mesa/bin/ci/gitlab_gql.py
Eric Engestrom f4f4d80096 bin/gitlab_gql: only get the pipeline when a pipeline is needed
Otherwise, options like --print-merged-yaml are broken when their
commit's push didn't create a pipeline.

Fixes: b87e092489 ("ci/bin: Fix gitlab_gql methods that uses needs DAG")
Part-of: <https://gitlab.freedesktop.org/mesa/mesa/-/merge_requests/26142>
2023-11-11 06:19:44 +00:00

540 lines
19 KiB
Python
Executable File

#!/usr/bin/env python3
# For the dependencies, see the requirements.txt
import logging
import re
import traceback
from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, Namespace
from collections import OrderedDict
from copy import deepcopy
from dataclasses import dataclass, field
from itertools import accumulate
from os import getenv
from pathlib import Path
from subprocess import check_output
from typing import Any, Iterable, Optional, Pattern, TypedDict, Union
import yaml
from filecache import DAY, filecache
from gql import Client, gql
from gql.transport.requests import RequestsHTTPTransport
from graphql import DocumentNode
class DagNode(TypedDict):
needs: set[str]
stage: str
# `name` is redundant but is here for retro-compatibility
name: str
# see create_job_needs_dag function for more details
Dag = dict[str, DagNode]
StageSeq = OrderedDict[str, set[str]]
TOKEN_DIR = Path(getenv("XDG_CONFIG_HOME") or Path.home() / ".config")
def get_token_from_default_dir() -> str:
token_file = TOKEN_DIR / "gitlab-token"
try:
return str(token_file.resolve())
except FileNotFoundError as ex:
print(
f"Could not find {token_file}, please provide a token file as an argument"
)
raise ex
def get_project_root_dir():
root_path = Path(__file__).parent.parent.parent.resolve()
gitlab_file = root_path / ".gitlab-ci.yml"
assert gitlab_file.exists()
return root_path
@dataclass
class GitlabGQL:
_transport: Any = field(init=False)
client: Client = field(init=False)
url: str = "https://gitlab.freedesktop.org/api/graphql"
token: Optional[str] = None
def __post_init__(self) -> None:
self._setup_gitlab_gql_client()
def _setup_gitlab_gql_client(self) -> None:
# Select your transport with a defined url endpoint
headers = {}
if self.token:
headers["Authorization"] = f"Bearer {self.token}"
self._transport = RequestsHTTPTransport(url=self.url, headers=headers)
# Create a GraphQL client using the defined transport
self.client = Client(transport=self._transport, fetch_schema_from_transport=True)
def query(
self,
gql_file: Union[Path, str],
params: dict[str, Any] = {},
operation_name: Optional[str] = None,
paginated_key_loc: Iterable[str] = [],
disable_cache: bool = False,
) -> dict[str, Any]:
def run_uncached() -> dict[str, Any]:
if paginated_key_loc:
return self._sweep_pages(gql_file, params, operation_name, paginated_key_loc)
return self._query(gql_file, params, operation_name)
if disable_cache:
return run_uncached()
try:
# Create an auxiliary variable to deliver a cached result and enable catching exceptions
# Decorate the query to be cached
if paginated_key_loc:
result = self._sweep_pages_cached(
gql_file, params, operation_name, paginated_key_loc
)
else:
result = self._query_cached(gql_file, params, operation_name)
return result # type: ignore
except Exception as ex:
logging.error(f"Cached query failed with {ex}")
# print exception traceback
traceback_str = "".join(traceback.format_exception(ex))
logging.error(traceback_str)
self.invalidate_query_cache()
logging.error("Cache invalidated, retrying without cache")
finally:
return run_uncached()
def _query(
self,
gql_file: Union[Path, str],
params: dict[str, Any] = {},
operation_name: Optional[str] = None,
) -> dict[str, Any]:
# Provide a GraphQL query
source_path: Path = Path(__file__).parent
pipeline_query_file: Path = source_path / gql_file
query: DocumentNode
with open(pipeline_query_file, "r") as f:
pipeline_query = f.read()
query = gql(pipeline_query)
# Execute the query on the transport
return self.client.execute_sync(
query, variable_values=params, operation_name=operation_name
)
@filecache(DAY)
def _sweep_pages_cached(self, *args, **kwargs):
return self._sweep_pages(*args, **kwargs)
@filecache(DAY)
def _query_cached(self, *args, **kwargs):
return self._query(*args, **kwargs)
def _sweep_pages(
self, query, params, operation_name=None, paginated_key_loc: Iterable[str] = []
) -> dict[str, Any]:
"""
Retrieve paginated data from a GraphQL API and concatenate the results into a single
response.
