything if wrong.
*
* Note : the real last sector is not accounted for here.
*/
actual_sectors = ntfs_device_size_get(vol->dev,sector_size) - 1;
/* first try the actual last sector */
if ((actual_sectors > 0)
&& !try_fix_boot(vol, full_bs, actual_sectors,
actual_sectors, sector_size))
res = 0;
/* then try the shown last sector, if less than actual */
if (res
&& (shown_sectors > 0)
&& (shown_sectors < actual_sectors)
&& !try_fix_boot(vol, full_bs, shown_sectors,
shown_sectors, sector_size))
res = 0;
/* then try reducing the number of sectors to actual value */
if (res
&& (shown_sectors > actual_sectors)
&& !try_fix_boot(vol, full_bs, 0, actual_sectors, sector_size))
res = 0;
return (res);
}
/*
* Check and fix the alternate boot sector
*
* The alternate boot sector is usually in the last sector of a
* partition, which should not be used by the file system
* (the sector count in the boot sector should be less than
* the total sector count in the partition).
*
* chkdsk never changes the count in the boot sector.
* - If this is less than the total count, chkdsk place the
* alternate boot sector into the sector,
* - if the count is the same as the total count, chkdsk place
* the alternate boot sector into the middle sector (half
* the total count rounded upwards)
* - if the count is greater than the total count, chkdsk
* declares the file system as raw, and refuses to fix anything.
*
* Here, we check and fix the alternate boot sector, only in the
* first situation where the file system does not overflow on the
* last sector.
*
* Note : when shrinking a partition, ntfsresize cannot determine
* the future size of the partition. As a consequence the number of
* sectors in the boot sectors may be less than the possible size.
*
* Returns 0 if successful
*/
static int check_alternate_boot(ntfs_volume *vol)
{
s64 got_sectors;
s64 actual_sectors;
s64 last_sector_off;
char *full_bs;
char *alt_bs;
NTFS_BOOT_SECTOR *bs;
s64 br;
s64 bw;
int res;
res = -1;
full_bs = (char*)malloc(vol->sector_size);
alt_bs = (char*)malloc(vol->sector_size);
if (!full_bs || !alt_bs) {
ntfs_log_info("Error : failed to allocate memory\n");
goto error_exit;
}
/* Now read both bootsectors. */
br = ntfs_pread(vol->dev, 0, vol->sector_size, full_bs);
if (br == vol->sector_size) {
bs = (NTFS_BOOT_SECTOR*)full_bs;
got_sectors = sle64_to_cpu(bs->number_of_sectors);
actual_sectors = ntfs_device_size_get(vol->dev,
vol->sector_size);
if (actual_sectors > got_sectors) {
last_sector_off = (actual_sectors - 1)
<< vol->sector_size_bits;
ntfs_log_info("Checking the alternate boot sector... ");
br = ntfs_pread(vol->dev, last_sector_off,
vol->sector_size, alt_bs);
} else {
ntfs_log_info("Checking file system overflow... ");
br = -1;
}
/* accept getting no byte, needed for short image files */
if (br >= 0) {
if ((br != vol->sector_size)
|| memcmp(full_bs, alt_bs, vol->sector_size)) {
if (opt.no_action) {
ntfs_log_info("BAD\n");
} else {
bw = ntfs_pwrite(vol->dev,
last_sector_off,
vol->sector_size, full_bs);
if (bw == vol->sector_size) {
ntfs_log_info("FIXED\n");
res = 0;
} else {
ntfs_log_info(FAILED);
}
}
} else {
ntfs_log_info(OK);
res = 0;
}
} else {
ntfs_log_info(FAILED);
}
} else {
ntfs_log_info("Error : could not read the boot sector again\n");
}
free(full_bs);
free(alt_bs);
error_exit :
return (res);
}
/*
* Try to fix problems which may arise in the start up sequence
*
* This is a replay of the normal start up sequence with fixes when
* some problem arise.
