/** * ntfsfix - Part of the Linux-NTFS project. * * Copyright (c) 2000-2006 Anton Altaparmakov * Copyright (c) 2002-2006 Szabolcs Szakacsits * Copyright (c) 2007 Yura Pakhuchiy * Copyright (c) 2011-2015 Jean-Pierre Andre * * This utility fixes some common NTFS problems, resets the NTFS journal file * and schedules an NTFS consistency check for the first boot into Windows. * * Anton Altaparmakov * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program (in the main directory of the Linux-NTFS source * in the file COPYING); if not, write to the Free Software Foundation, * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ /* * WARNING: This program might not work on architectures which do not allow * unaligned access. For those, the program would need to start using * get/put_unaligned macros (#include ), but not doing it yet, * since NTFS really mostly applies to ia32 only, which does allow unaligned * accesses. We might not actually have a problem though, since the structs are * defined as being packed so that might be enough for gcc to insert the * correct code. * * If anyone using a non-little endian and/or an aligned access only CPU tries * this program please let me know whether it works or not! * * Anton Altaparmakov */ #include "config.h" #ifdef HAVE_UNISTD_H #include #endif #ifdef HAVE_STDLIB_H #include #endif #ifdef HAVE_STDIO_H #include #endif #ifdef HAVE_FCNTL_H #include #endif #ifdef HAVE_ERRNO_H #include #endif #ifdef HAVE_STRING_H #include #endif #ifdef HAVE_GETOPT_H #include #endif #include "types.h" #include "attrib.h" #include "volume.h" #include "bootsect.h" #include "mft.h" #include "device.h" #include "logfile.h" #include "runlist.h" #include "mst.h" #include "utils.h" /* #include "version.h" */ #include "logging.h" #include "misc.h" #ifdef NO_NTFS_DEVICE_DEFAULT_IO_OPS # error "No default device io operations! Cannot build ntfsfix. \ You need to run ./configure without the --disable-default-device-io-ops \ switch if you want to be able to build the NTFS utilities." #endif static const char *EXEC_NAME = "ntfsfix"; static const char OK[] = "OK\n"; static const char FAILED[] = "FAILED\n"; static const char FOUND[] = "FOUND\n"; #define DEFAULT_SECTOR_SIZE 512 static struct { char *volume; BOOL no_action; BOOL clear_bad_sectors; BOOL clear_dirty; } opt; /* * Definitions for fixing the self-located MFT bug */ #define SELFLOC_LIMIT 16 struct MFT_SELF_LOCATED { ntfs_volume *vol; MFT_RECORD *mft0; MFT_RECORD *mft1; MFT_RECORD *mft2; ATTR_LIST_ENTRY *attrlist; ATTR_LIST_ENTRY *attrlist_to_ref1; MFT_REF mft_ref0; MFT_REF mft_ref1; LCN attrlist_lcn; BOOL attrlist_resident; } ; /** * usage */ __attribute__((noreturn)) static void usage(int ret) { ntfs_log_info("%s v%s (libntfs-3g)\n" "\n" "Usage: %s [options] device\n" " Attempt to fix an NTFS partition.\n" "\n" " -b, --clear-bad-sectors Clear the bad sector list\n" " -d, --clear-dirty Clear the volume dirty flag\n" " -h, --help Display this help\n" " -n, --no-action Do not write anything\n" " -V, --version Display version information\n" "\n" "For example: %s /dev/hda6\n\n", EXEC_NAME, VERSION, EXEC_NAME, EXEC_NAME); ntfs_log_info("%s%s", ntfs_bugs, ntfs_home); exit(ret); } /** * version */ __attribute__((noreturn)) static void version(void) { ntfs_log_info("%s v%s\n\n" "Attempt to fix an NTFS partition.\n\n" "Copyright (c) 2000-2006 Anton Altaparmakov\n" "Copyright (c) 2002-2006 Szabolcs Szakacsits\n" "Copyright (c) 2007 Yura Pakhuchiy\n" "Copyright (c) 2011-2015 Jean-Pierre Andre\n\n", EXEC_NAME, VERSION); ntfs_log_info("%s\n%s%s", ntfs_gpl, ntfs_bugs, ntfs_home); exit(0); } /** * parse_options */ static void parse_options(int argc, char **argv) { int c; static const char *sopt = "-bdhnV"; static const struct option lopt[] = { { "help", no_argument, NULL, 'h' }, { "no-action", no_argument, NULL, 'n' }, { "clear-bad-sectors", no_argument, NULL, 'b' }, { "clear-dirty", no_argument, NULL, 'd' }, { "version", no_argument, NULL, 'V' }, { NULL, 0, NULL, 0 } }; memset(&opt, 0, sizeof(opt)); while ((c = getopt_long(argc, argv, sopt, lopt, NULL)) != -1) { switch (c) { case 1: /* A non-option argument */ if (!opt.volume) opt.volume = argv[optind - 1]; else { ntfs_log_info("ERROR: Too many arguments.\n"); usage(1); } break; case 'b': opt.clear_bad_sectors = TRUE; break; case 'd': opt.clear_dirty = TRUE; break; case 'n': opt.no_action = TRUE; break; case 'h': usage(0); case '?': usage(1); /* fall through */ case 'V': version(); default: ntfs_log_info("ERROR: Unknown option '%s'.\n", argv[optind - 1]); usage(1); } } if (opt.volume == NULL) { ntfs_log_info("ERROR: You must specify a device.\n"); usage(1); } } /** * OLD_ntfs_volume_set_flags */ static int OLD_ntfs_volume_set_flags(ntfs_volume *vol, const le16 flags) { MFT_RECORD *m = NULL; ATTR_RECORD *a; VOLUME_INFORMATION *c; ntfs_attr_search_ctx *ctx; int ret = -1; /* failure */ if (!vol) { errno = EINVAL; return -1; } if (ntfs_file_record_read(vol, FILE_Volume, &m, NULL)) { ntfs_log_perror("Failed to read $Volume"); return -1; } /* Sanity check */ if (!(m->flags & MFT_RECORD_IN_USE)) { ntfs_log_error("$Volume has been deleted. Cannot handle this " "yet. Run chkdsk to fix this.\n"); errno = EIO; goto err_exit; } /* Get a pointer to the volume information attribute. */ ctx = ntfs_attr_get_search_ctx(NULL, m); if (!ctx) { ntfs_log_debug("Failed to allocate attribute search " "context.