Args:
query: represents a filepath with the GraphQL query to be executed.
params: a dictionary that contains the parameters to be passed to the query. These
parameters can be used to filter or modify the results of the query.
operation_name: The `operation_name` parameter is an optional parameter that specifies
the name of the GraphQL operation to be executed. It is used when making a GraphQL
query to specify which operation to execute if there are multiple operations defined
in the GraphQL schema. If not provided, the default operation will be executed.
paginated_key_loc (Iterable[str]): The `paginated_key_loc` parameter is an iterable of
strings that represents the location of the paginated field within the response. It
is used to extract the paginated field from the response and append it to the final
result. The node has to be a list of objects with a `pageInfo` field that contains
at least the `hasNextPage` and `endCursor` fields.
Returns:
a dictionary containing the response from the query with the paginated field
concatenated.
"""
def fetch_page(cursor: str | None = None) -> dict[str, Any]:
if cursor:
params["cursor"] = cursor
logging.info(
f"Found more than 100 elements, paginating. "
f"Current cursor at {cursor}"
)
return self._query(query, params, operation_name)
# Execute the initial query
response: dict[str, Any] = fetch_page()
# Initialize an empty list to store the final result
final_partial_field: list[dict[str, Any]] = []
# Loop until all pages have been retrieved
while True:
# Get the partial field to be appended to the final result
partial_field = response
for key in paginated_key_loc:
partial_field = partial_field[key]
# Append the partial field to the final result
final_partial_field += partial_field["nodes"]
# Check if there are more pages to retrieve
page_info = partial_field["pageInfo"]
if not page_info["hasNextPage"]:
break
# Execute the query with the updated cursor parameter
response = fetch_page(page_info["endCursor"])
# Replace the "nodes" field in the original response with the final result
partial_field["nodes"] = final_partial_field
return response
def invalidate_query_cache(self) -> None:
logging.warning("Invalidating query cache")
try:
self._sweep_pages._db.clear()
self._query._db.clear()
except AttributeError as ex:
logging.warning(f"Could not invalidate cache, maybe it was not used in {ex.args}?")
def insert_early_stage_jobs(stage_sequence: StageSeq, jobs_metadata: Dag) -> Dag:
pre_processed_dag: dict[str, set[str]] = {}
jobs_from_early_stages = list(accumulate(stage_sequence.values(), set.union))
for job_name, metadata in jobs_metadata.items():
final_needs: set[str] = deepcopy(metadata["needs"])
# Pre-process jobs that are not based on needs field
# e.g. sanity job in mesa MR pipelines
if not final_needs:
job_stage: str = jobs_metadata[job_name]["stage"]
stage_index: int = list(stage_sequence.keys()).index(job_stage)
if stage_index > 0:
final_needs |= jobs_from_early_stages[stage_index - 1]
pre_processed_dag[job_name] = final_needs
for job_name, needs in pre_processed_dag.items():
jobs_metadata[job_name]["needs"] = needs
return jobs_metadata
def traverse_dag_needs(jobs_metadata: Dag) -> None:
created_jobs = set(jobs_metadata.keys())
for job, metadata in jobs_metadata.items():
final_needs: set = deepcopy(metadata["needs"]) & created_jobs
# Post process jobs that are based on needs field
partial = True
while partial:
next_depth: set[str] = {n for dn in final_needs for n in jobs_metadata[dn]["needs"]}
partial: bool = not final_needs.issuperset(next_depth)
final_needs = final_needs.union(next_depth)
jobs_metadata[job]["needs"] = final_needs
def extract_stages_and_job_needs(
pipeline_jobs: dict[str, Any], pipeline_stages: dict[str, Any]
) -> tuple[StageSeq, Dag]:
jobs_metadata = Dag()
# Record the stage sequence to post process deps that are not based on needs
# field, for example: sanity job
stage_sequence: OrderedDict[str, set[str]] = OrderedDict()
for stage in pipeline_stages["nodes"]:
stage_sequence[stage["name"]] = set()
for job in pipeline_jobs["nodes"]:
stage_sequence[job["stage"]["name"]].add(job["name"])
dag_job: DagNode = {
"name": job["name"],
"stage": job["stage"]["name"],
"needs": set([j["node"]["name"] for j in job["needs"]["edges"]]),
}
jobs_metadata[job["name"]] = dag_job
return stage_sequence, jobs_metadata
def create_job_needs_dag(gl_gql: GitlabGQL, params, disable_cache: bool = True) -> Dag:
"""
This function creates a Directed Acyclic Graph (DAG) to represent a sequence of jobs, where each
job has a set of jobs that it depends on (its "needs") and belongs to a certain "stage".
