atomic store was lacking a barrier, which was fine for legacy arm with
no real smp and kernel-emulated cas, but unsuitable for more modern
systems. the kernel provides another "kuser" function, at 0xffff0fa0,
which could be used for the barrier, but using that would drop support
for kernels 2.6.12 through 2.6.14 unless an extra conditional were
added to check for barrier availability. just using the barrier in the
kernel cas is easier, and, based on my reading of the assembly code in
the kernel, does not appear to be significantly slower.
at the same time, other atomic operations are adapted to call the
kernel cas function directly rather than using a_cas; due to small
differences in their interface contracts, this makes the generated
code much simpler.
PAGE_SIZE was hardcoded to 4096, which is historically what most
systems use, but on several archs it is a kernel config parameter,
user space can only know it at execution time from the aux vector.
PAGE_SIZE and PAGESIZE are not defined on archs where page size is
a runtime parameter, applications should use sysconf(_SC_PAGE_SIZE)
to query it. Internally libc code defines PAGE_SIZE to libc.page_size,
which is set to aux[AT_PAGESZ] in __init_libc and early in __dynlink
as well. (Note that libc.page_size can be accessed without GOT, ie.
before relocations are done)
Some fpathconf settings are hardcoded to 4096, these should be actually
queried from the filesystem using statfs.
msg.h was wrong for big-endian (wrong endiannness padding).
shm.h was just plain wrong (mips is not supposed to have padding).
both changes were tested using libc-test on qemu-system-mips.
it turns out that __SOFTFP__ does not indicate the ABI in use but
rather that fpu instructions are not to be used at all. this is
specified in ARM's documentation so I'm unclear on how I previously
got the wrong idea. unfortunately, this resulted in the 0.9.12 release
producing a dynamic linker with the wrong name. fortunately, there do
not yet seem to be any public toolchain builds using the wrong name.
the __ARM_PCS_VFP macro does not seem to be official from ARM, and in
fact it was missing from the very earliest gcc versions (around 4.5.x)
that added -mfloat-abi=hard. it would be possible on such versions to
perform some ugly linker-based tests instead in hopes that the linker
will reject ABI-mismatching object files, if there is demand for
supporting such versions. I would probably prefer to document which
versions are broken and warn users to manually add -D__ARM_PCS_VFP if
using such a version.
there's definitely an argument to be made that the fenv macros should
be exposed even in -mfloat-abi=softfp mode. for now, I have chosen not
to expose them in this case, since the math library will not
necessarily have the capability to raise exceptions (it depends on the
CFLAGS used to compile it), and since exceptions are officially
excluded from the ARM EABI, which the plain "arm" arch aims to
follow.
without these, calls may be resolved incorrectly if the calling code
has been compiled to thumb instead of arm. it's not clear to me at
this point whether crt_arch.h is even working if crt1.c is built as
thumb; this needs testing. but the _init and _fini issues were known
to cause crashes in static-linked apps when libc was built as thumb,
and this commit should fix that issue.
a mips signal mask contains 128 bits, enough for signals 1 through
128. however, the exit status obtained from the wait-family functions
only has room for values up to 127. reportedly signal 128 was causing
kernelspace bugs, so it was removed from the kernel recently; even
without that issue, however, it was impossible to support it correctly
in userspace.
at the same time, the bug was masked on musl by SIGRTMAX incorrectly
yielding 64 on mips, rather than the "correct" value of 128. now that
the _NSIG issue is fixed, SIGRTMAX can be fixed at the same time,
exposing the full range of signals for application use.
note that the (nonstandardized) libc _NSIG value is actually one
greater than the max signal number, and also one greater than the
kernel headers' idea of _NSIG. this is the reason for the discrepency
with the recent kernel changes. since reducing _NSIG by one brought it
down from 129 to 128, rather than from 128 to 127, _NSIG/8, used
widely in the musl sources, is unchanged.
the only immediate effect of this commit is enabling PIE support on
some archs that did not previously have any Scrt1.s, since the
existing asm files for crt1 override this C code. so some of the
crt_arch.h files committed are only there for the sake of documenting
what their archs "would do" if they used the new C-based crt1.
the expectation is that new archs should use this new system rather
than using heavy asm for crt1. aside from being easier and less
error-prone, it also ensures that PIE support is available immediately
(since Scrt1.o is generated from the same C source, using -fPIC)
rather than having to be added as an afterthought in the porting
process.