\n"); goto err_exit; } if (ntfs_attr_lookup(AT_VOLUME_INFORMATION, AT_UNNAMED, 0, CASE_SENSITIVE, 0, NULL, 0, ctx)) { ntfs_log_error("Attribute $VOLUME_INFORMATION was not found in " "$Volume!\n"); goto err_out; } a = ctx->attr; /* Sanity check. */ if (a->non_resident) { ntfs_log_error("Attribute $VOLUME_INFORMATION must be resident " "(and it isn't)!\n"); errno = EIO; goto err_out; } /* Get a pointer to the value of the attribute. */ c = (VOLUME_INFORMATION*)(le16_to_cpu(a->value_offset) + (char*)a); /* Sanity checks. */ if ((char*)c + le32_to_cpu(a->value_length) > (char*)m + le32_to_cpu(m->bytes_in_use) || le16_to_cpu(a->value_offset) + le32_to_cpu(a->value_length) > le32_to_cpu(a->length)) { ntfs_log_error("Attribute $VOLUME_INFORMATION in $Volume is " "corrupt!\n"); errno = EIO; goto err_out; } /* Set the volume flags. */ vol->flags = c->flags = flags; if (ntfs_mft_record_write(vol, FILE_Volume, m)) { ntfs_log_perror("Error writing $Volume"); goto err_out; } ret = 0; /* success */ err_out: ntfs_attr_put_search_ctx(ctx); err_exit: free(m); return ret; } /** * set_dirty_flag */ static int set_dirty_flag(ntfs_volume *vol) { le16 flags; /* Porting note: We test for the current state of VOLUME_IS_DIRTY. This * should actually be more appropriate than testing for NVolWasDirty. */ if (vol->flags & VOLUME_IS_DIRTY) return 0; ntfs_log_info("Setting required flags on partition... "); /* * Set chkdsk flag, i.e. mark the partition dirty so chkdsk will run * and fix it for us. */ flags = vol->flags | VOLUME_IS_DIRTY; if (!opt.no_action && OLD_ntfs_volume_set_flags(vol, flags)) { ntfs_log_info(FAILED); ntfs_log_error("Error setting volume flags.\n"); return -1; } vol->flags = flags; /* Porting note: libntfs-3g does not have the 'WasDirty' flag/property, * and never touches the 'dirty' bit except when explicitly told to do * so. Since we just wrote the VOLUME_IS_DIRTY bit to disk, and * vol->flags is up-to-date, we can just ignore the NVolSetWasDirty * statement. */ /* NVolSetWasDirty(vol); */ ntfs_log_info(OK); return 0; } /** * empty_journal */ static int empty_journal(ntfs_volume *vol) { if (NVolLogFileEmpty(vol)) return 0; ntfs_log_info("Going to empty the journal ($LogFile)... "); if (ntfs_logfile_reset(vol)) { ntfs_log_info(FAILED); ntfs_log_perror("Failed to reset $LogFile"); return -1; } ntfs_log_info(OK); return 0; } /* * Clear the sparse flag of an attribute */ static int clear_sparse(ntfs_attr *na, const char *name) { ntfs_attr_search_ctx *ctx; int res; res = -1; ctx = ntfs_attr_get_search_ctx(na->ni, NULL); if (ctx) { if (!ntfs_attr_lookup(na->type, na->name, na->name_len, CASE_SENSITIVE, 0, NULL, 0, ctx)) { na->data_flags &= ~ATTR_IS_SPARSE; ctx->attr->data_size = cpu_to_sle64(na->data_size); ctx->attr->initialized_size = cpu_to_sle64(na->initialized_size); ctx->attr->flags = na->data_flags; ctx->attr->compression_unit = 0; ntfs_inode_mark_dirty(ctx->ntfs_ino); NInoFileNameSetDirty(na->ni); res = 0; } else ntfs_log_perror("Could not locate attribute for %s", name); ntfs_attr_put_search_ctx(ctx); } else ntfs_log_perror("Could not get a search context for %s", name); return (res); } /** * Clear the bad cluster marks (option) */ static int clear_badclus(ntfs_volume *vol) { static ntfschar badstream[] = { const_cpu_to_le16('$'), const_cpu_to_le16('B'), const_cpu_to_le16('a'), const_cpu_to_le16('d') } ; ntfs_inode *ni; ntfs_attr *na; BOOL ok; ok = FALSE; ntfs_log_info("Going to un-mark the bad clusters ($BadClus)... "); ni = ntfs_inode_open(vol, FILE_BadClus); if (ni) { na = ntfs_attr_open(ni, AT_DATA, badstream, 4); /* * chkdsk does not adjust the data size when * moving clusters to $BadClus, so we have to * check the runlist. */ if (na && !ntfs_attr_map_whole_runlist(na)) { if (na->rl && na->rl[0].length && na->rl[1].length) { /* * Truncate the stream to free all its clusters, * (which requires setting the data size according * to allocation), then reallocate a sparse stream * to full size of volume and reset the data size. * Note : the sparse flags should not be set. */ na->data_size = na->allocated_size; na->initialized_size = na->allocated_size; if (!ntfs_attr_truncate(na,0) && !ntfs_attr_truncate(na,vol->nr_clusters << vol->cluster_size_bits)) { na->initialized_size = 0; NInoFileNameSetDirty(ni); ok = TRUE; } else { ntfs_log_perror("Failed to un-mark the bad clusters"); } } else { ntfs_log_info("No bad clusters..."); ok = TRUE; } /* * The sparse flags are not set after an initial * formatting, so do the same. */ if (ok) { ni->flags &= ~FILE_ATTR_SPARSE_FILE; ok = !clear_sparse(na, "$BadClus::$Bad"); } ntfs_attr_close(na); } else { ntfs_log_perror("Failed to open $BadClus::$Bad"); } ntfs_inode_close(ni); } else { ntfs_log_perror("Failed to open inode FILE_BadClus"); } if (ok) ntfs_log_info(OK); return (ok ? 0 : -1); } /** * fix_mftmirr */ static int fix_mftmirr(ntfs_volume *vol) { s64 l, br; unsigned char *m, *m2; int i, ret = -1; /* failure */ BOOL done; ntfs_log_info("\nProcessing $MFT and $MFTMirr...