*
* Returns 0 if there was an error and a fix is available
*/
static int fix_startup(struct ntfs_device *dev, unsigned long flags)
{
s64 br;
ntfs_volume *vol;
BOOL dev_open;
s64 shown_sectors;
char *full_bs;
NTFS_BOOT_SECTOR *bs;
s32 sector_size;
int res;
int eo;
errno = 0;
res = -1;
dev_open = FALSE;
full_bs = (char*)NULL;
if (!dev || !dev->d_ops || !dev->d_name) {
errno = EINVAL;
ntfs_log_perror("%s: dev = %p", __FUNCTION__, dev);
vol = (ntfs_volume*)NULL;
goto error_exit;
}
/* Allocate the volume structure. */
vol = ntfs_volume_alloc();
if (!vol)
goto error_exit;
/* Create the default upcase table. */
vol->upcase_len = ntfs_upcase_build_default(&vol->upcase);
if (!vol->upcase_len || !vol->upcase)
goto error_exit;
/* Default with no locase table and case sensitive file names */
vol->locase = (ntfschar*)NULL;
NVolSetCaseSensitive(vol);
/* by default, all files are shown and not marked hidden */
NVolSetShowSysFiles(vol);
NVolSetShowHidFiles(vol);
NVolClearHideDotFiles(vol);
if (flags & NTFS_MNT_RDONLY)
NVolSetReadOnly(vol);
/* ...->open needs bracketing to compile with glibc 2.7 */
if ((dev->d_ops->open)(dev, NVolReadOnly(vol) ? O_RDONLY: O_RDWR)) {
ntfs_log_perror("Error opening '%s'", dev->d_name);
goto error_exit;
}
dev_open = TRUE;
/* Attach the device to the volume. */
vol->dev = dev;
sector_size = ntfs_device_sector_size_get(dev);
if (sector_size <= 0)
sector_size = DEFAULT_SECTOR_SIZE;
full_bs = (char*)malloc(sector_size);
if (!full_bs)
goto error_exit;
/* Now read the bootsector. */
br = ntfs_pread(dev, 0, sector_size, full_bs);
if (br != sector_size) {
if (br != -1)
errno = EINVAL;
if (!br)
ntfs_log_error("Failed to read bootsector (size=0)\n");
else
ntfs_log_perror("Error reading bootsector");
goto error_exit;
}
bs = (NTFS_BOOT_SECTOR*)full_bs;
if (!ntfs_boot_sector_is_ntfs(bs)
/* get the bootsector data, only fails when inconsistent */
|| (ntfs_boot_sector_parse(vol, bs) < 0)) {
shown_sectors = sle64_to_cpu(bs->number_of_sectors);
/* boot sector is wrong, try the alternate boot sector */
if (try_alternate_boot(vol, full_bs, sector_size,
shown_sectors)) {
errno = EINVAL;
goto error_exit;
}
res = 0;
} else {
res = fix_self_located_mft(vol);
}
error_exit:
if (res) {
switch (errno) {
case ENOMEM :
ntfs_log_error("Failed to allocate memory\n");
break;
case EINVAL :
ntfs_log_error("Unrecoverable error\n");
break;
default :
break;
}
}
eo = errno;
free(full_bs);
if (vol) {
free(vol->upcase);
free(vol);
}
if (dev_open) {
(dev->d_ops->close)(dev);
}
errno = eo;
return (res);
}
/**
* fix_mount
*/
static int fix_mount(void)
{
int ret = 0; /* default success */
ntfs_volume *vol;
struct ntfs_device *dev;
unsigned long flags;
ntfs_log_info("Attempting to correct errors... ");
dev = ntfs_device_alloc(opt.volume, 0, &ntfs_device_default_io_ops,
NULL);
if (!dev) {
ntfs_log_info(FAILED);
ntfs_log_perror("Failed to allocate device");
return -1;
}
flags = (opt.no_action ? NTFS_MNT_RDONLY : 0);
vol = ntfs_volume_startup(dev, flags);
if (!vol) {
ntfs_log_info(FAILED);
ntfs_log_perror("Failed to startup volume");
/* Try fixing the bootsector and MFT, then redo the startup */
if (!fix_startup(dev, flags)) {
if (opt.no_action)
ntfs_log_info("The startup data can be fixed, "
"but no change was requested\n");
else
vol = ntfs_volume_startup(dev, flags);
}
if (!vol) {
ntfs_log_error("Volume is corrupt. You should run chkdsk.\n");
ntfs_device_free(dev);
return -1;
}
if (opt.no_action)
ret = -1; /* error present and not fixed */
}
/* if option -n proceed despite errors, to display them all */
if ((!ret || opt.no_action) && (fix_mftmirr(vol) < 0))
ret = -1;
if ((!ret || opt.no_action) && (fix_upcase(vol) < 0))
ret = -1;
if ((!ret || opt.no_action) && (set_dirty_flag(vol) < 0))
ret = -1;
if ((!ret || opt.no_action) && (empty_journal(vol) < 0))
ret = -1;
/*
* ntfs_umount() will invoke ntfs_device_free() for us.