this is necessary to meet the C++ ABI target. alternatives were
considered to avoid the size increase for non-sig jmp_buf objects, but
they seemed to have worse properties. moreover, the relative size
increase is only extreme on x86[_64]; one way of interpreting this is
that, if the size increase from this patch makes jmp_buf use too much
memory, then the program was already using too much memory when built
for non-x86 archs.
rather than moving nlink_t back to the arch-specific file, I've added
a macro _Reg defined to the canonical type for register-size values on
the arch. this is not the same as _Addr for (not-yet-supported)
32-on-64 pseudo-archs like x32 and mips n32, so a new macro was
needed.
since the old, poorly-thought-out musl approach to init/fini arrays on
ARM (when it was the only arch that needed them) was to put the code
in crti/crtn and have the legacy _init/_fini code run the arrays,
adding proper init/fini array support caused the arrays to get
processed twice on ARM. I'm not sure skipping legacy init/fini
processing is the best solution to the problem, but it works, and it
shouldn't break anything since the legacy init/fini system was never
used for ARM EABI.
aside from the obvious C++ ABI purpose for this change, it also brings
musl into alignment with the compiler's idea of the definition of
wint_t (use in -Wformat), and makes the situation less awkward on ARM,
where wchar_t is unsigned.
internal code using wint_t and WEOF was checked against this change,
and while a few cases of storing WEOF into wchar_t were found, they
all seem to operate properly with the natural conversion from unsigned
to signed.
the arch-specific bits/alltypes.h.sh has been replaced with a generic
alltypes.h.in and minimal arch-specific bits/alltypes.h.in.
this commit is intended to have no functional changes except:
- exposing additional symbols that POSIX allows but does not require
- changing the C++ name mangling for some types
- fixing the signedness of blksize_t on powerpc (POSIX requires signed)
- fixing the limit macros for sig_atomic_t on x86_64
- making dev_t an unsigned type (ABI matching goal, and more logical)
in addition, some types that were wrongly defined with long on 32-bit
archs were changed to int, and vice versa; this change is
non-functional except for the possibility of making pointer types
mismatch, and only affects programs that were using them incorrectly,
and only at build-time, not runtime.
the following changes were made in the interest of moving
non-arch-specific types out of the alltypes system and into the
headers they're associated with, and also will tend to improve
application compatibility:
- netdb.h now includes netinet/in.h (for socklen_t and uint32_t)
- netinet/in.h now includes sys/socket.h and inttypes.h
- sys/resource.h now includes sys/time.h (for struct timeval)
- sys/wait.h now includes signal.h (for siginfo_t)
- langinfo.h now includes nl_types.h (for nl_item)
for the types in stdint.h:
- types which are of no interest to other headers were moved out of
the alltypes system.
- fast types for 8- and 64-bit are hard-coded (at least for now); only
the 16- and 32-bit ones have reason to vary by arch.
and the following types have been changed for C++ ABI purposes;
- mbstate_t now has a struct tag, __mbstate_t
- FILE's struct tag has been changed to _IO_FILE
- DIR's struct tag has been changed to __dirstream
- locale_t's struct tag has been changed to __locale_struct
- pthread_t is defined as unsigned long in C++ mode only
- fpos_t now has a struct tag, _G_fpos64_t
- fsid_t's struct tag has been changed to __fsid_t
- idtype_t has been made an enum type (also required by POSIX)
- nl_catd has been changed from long to void *
- siginfo_t's struct tag has been removed
- sigset_t's has been given a struct tag, __sigset_t
- stack_t has been given a struct tag, sigaltstack
- suseconds_t has been changed to long on 32-bit archs
- [u]intptr_t have been changed from long to int rank on 32-bit archs
- dev_t has been made unsigned
summary of tests that have been performed against these changes:
- nsz's libc-test (diff -u before and after)
- C++ ABI check symbol dump (diff -u before, after, glibc)
- grepped for __NEED, made sure types needed are still in alltypes
- built gcc 3.4.6
this change is both to fix one of the remaining type (and thus C++
ABI) mismatches with glibc/LSB and to allow use of the full range of
uid and gid values, if so desired.