\n"); /* Load data from $MFT and $MFTMirr and compare the contents. */ m = (u8*)malloc(vol->mftmirr_size << vol->mft_record_size_bits); if (!m) { ntfs_log_perror("Failed to allocate memory"); return -1; } m2 = (u8*)malloc(vol->mftmirr_size << vol->mft_record_size_bits); if (!m2) { ntfs_log_perror("Failed to allocate memory"); free(m); return -1; } ntfs_log_info("Reading $MFT... "); l = ntfs_attr_mst_pread(vol->mft_na, 0, vol->mftmirr_size, vol->mft_record_size, m); if (l != vol->mftmirr_size) { ntfs_log_info(FAILED); if (l != -1) errno = EIO; ntfs_log_perror("Failed to read $MFT"); goto error_exit; } ntfs_log_info(OK); ntfs_log_info("Reading $MFTMirr... "); l = ntfs_attr_mst_pread(vol->mftmirr_na, 0, vol->mftmirr_size, vol->mft_record_size, m2); if (l != vol->mftmirr_size) { ntfs_log_info(FAILED); if (l != -1) errno = EIO; ntfs_log_perror("Failed to read $MFTMirr"); goto error_exit; } ntfs_log_info(OK); /* * FIXME: Need to actually check the $MFTMirr for being real. Otherwise * we might corrupt the partition if someone is experimenting with * software RAID and the $MFTMirr is not actually in the position we * expect it to be... )-: * FIXME: We should emit a warning it $MFTMirr is damaged and ask * user whether to recreate it from $MFT or whether to abort. - The * warning needs to include the danger of software RAID arrays. * Maybe we should go as far as to detect whether we are running on a * MD disk and if yes then bomb out right at the start of the program? */ ntfs_log_info("Comparing $MFTMirr to $MFT... "); done = FALSE; /* * Since 2017, Windows 10 does not mirror to full $MFTMirr when * using big clusters, and some records may be found different. * Nevertheless chkdsk.exe mirrors it fully, so we do similarly. */ for (i = 0; i < vol->mftmirr_size; ++i) { MFT_RECORD *mrec, *mrec2; const char *ESTR[12] = { "$MFT", "$MFTMirr", "$LogFile", "$Volume", "$AttrDef", "root directory", "$Bitmap", "$Boot", "$BadClus", "$Secure", "$UpCase", "$Extend" }; const char *s; BOOL use_mirr; if (i < 12) s = ESTR[i]; else if (i < 16) s = "system file"; else s = "mft record"; use_mirr = FALSE; mrec = (MFT_RECORD*)(m + i * vol->mft_record_size); if (mrec->flags & MFT_RECORD_IN_USE) { if (ntfs_is_baad_record(mrec->magic)) { ntfs_log_info(FAILED); ntfs_log_error("$MFT error: Incomplete multi " "sector transfer detected in " "%s.\nCannot handle this yet. " ")-:\n", s); goto error_exit; } if (!ntfs_is_mft_record(mrec->magic)) { ntfs_log_info(FAILED); ntfs_log_error("$MFT error: Invalid mft " "record for %s.\nCannot " "handle this yet. )-:\n", s); goto error_exit; } } mrec2 = (MFT_RECORD*)(m2 + i * vol->mft_record_size); if (mrec2->flags & MFT_RECORD_IN_USE) { if (ntfs_is_baad_record(mrec2->magic)) { ntfs_log_info(FAILED); ntfs_log_error("$MFTMirr error: Incomplete " "multi sector transfer " "detected in %s.\n", s); goto error_exit; } if (!ntfs_is_mft_record(mrec2->magic)) { ntfs_log_info(FAILED); ntfs_log_error("$MFTMirr error: Invalid mft " "record for %s.\n", s); goto error_exit; } /* $MFT is corrupt but $MFTMirr is ok, use $MFTMirr. */ if (!(mrec->flags & MFT_RECORD_IN_USE) && !ntfs_is_mft_record(mrec->magic)) use_mirr = TRUE; } if (memcmp(mrec, mrec2, ntfs_mft_record_get_data_size(mrec))) { if (!done) { done = TRUE; ntfs_log_info(FAILED); } ntfs_log_info("Correcting differences in $MFT%s " "record %d...", use_mirr ? "" : "Mirr", i); br = ntfs_mft_record_write(vol, i, use_mirr ? mrec2 : mrec); if (br) { ntfs_log_info(FAILED); ntfs_log_perror("Error correcting $MFT%s", use_mirr ? "" : "Mirr"); goto error_exit; } ntfs_log_info(OK); } } if (!done) ntfs_log_info(OK); ntfs_log_info("Processing of $MFT and $MFTMirr completed " "successfully.\n"); ret = 0; error_exit: free(m); free(m2); return ret; } /* * Rewrite the $UpCase file as default * * Returns 0 if could be written */ static int rewrite_upcase(ntfs_volume *vol, ntfs_attr *na) { s64 l; int res; /* writing the $UpCase may require bitmap updates */ res = -1; vol->lcnbmp_ni = ntfs_inode_open(vol, FILE_Bitmap); if (!vol->lcnbmp_ni) { ntfs_log_perror("Failed to open bitmap inode"); } else { vol->lcnbmp_na = ntfs_attr_open(vol->lcnbmp_ni, AT_DATA, AT_UNNAMED, 0); if (!vol->lcnbmp_na) { ntfs_log_perror("Failed to open bitmap data attribute"); } else { /* minimal consistency check on the bitmap */ if (((vol->lcnbmp_na->data_size << 3) < vol->nr_clusters) || ((vol->lcnbmp_na->data_size << 3) >= (vol->nr_clusters << 1)) || (vol->lcnbmp_na->data_size > vol->lcnbmp_na->allocated_size)) { ntfs_log_error("Corrupt cluster map size %lld" " (allocated %lld minimum %lld)\n", (long long)vol->lcnbmp_na->data_size, (long long)vol->lcnbmp_na->allocated_size, (long long)(vol->nr_clusters + 7) >> 3); } else { ntfs_log_info("Rewriting $UpCase file\n"); l = ntfs_attr_pwrite(na, 0, vol->upcase_len*2, vol->upcase); if (l != vol->upcase_len*2) { ntfs_log_error("Failed to rewrite $UpCase\n"); } else { ntfs_log_info("$UpCase has been set to default\n"); res = 0; } } ntfs_attr_close(vol->lcnbmp_na); vol->lcnbmp_na = (ntfs_attr*)NULL; } ntfs_inode_close(vol->lcnbmp_ni); vol->lcnbmp_ni = (ntfs_inode*)NULL; } return (res); } /* * Fix the $UpCase file * * Returns 0 if the table is valid or has been fixed */ static int fix_upcase(ntfs_volume *vol) { ntfs_inode *ni; ntfs_attr *na; ntfschar *upcase; s64 l; u32 upcase_len; u32 k; int res; res = -1; ni = (ntfs_inode*)NULL; na = (ntfs_attr*)NULL; /* Now load the upcase table from $UpCase. */ ntfs_log_debug("Loading $UpCase...