* Ignore the returned error resulting from partial mounting.
*/
ntfs_umount(vol, 1);
return ret;
}
/**
* main
*/
int main(int argc, char **argv)
{
ntfs_volume *vol;
unsigned long mnt_flags;
unsigned long flags;
int ret = 1; /* failure */
BOOL force = FALSE;
ntfs_log_set_handler(ntfs_log_handler_outerr);
parse_options(argc, argv);
if (!ntfs_check_if_mounted(opt.volume, &mnt_flags)) {
if ((mnt_flags & NTFS_MF_MOUNTED) &&
!(mnt_flags & NTFS_MF_READONLY) && !force) {
ntfs_log_error("Refusing to operate on read-write "
"mounted device %s.\n", opt.volume);
exit(1);
}
} else
ntfs_log_perror("Failed to determine whether %s is mounted",
opt.volume);
/* Attempt a full mount first. */
flags = (opt.no_action ? NTFS_MNT_RDONLY : 0);
ntfs_log_info("Mounting volume... ");
vol = ntfs_mount(opt.volume, flags);
if (vol) {
ntfs_log_info(OK);
ntfs_log_info("Processing of $MFT and $MFTMirr completed "
"successfully.\n");
} else {
ntfs_log_info(FAILED);
if (fix_mount() < 0) {
if (opt.no_action)
ntfs_log_info("No change made\n");
exit(1);
}
vol = ntfs_mount(opt.volume, 0);
if (!vol) {
ntfs_log_perror("Remount failed");
exit(1);
}
}
if (check_alternate_boot(vol)) {
ntfs_log_error("Error: Failed to fix the alternate boot sector\n");
exit(1);
}
/* So the unmount does not clear it again. */
/* Porting note: The WasDirty flag was set here to prevent ntfs_unmount
* from clearing the dirty bit (which might have been set in
* fix_mount()). So the intention is to leave the dirty bit set.
*
* libntfs-3g does not automatically set or clear dirty flags on
* mount/unmount, this means that the assumption that the dirty flag is
* now set does not hold. So we need to set it if not already set.
*
* However clear the flag if requested to do so, at this stage
* mounting was successful.
*/
if (opt.clear_dirty)
vol->flags &= ~VOLUME_IS_DIRTY;
else
vol->flags |= VOLUME_IS_DIRTY;
if (!opt.no_action && ntfs_volume_write_flags(vol, vol->flags)) {
ntfs_log_error("Error: Failed to set volume dirty flag (%d "
"(%s))!\n", errno, strerror(errno));
}
/* Check NTFS version is ok for us (in $Volume) */
ntfs_log_info("NTFS volume version is %i.%i.\n", vol->major_ver,
vol->minor_ver);
if (ntfs_version_is_supported(vol)) {
ntfs_log_error("Error: Unknown NTFS version.\n");
goto error_exit;
}
if (opt.clear_bad_sectors && !opt.no_action) {
if (clear_badclus(vol)) {
ntfs_log_error("Error: Failed to un-mark bad sectors.\n");
goto error_exit;
}
}
if (vol->major_ver >= 3) {
/*
* FIXME: If on NTFS 3.0+, check for presence of the usn
* journal and stamp it if present.
*/
}
/* FIXME: We should be marking the quota out of date, too. */
/* That's all for now! */
ntfs_log_info("NTFS partition %s was processed successfully.\n",
vol->dev->d_name);
/* Set return code to 0. */
ret = 0;
error_exit:
if (ntfs_umount(vol, 1)) {
ntfs_log_info("Failed to unmount partition\n");
ret = 1;
}
if (ret)
exit(ret);
return ret;
}