passwd/group access functions were not prepared to deal with unsigned
values, so they too have been fixed with this commit.
prior to this change, using a non-default syslibdir was impractical on
systems where the ordinary library paths contain musl-incompatible
library files. the file containing search paths was always taken from
/etc, which would either correspond to a system-wide musl
installation, or fail to exist at all, resulting in searching of the
default library path.
the new search strategy is safe even for suid programs because the
pathname used comes from the PT_INTERP header of the program being
run, rather than any external input.
as part of this change, I have also begun differentiating the names of
arch variants that differ by endianness or floating point calling
convention. the corresponding changes in the build system and and gcc
wrapper script (to use an alternate dynamic linker name) for these
configurations have not yet been made.
despite declaring functions that take arguments of type va_list, these
headers are not permitted by the c standard to expose the definition
of va_list, so an alias for the type must be used. the name
__isoc_va_list was chosen to convey that the purpose of this alternate
name is for iso c conformance, and to avoid the multitude of names
which gcc mangles with its hideous "fixincludes" monstrosity, leading
to serious header breakage if these "fixes" are run.
previously we were using an unsigned type on 32-bit systems so that
subtraction would be well-defined when it wrapped, but since wrapping
is non-conforming anyway (when clock() overflows, it has to return -1)
the only use of unsigned would be to buy a little bit more time before
overflow. this does not seem worth having the type vary per-arch
(which leads to more arch-specific bugs) or disagree with the ABI musl
(mostly) follows.
there was some question as to how many decimal places to use, since
one decimal place is always sufficient to identify the smallest
denormal uniquely. for now, I'm following the example in the C
standard which is consistent with the other min/max macros we already
had in place.
the preprocessor can reliably determine the signedness of wchar_t.
L'\0' is used for 0 in the expressions so that, if the underlying type
of wchar_t is long rather than int, the promoted type of the
expression will match the type of wchar_t.
this type was removed back in 5243e5f160 ,
because it was removed from the XSI specs.
however some apps use it.
since it's in the POSIX reserved namespace, we can expose it
unconditionally.
the issue at hand is that many syscalls require as an argument the
kernel-ABI size of sigset_t, intended to allow the kernel to switch to
a larger sigset_t in the future. previously, each arch was defining
this size in syscall_arch.h, which was redundant with the definition
of _NSIG in bits/signal.h. as it's used in some not-quite-portable
application code as well, _NSIG is much more likely to be recognized
and understood immediately by someone reading the code, and it's also
shorter and less cluttered.
note that _NSIG is actually 65/129, not 64/128, but the division takes
care of throwing away the off-by-one part.
wctype_t was incorrectly "int" rather than "long" on x86_64. not only
is this an ABI incompatibility; it's also a major design flaw if we
ever wanted wctype_t to be implemented as a pointer, which would be
necessary if locales support custom character classes, since int is
too small to store a converted pointer. this commit fixes wctype_t to
be unsigned long on all archs, matching the LSB ABI; this change does
not matter for C code, but for C++ it affects mangling.
the same issue applied to wctrans_t. glibc/LSB defines this type as
const __int32_t *, but since no such definition is visible, I've just
expanded the definition, int, everywhere.
it would be nice if these types (which don't vary by arch) could be in
wctype.h, but the OB XSI requirement in POSIX that wchar.h expose some
types and functions from wctype.h precludes doing so. glibc works
around this with some hideous hacks, but trying to duplicate that
would go against the intent of musl's headers.
arm eabi requires this symbol for static C++ dtors.
usually it is provided by libstdc++, but when a C++ program
doesn't use the std lib (free-standing), the libc has to provide
it.
this was encountered while building transmission, which
depends on such a C++ library (libutp).
this function is nearly identical to __cxa_atexit, but it has the
order of argumens swapped for "performance reasons".
see page 25 of
http://infocenter.arm.com/help/topic/com.arm.doc.ihi0043d/IHI0043D_rtabi.pdf
there are other aeabi specific C++ support functions missing, but
it is not clear yet that GCC makes use of them so we omit them for
the moment.
they were accidentally exposed under just baseline POSIX, which is a
big namespace pollution issue. thankfully glibc only exposes them
under _GNU_SOURCE, not under any of its other options, so omitting
the pollution in the default _BSD_SOURCE profile does not hurt
application compatibility at all.