\n"); ni = ntfs_inode_open(vol, FILE_UpCase); if (!ni) { ntfs_log_perror("Failed to open inode FILE_UpCase"); goto error_exit; } /* Get an ntfs attribute for $UpCase/$DATA. */ na = ntfs_attr_open(ni, AT_DATA, AT_UNNAMED, 0); if (!na) { ntfs_log_perror("Failed to open ntfs attribute"); goto error_exit; } /* * Note: Normally, the upcase table has a length equal to 65536 * 2-byte Unicode characters but allow for different cases, so no * checks done. Just check we don't overflow 32-bits worth of Unicode * characters. */ if (na->data_size & ~0x1ffffffffULL) { ntfs_log_error("Error: Upcase table is too big (max 32-bit " "allowed).\n"); errno = EINVAL; goto error_exit; } upcase_len = na->data_size >> 1; upcase = (ntfschar*)ntfs_malloc(na->data_size); if (!upcase) goto error_exit; /* Read in the $DATA attribute value into the buffer. */ l = ntfs_attr_pread(na, 0, na->data_size, upcase); if (l != na->data_size) { ntfs_log_error("Failed to read $UpCase, unexpected length " "(%lld != %lld).\n", (long long)l, (long long)na->data_size); errno = EIO; goto error_exit; } /* Consistency check of $UpCase, restricted to plain ASCII chars */ k = 0x20; while ((k < upcase_len) && (k < 0x7f) && (le16_to_cpu(upcase[k]) == ((k < 'a') || (k > 'z') ? k : k + 'A' - 'a'))) k++; if (k < 0x7f) { ntfs_log_error("Corrupted file $UpCase\n"); if (!opt.no_action) { /* rewrite the $UpCase file from default */ res = rewrite_upcase(vol, na); /* free the bad upcase record */ if (!res) free(upcase); } else { /* keep the default upcase but return an error */ free(upcase); } } else { /* accept the upcase table read from $UpCase */ free(vol->upcase); vol->upcase = upcase; vol->upcase_len = upcase_len; res = 0; } error_exit : /* Done with the $UpCase mft record. */ if (na) ntfs_attr_close(na); if (ni && ntfs_inode_close(ni)) { ntfs_log_perror("Failed to close $UpCase"); } return (res); } /* * Rewrite the boot sector * * Returns 0 if successful */ static int rewrite_boot(struct ntfs_device *dev, char *full_bs, s32 sector_size) { s64 bw; int res; res = -1; ntfs_log_info("Rewriting the bootsector\n"); bw = ntfs_pwrite(dev, 0, sector_size, full_bs); if (bw == sector_size) res = 0; else { if (bw != -1) errno = EINVAL; if (!bw) ntfs_log_error("Failed to rewrite the bootsector (size=0)\n"); else ntfs_log_perror("Error rewriting the bootsector"); } return (res); } /* * Locate an unnamed attribute in an MFT record * * Returns NULL if not found (with no error message) */ static ATTR_RECORD *find_unnamed_attr(MFT_RECORD *mrec, ATTR_TYPES type) { ATTR_RECORD *a; u32 offset; /* fetch the requested attribute */ offset = le16_to_cpu(mrec->attrs_offset); a = (ATTR_RECORD*)((char*)mrec + offset); while ((offset < le32_to_cpu(mrec->bytes_in_use)) && (a->type != AT_END) && ((a->type != type) || a->name_length)) { offset += le32_to_cpu(a->length); a = (ATTR_RECORD*)((char*)mrec + offset); } if ((offset >= le32_to_cpu(mrec->bytes_in_use)) || (a->type != type) || a->name_length) a = (ATTR_RECORD*)NULL; return (a); } /* * First condition for having a self-located MFT : * only 16 MFT records are defined in MFT record 0 * * Only low-level library functions can be used. * * Returns TRUE if the condition is met. */ static BOOL short_mft_selfloc_condition(struct MFT_SELF_LOCATED *selfloc) { BOOL ok; ntfs_volume *vol; MFT_RECORD *mft0; ATTR_RECORD *a; runlist_element *rl; u16 seqn; ok = FALSE; vol = selfloc->vol; mft0 = selfloc->mft0; if ((ntfs_pread(vol->dev, vol->mft_lcn << vol->cluster_size_bits, vol->mft_record_size, mft0) == vol->mft_record_size) && !ntfs_mst_post_read_fixup((NTFS_RECORD*)mft0, vol->mft_record_size)) { a = find_unnamed_attr(mft0,AT_DATA); if (a && a->non_resident && (((sle64_to_cpu(a->highest_vcn) + 1) << vol->cluster_size_bits) == (SELFLOC_LIMIT*vol->mft_record_size))) { rl = ntfs_mapping_pairs_decompress(vol, a, NULL); if (rl) { /* * The first error condition is having only * 16 entries mapped in the first MFT record. */ if ((rl[0].lcn >= 0) && ((rl[0].length << vol->cluster_size_bits) == SELFLOC_LIMIT*vol->mft_record_size) && (rl[1].vcn == rl[0].length) && (rl[1].lcn == LCN_RL_NOT_MAPPED)) { ok = TRUE; seqn = le16_to_cpu( mft0->sequence_number); selfloc->mft_ref0 = ((MFT_REF)seqn) << 48; } free(rl); } } } return (ok); } /* * Second condition for having a self-located MFT : * The 16th MFT record is defined in MFT record >= 16 * * Only low-level library functions can be used. * * Returns TRUE if the condition is met. */ static BOOL attrlist_selfloc_condition(struct MFT_SELF_LOCATED *selfloc) { ntfs_volume *vol; ATTR_RECORD *a; ATTR_LIST_ENTRY *attrlist; ATTR_LIST_ENTRY *al; runlist_element *rl; VCN vcn; leVCN levcn; u32 length; int ok; ok = FALSE; length = 0; vol = selfloc->vol; a = find_unnamed_attr(selfloc->mft0,AT_ATTRIBUTE_LIST); if (a) { selfloc->attrlist_resident = !a->non_resident; selfloc->attrlist_lcn = 0; if (a->non_resident) { attrlist = selfloc->attrlist; rl = ntfs_mapping_pairs_decompress(vol, a, NULL); if (rl && (rl->lcn >= 0) && (sle64_to_cpu(a->data_size) < vol->cluster_size) && (ntfs_pread(vol->dev, rl->lcn << vol->cluster_size_bits, vol->cluster_size, attrlist) == vol->cluster_size)) { selfloc->attrlist_lcn = rl->lcn; al = attrlist; length = sle64_to_cpu(a->data_size); } } else { al = (ATTR_LIST_ENTRY*) ((char*)a + le16_to_cpu(a->value_offset)); length = le32_to_cpu(a->value_length); } if (length) { /* search for a data attribute defining entry 16 */ vcn = (SELFLOC_LIMIT*vol->mft_record_size) >> vol->cluster_size_bits; levcn = cpu_to_sle64(vcn); while ((length > 0) && al->length && ((al->type != AT_DATA) || ((leVCN)al->lowest_vcn != levcn))) { length -= le16_to_cpu(al->length); al = (ATTR_LIST_ENTRY*) ((char*)al + le16_to_cpu(al->length)); } if ((length > 0) && al->length && (al->type == AT_DATA) && !al->name_length && ((leVCN)al->lowest_vcn == levcn) && (MREF_LE(al->mft_reference) >= SELFLOC_LIMIT)) { selfloc->mft_ref1 = le64_to_cpu(al->mft_reference); selfloc->attrlist_to_ref1 = al; ok = TRUE; } } } return (ok); } /* * Third condition for having a self-located MFT : * The location of the second part of the MFT is defined in itself * * To locate the second part, we have to assume the first and the * second part of the MFT data are contiguous. * * Only low-level library functions can be used. * * Returns TRUE if the condition is met. */ static BOOL self_mapped_selfloc_condition(struct MFT_SELF_LOCATED *selfloc) { BOOL ok; s64 inum; u64 offs; VCN lowest_vcn; MFT_RECORD *mft1; ATTR_RECORD *a; ntfs_volume *vol; runlist_element *rl; ok = FALSE; vol = selfloc->vol; mft1 = selfloc->mft1; inum = MREF(selfloc->mft_ref1); offs = (vol->mft_lcn << vol->cluster_size_bits) + (inum << vol->mft_record_size_bits); if ((ntfs_pread(vol->dev, offs, vol->mft_record_size, mft1) == vol->mft_record_size) && !ntfs_mst_post_read_fixup((NTFS_RECORD*)mft1, vol->mft_record_size)) { lowest_vcn = (SELFLOC_LIMIT*vol->mft_record_size) >> vol->cluster_size_bits; a = find_unnamed_attr(mft1,AT_DATA); if (a && (mft1->flags & MFT_RECORD_IN_USE) && ((VCN)sle64_to_cpu(a->lowest_vcn) == lowest_vcn) && (le64_to_cpu(mft1->base_mft_record) == selfloc->mft_ref0) && ((u16)MSEQNO(selfloc->mft_ref1) == le16_to_cpu(mft1->sequence_number))) { rl = ntfs_mapping_pairs_decompress(vol, a, NULL); if ((rl[0].lcn == LCN_RL_NOT_MAPPED) && !rl[0].vcn && (rl[0].length == lowest_vcn) && (rl[1].vcn == lowest_vcn) && ((u64)(rl[1].lcn << vol->cluster_size_bits) <= offs) && ((u64)((rl[1].lcn + rl[1].length) << vol->cluster_size_bits) > offs)) { ok = TRUE; } } } return (ok); } /* * Fourth condition, to be able to fix a self-located MFT : * The MFT record 15 must be available. * * The MFT record 15 is expected to be marked in use, we assume * it is available if it has no parent, no name and no attr list. * * Only low-level library functions can be used. * * Returns TRUE if the condition is met. */ static BOOL spare_record_selfloc_condition(struct MFT_SELF_LOCATED *selfloc) { BOOL ok; s64 inum; u64 offs; MFT_RECORD *mft2; ntfs_volume *vol; ok = FALSE; vol = selfloc->vol; mft2 = selfloc->mft2; inum = SELFLOC_LIMIT - 1; offs = (vol->mft_lcn << vol->cluster_size_bits) + (inum << vol->mft_record_size_bits); if ((ntfs_pread(vol->dev, offs, vol->mft_record_size, mft2) == vol->mft_record_size) && !ntfs_mst_post_read_fixup((NTFS_RECORD*)mft2, vol->mft_record_size)) { if (!mft2->base_mft_record && (mft2->flags & MFT_RECORD_IN_USE) && !find_unnamed_attr(mft2,AT_ATTRIBUTE_LIST) && !find_unnamed_attr(mft2,AT_FILE_NAME)) { ok = TRUE; } } return (ok); } /* * Fix a self-located MFT by swapping two MFT records * * Only low-level library functions can be used. * * Returns 0 if the MFT corruption could be fixed. */ static int fix_selfloc_conditions(struct MFT_SELF_LOCATED *selfloc) { MFT_RECORD *mft1; MFT_RECORD *mft2; ATTR_RECORD *a; ATTR_LIST_ENTRY *al; ntfs_volume *vol; s64 offs; s64 offsm; s64 offs1; s64 offs2; s64 inum; u16 usa_ofs; int res; res = 0; /* * In MFT1, we must fix : * - the self-reference, if present, * - its own sequence number, must be 15 * - the sizes of the data attribute. */ vol = selfloc->vol; mft1 = selfloc->mft1; mft2 = selfloc->mft2; usa_ofs = le16_to_cpu(mft1->usa_ofs); if (usa_ofs >= 48) mft1->mft_record_number = const_cpu_to_le32(SELFLOC_LIMIT - 1); mft1->sequence_number = const_cpu_to_le16(SELFLOC_LIMIT - 1); a = find_unnamed_attr(mft1,AT_DATA); if (a) { a->allocated_size = const_cpu_to_sle64(0); a->data_size = const_cpu_to_sle64(0); a->initialized_size = const_cpu_to_sle64(0); } else res = -1; /* bug : it has been found earlier */ /* * In MFT2, we must fix : * - the self-reference, if present */ usa_ofs = le16_to_cpu(mft2->usa_ofs); if (usa_ofs >= 48) mft2->mft_record_number = cpu_to_le32(MREF(selfloc->mft_ref1)); /* * In the attribute list, we must fix : * - the reference to MFT1 */ al = selfloc->attrlist_to_ref1; al->mft_reference = MK_LE_MREF(SELFLOC_LIMIT - 1, SELFLOC_LIMIT - 1); /* * All fixes done, we can write all if allowed */ if (!res && !opt.no_action) { inum = SELFLOC_LIMIT - 1; offs2 = (vol->mft_lcn << vol->cluster_size_bits) + (inum << vol->mft_record_size_bits); inum = MREF(selfloc->mft_ref1); offs1 = (vol->mft_lcn << vol->cluster_size_bits) + (inum << vol->mft_record_size_bits); /* rewrite the attribute list */ if (selfloc->attrlist_resident) { /* write mft0 and mftmirr if it is resident */ offs = vol->mft_lcn << vol->cluster_size_bits; offsm = vol->mftmirr_lcn << vol->cluster_size_bits; if (ntfs_mst_pre_write_fixup( (NTFS_RECORD*)selfloc->mft0, vol->mft_record_size) || (ntfs_pwrite(vol->dev, offs, vol->mft_record_size, selfloc->mft0) != vol->mft_record_size) || (ntfs_pwrite(vol->dev, offsm, vol->mft_record_size, selfloc->mft0) != vol->mft_record_size)) res = -1; } else { /* write a full cluster if non resident */ offs = selfloc->attrlist_lcn << vol->cluster_size_bits; if (ntfs_pwrite(vol->dev, offs, vol->cluster_size, selfloc->attrlist) != vol->cluster_size) res = -1; } /* replace MFT2 by MFT1 and replace MFT1 by MFT2 */ if (!res && (ntfs_mst_pre_write_fixup((NTFS_RECORD*)selfloc->mft1, vol->mft_record_size) || ntfs_mst_pre_write_fixup((NTFS_RECORD*)selfloc->mft2, vol->mft_record_size) || (ntfs_pwrite(vol->dev, offs2, vol->mft_record_size, mft1) != vol->mft_record_size) || (ntfs_pwrite(vol->dev, offs1, vol->mft_record_size, mft2) != vol->mft_record_size))) res = -1; } return (res); } /* * Detect and fix a Windows XP bug, leading to a corrupt MFT * * Windows cannot boot anymore, so chkdsk cannot be started, which * is a good point, because chkdsk would have deleted all the files. * Older ntfs-3g fell into an endless recursion (recent versions * refuse to mount). * * This situation is very rare, but it was fun to fix it. * * The corrupted condition is : * - MFT entry 0 has only the runlist for MFT entries 0-15 * - The attribute list for MFT shows the second part * in an MFT record beyond 15 * Of course, this record has to be read in order to know where it is. * * Sample case, met in 2011 (Windows XP) : * MFT record 0 has : stdinfo, nonres attrlist, the first * part of MFT data (entries 0-15), and bitmap * MFT record 16 has the name * MFT record 17 has the third part of MFT data (16-117731) * MFT record 18 has the second part of MFT data (117732-170908) * * Assuming the second part of the MFT is contiguous to the first * part, we can find it, and fix the condition by relocating it * and swapping it with MFT record 15. * This record number 15 appears to be hardcoded into Windows NTFS. * * Only low-level library functions can be used. * * Returns 0 if the conditions for the error was met and * this error could be fixed, * -1 if the condition was not met or some error * which could not be fixed was encountered. */ static int fix_self_located_mft(ntfs_volume *vol) { struct MFT_SELF_LOCATED selfloc; BOOL res; ntfs_log_info("Checking for self-located MFT segment... "); res = -1; selfloc.vol = vol; selfloc.mft0 = (MFT_RECORD*)malloc(vol->mft_record_size); selfloc.mft1 = (MFT_RECORD*)malloc(vol->mft_record_size); selfloc.mft2 = (MFT_RECORD*)malloc(vol->mft_record_size); selfloc.attrlist = (ATTR_LIST_ENTRY*)malloc(vol->cluster_size); if (selfloc.mft0 && selfloc.mft1 && selfloc.mft2 && selfloc.attrlist) { if (short_mft_selfloc_condition(&selfloc) && attrlist_selfloc_condition(&selfloc) && self_mapped_selfloc_condition(&selfloc) && spare_record_selfloc_condition(&selfloc)) { ntfs_log_info(FOUND); ntfs_log_info("Fixing the self-located MFT segment... "); res = fix_selfloc_conditions(&selfloc); ntfs_log_info(res ? FAILED : OK); } else { ntfs_log_info(OK); res = -1; } free(selfloc.mft0); free(selfloc.mft1); free(selfloc.mft2); free(selfloc.attrlist); } return (res); } /* * Try an alternate boot sector and fix the real one * * Only after successful checks is the boot sector rewritten. * * The alternate boot sector is not rewritten, either because it * was found correct, or because we truncated the file system * and the last actual sector might be part of some file. * * Returns 0 if successful */ static int try_fix_boot(ntfs_volume *vol, char *full_bs, s64 read_sector, s64 fix_sectors, s32 sector_size) { s64 br; int res; s64 got_sectors; le16 sector_size_le; NTFS_BOOT_SECTOR *bs; res = -1; br = ntfs_pread(vol->dev, read_sector*sector_size, sector_size, full_bs); if (br != sector_size) { if (br != -1) errno = EINVAL; if (!br) ntfs_log_error("Failed to read alternate bootsector (size=0)\n"); else ntfs_log_perror("Error reading alternate bootsector"); } else { bs = (NTFS_BOOT_SECTOR*)full_bs; got_sectors = sle64_to_cpu(bs->number_of_sectors); bs->number_of_sectors = cpu_to_sle64(fix_sectors); /* alignment problem on Sparc, even doing memcpy() */ sector_size_le = cpu_to_le16(sector_size); if (!memcmp(§or_size_le, &bs->bpb.bytes_per_sector,2) && ntfs_boot_sector_is_ntfs(bs) && !ntfs_boot_sector_parse(vol, bs)) { ntfs_log_info("The alternate bootsector is usable\n"); if (fix_sectors != got_sectors) ntfs_log_info("Set sector count to %lld instead of %lld\n", (long long)fix_sectors, (long long)got_sectors); /* fix the normal boot sector */ if (!opt.no_action) { res = rewrite_boot(vol->dev, full_bs, sector_size); } else res = 0; } if (!res && !opt.no_action) ntfs_log_info("The boot sector has been rewritten\n"); } return (res); } /* * Try the alternate boot sector if the normal one is bad * * Actually : * - first try the last sector of the partition (expected location) * - then try the last sector as shown in the main boot sector, * (could be meaningful for an undersized partition) * - finally try truncating the file system actual size of partition * (could be meaningful for an oversized partition) * * if successful, rewrite the normal boot sector accordingly * * Returns 0 if successful */ static int try_alternate_boot(ntfs_volume *vol, char *full_bs, s32 sector_size, s64 shown_sectors) { s64 actual_sectors; int res; res = -1; ntfs_log_info("Trying the alternate boot sector\n"); /* * We do not rely on the sector size defined in the * boot sector, supposed to be corrupt, so we try to get * the actual sector size and defaulting to 512 if failed * to get. This value is only used to guess the alternate * boot sector location and it is checked against the * value found in the sector itself. It should not damage * anything if wrong. * * Note : the real last sector is not accounted for here. */ actual_sectors = ntfs_device_size_get(vol->dev,sector_size) - 1; /* first try the actual last sector */ if ((actual_sectors > 0) && !try_fix_boot(vol, full_bs, actual_sectors, actual_sectors, sector_size)) res = 0; /* then try the shown last sector, if less than actual */ if (res && (shown_sectors > 0) && (shown_sectors < actual_sectors) && !try_fix_boot(vol, full_bs, shown_sectors, shown_sectors, sector_size)) res = 0; /* then try reducing the number of sectors to actual value */ if (res && (shown_sectors > actual_sectors) && !try_fix_boot(vol, full_bs, 0, actual_sectors, sector_size)) res = 0; return (res); } /* * Check and fix the alternate boot sector * * The alternate boot sector is usually in the last sector of a * partition, which should not be used by the file system * (the sector count in the boot sector should be less than * the total sector count in the partition). * * chkdsk never changes the count in the boot sector. * - If this is less than the total count, chkdsk place the * alternate boot sector into the sector, * - if the count is the same as the total count, chkdsk place * the alternate boot sector into the middle sector (half * the total count rounded upwards) * - if the count is greater than the total count, chkdsk * declares the file system as raw, and refuses to fix anything. * * Here, we check and fix the alternate boot sector, only in the * first situation where the file system does not overflow on the * last sector. * * Note : when shrinking a partition, ntfsresize cannot determine * the future size of the partition. As a consequence the number of * sectors in the boot sectors may be less than the possible size. * * Returns 0 if successful */ static int check_alternate_boot(ntfs_volume *vol) { s64 got_sectors; s64 actual_sectors; s64 last_sector_off; char *full_bs; char *alt_bs; NTFS_BOOT_SECTOR *bs; s64 br; s64 bw; int res; res = -1; full_bs = (char*)malloc(vol->sector_size); alt_bs = (char*)malloc(vol->sector_size); if (!full_bs || !alt_bs) { ntfs_log_info("Error : failed to allocate memory\n"); goto error_exit; } /* Now read both bootsectors. */ br = ntfs_pread(vol->dev, 0, vol->sector_size, full_bs); if (br == vol->sector_size) { bs = (NTFS_BOOT_SECTOR*)full_bs; got_sectors = sle64_to_cpu(bs->number_of_sectors); actual_sectors = ntfs_device_size_get(vol->dev, vol->sector_size); if (actual_sectors > got_sectors) { last_sector_off = (actual_sectors - 1) << vol->sector_size_bits; ntfs_log_info("Checking the alternate boot sector... "); br = ntfs_pread(vol->dev, last_sector_off, vol->sector_size, alt_bs); } else { ntfs_log_info("Checking file system overflow... "); br = -1; } /* accept getting no byte, needed for short image files */ if (br >= 0) { if ((br != vol->sector_size) || memcmp(full_bs, alt_bs, vol->sector_size)) { if (opt.no_action) { ntfs_log_info("BAD\n"); } else { bw = ntfs_pwrite(vol->dev, last_sector_off, vol->sector_size, full_bs); if (bw == vol->sector_size) { ntfs_log_info("FIXED\n"); res = 0; } else { ntfs_log_info(FAILED); } } } else { ntfs_log_info(OK); res = 0; } } else { ntfs_log_info(FAILED); } } else { ntfs_log_info("Error : could not read the boot sector again\n"); } free(full_bs); free(alt_bs); error_exit : return (res); } /* * Try to fix problems which may arise in the start up sequence * * This is a replay of the normal start up sequence with fixes when * some problem arise. * * Returns 0 if there was an error and a fix is available */ static int fix_startup(struct ntfs_device *dev, unsigned long flags) { s64 br; ntfs_volume *vol; BOOL dev_open; s64 shown_sectors; char *full_bs; NTFS_BOOT_SECTOR *bs; s32 sector_size; int res; int eo; errno = 0; res = -1; dev_open = FALSE; full_bs = (char*)NULL; if (!dev || !dev->d_ops || !dev->d_name) { errno = EINVAL; ntfs_log_perror("%s: dev = %p", __FUNCTION__, dev); vol = (ntfs_volume*)NULL; goto error_exit; } /* Allocate the volume structure. */ vol = ntfs_volume_alloc(); if (!vol) goto error_exit; /* Create the default upcase table. */ vol->upcase_len = ntfs_upcase_build_default(&vol->upcase); if (!vol->upcase_len || !vol->upcase) goto error_exit; /* Default with no locase table and case sensitive file names */ vol->locase = (ntfschar*)NULL; NVolSetCaseSensitive(vol); /* by default, all files are shown and not marked hidden */ NVolSetShowSysFiles(vol); NVolSetShowHidFiles(vol); NVolClearHideDotFiles(vol); if (flags & NTFS_MNT_RDONLY) NVolSetReadOnly(vol); /* ...->open needs bracketing to compile with glibc 2.7 */ if ((dev->d_ops->open)(dev, NVolReadOnly(vol) ? O_RDONLY: O_RDWR)) { ntfs_log_perror("Error opening '%s'", dev->d_name); goto error_exit; } dev_open = TRUE; /* Attach the device to the volume. */ vol->dev = dev; sector_size = ntfs_device_sector_size_get(dev); if (sector_size <= 0) sector_size = DEFAULT_SECTOR_SIZE; full_bs = (char*)malloc(sector_size); if (!full_bs) goto error_exit; /* Now read the bootsector. */ br = ntfs_pread(dev, 0, sector_size, full_bs); if (br != sector_size) { if (br != -1) errno = EINVAL; if (!br) ntfs_log_error("Failed to read bootsector (size=0)\n"); else ntfs_log_perror("Error reading bootsector"); goto error_exit; } bs = (NTFS_BOOT_SECTOR*)full_bs; if (!ntfs_boot_sector_is_ntfs(bs) /* get the bootsector data, only fails when inconsistent */ || (ntfs_boot_sector_parse(vol, bs) < 0)) { shown_sectors = sle64_to_cpu(bs->number_of_sectors); /* boot sector is wrong, try the alternate boot sector */ if (try_alternate_boot(vol, full_bs, sector_size, shown_sectors)) { errno = EINVAL; goto error_exit; } res = 0; } else { res = fix_self_located_mft(vol); } error_exit: if (res) { switch (errno) { case ENOMEM : ntfs_log_error("Failed to allocate memory\n"); break; case EINVAL : ntfs_log_error("Unrecoverable error\n"); break; default : break; } } eo = errno; free(full_bs); if (vol) { free(vol->upcase); free(vol); } if (dev_open) { (dev->d_ops->close)(dev); } errno = eo; return (res); } /** * fix_mount */ static int fix_mount(void) { int ret = 0; /* default success */ ntfs_volume *vol; struct ntfs_device *dev; unsigned long flags; ntfs_log_info("Attempting to correct errors... "); dev = ntfs_device_alloc(opt.volume, 0, &ntfs_device_default_io_ops, NULL); if (!dev) { ntfs_log_info(FAILED); ntfs_log_perror("Failed to allocate device"); return -1; } flags = (opt.no_action ? NTFS_MNT_RDONLY : 0); vol = ntfs_volume_startup(dev, flags); if (!vol) { ntfs_log_info(FAILED); ntfs_log_perror("Failed to startup volume"); /* Try fixing the bootsector and MFT, then redo the startup */ if (!fix_startup(dev, flags)) { if (opt.no_action) ntfs_log_info("The startup data can be fixed, " "but no change was requested\n"); else vol = ntfs_volume_startup(dev, flags); } if (!vol) { ntfs_log_error("Volume is corrupt. You should run chkdsk.\n"); ntfs_device_free(dev); return -1; } if (opt.no_action) ret = -1; /* error present and not fixed */ } /* if option -n proceed despite errors, to display them all */ if ((!ret || opt.no_action) && (fix_mftmirr(vol) < 0)) ret = -1; if ((!ret || opt.no_action) && (fix_upcase(vol) < 0)) ret = -1; if ((!ret || opt.no_action) && (set_dirty_flag(vol) < 0)) ret = -1; if ((!ret || opt.no_action) && (empty_journal(vol) < 0)) ret = -1; /* * ntfs_umount() will invoke ntfs_device_free() for us. * Ignore the returned error resulting from partial mounting. */ ntfs_umount(vol, 1); return ret; } /** * main */ int main(int argc, char **argv) { ntfs_volume *vol; unsigned long mnt_flags; unsigned long flags; int ret = 1; /* failure */ BOOL force = FALSE; ntfs_log_set_handler(ntfs_log_handler_outerr); parse_options(argc, argv); if (!ntfs_check_if_mounted(opt.volume, &mnt_flags)) { if ((mnt_flags & NTFS_MF_MOUNTED) && !(mnt_flags & NTFS_MF_READONLY) && !force) { ntfs_log_error("Refusing to operate on read-write " "mounted device %s.\n", opt.volume); exit(1); } } else ntfs_log_perror("Failed to determine whether %s is mounted", opt.volume); /* Attempt a full mount first. */ flags = (opt.no_action ? NTFS_MNT_RDONLY : 0); ntfs_log_info("Mounting volume... "); vol = ntfs_mount(opt.volume, flags); if (vol) { ntfs_log_info(OK); ntfs_log_info("Processing of $MFT and $MFTMirr completed " "successfully.\n"); } else { ntfs_log_info(FAILED); if (fix_mount() < 0) { if (opt.no_action) ntfs_log_info("No change made\n"); exit(1); } vol = ntfs_mount(opt.volume, 0); if (!vol) { ntfs_log_perror("Remount failed"); exit(1); } } if (check_alternate_boot(vol)) { ntfs_log_error("Error: Failed to fix the alternate boot sector\n"); exit(1); } /* So the unmount does not clear it again. */ /* Porting note: The WasDirty flag was set here to prevent ntfs_unmount * from clearing the dirty bit (which might have been set in * fix_mount()). So the intention is to leave the dirty bit set. * * libntfs-3g does not automatically set or clear dirty flags on * mount/unmount, this means that the assumption that the dirty flag is * now set does not hold. So we need to set it if not already set. * * However clear the flag if requested to do so, at this stage * mounting was successful. */ if (opt.clear_dirty) vol->flags &= ~VOLUME_IS_DIRTY; else vol->flags |= VOLUME_IS_DIRTY; if (!opt.no_action && ntfs_volume_write_flags(vol, vol->flags)) { ntfs_log_error("Error: Failed to set volume dirty flag (%d " "(%s))!\n", errno, strerror(errno)); } /* Check NTFS version is ok for us (in $Volume) */ ntfs_log_info("NTFS volume version is %i.%i.\n", vol->major_ver, vol->minor_ver); if (ntfs_version_is_supported(vol)) { ntfs_log_error("Error: Unknown NTFS version.\n"); goto error_exit; } if (opt.clear_bad_sectors && !opt.no_action) { if (clear_badclus(vol)) { ntfs_log_error("Error: Failed to un-mark bad sectors.\n"); goto error_exit; } } if (vol->major_ver >= 3) { /* * FIXME: If on NTFS 3.0+, check for presence of the usn * journal and stamp it if present. */ } /* FIXME: We should be marking the quota out of date, too. */ /* That's all for now! */ ntfs_log_info("NTFS partition %s was processed successfully.\n", vol->dev->d_name); /* Set return code to 0. */ ret = 0; error_exit: if (ntfs_umount(vol, 1)) { ntfs_log_info("Failed to unmount partition\n"); ret = 1; } if (ret) exit(ret); return ret; }