The "name" of the job is used as the key in the dictionary.
For example, consider the following DAG:
1. build stage: job1 -> job2 -> job3
2. test stage: job2 -> job4
- The job needs for job3 are: job1, job2
- The job needs for job4 are: job2
- The job2 needs to wait all jobs from build stage to finish.
The resulting DAG would look like this:
dag = {
"job1": {"needs": set(), "stage": "build", "name": "job1"},
"job2": {"needs": {"job1", "job2", job3"}, "stage": "test", "name": "job2"},
"job3": {"needs": {"job1", "job2"}, "stage": "build", "name": "job3"},
"job4": {"needs": {"job2"}, "stage": "test", "name": "job4"},
}
To access the job needs, one can do:
dag["job3"]["needs"]
This will return the set of jobs that job3 needs: {"job1", "job2"}
Args:
gl_gql (GitlabGQL): The `gl_gql` parameter is an instance of the `GitlabGQL` class, which is
used to make GraphQL queries to the GitLab API.
params (dict): The `params` parameter is a dictionary that contains the necessary parameters
for the GraphQL query. It is used to specify the details of the pipeline for which the
job needs DAG is being created.
The specific keys and values in the `params` dictionary will depend on
the requirements of the GraphQL query being executed
disable_cache (bool): The `disable_cache` parameter is a boolean that specifies whether the
Returns:
The final DAG (Directed Acyclic Graph) representing the job dependencies sourced from needs
or stages rule.
"""
stages_jobs_gql = gl_gql.query(
"pipeline_details.gql",
params=params,
paginated_key_loc=["project", "pipeline", "jobs"],
disable_cache=disable_cache,
)
pipeline_data = stages_jobs_gql["project"]["pipeline"]
if not pipeline_data:
raise RuntimeError(f"Could not find any pipelines for {params}")
stage_sequence, jobs_metadata = extract_stages_and_job_needs(
pipeline_data["jobs"], pipeline_data["stages"]
)
# Fill the DAG with the job needs from stages that don't have any needs but still need to wait
# for previous stages
final_dag = insert_early_stage_jobs(stage_sequence, jobs_metadata)
# Now that each job has its direct needs filled correctly, update the "needs" field for each job
# in the DAG by performing a topological traversal
traverse_dag_needs(final_dag)
return final_dag
def filter_dag(dag: Dag, regex: Pattern) -> Dag:
jobs_with_regex: set[str] = {job for job in dag if regex.match(job)}
return Dag({job: data for job, data in dag.items() if job in sorted(jobs_with_regex)})
def print_dag(dag: Dag) -> None:
for job, data in dag.items():
print(f"{job}:")
print(f"\t{' '.join(data['needs'])}")
print()
def fetch_merged_yaml(gl_gql: GitlabGQL, params) -> dict[str, Any]:
gitlab_yml_file = get_project_root_dir() / ".gitlab-ci.yml"
content = Path(gitlab_yml_file).read_text().strip()
params["content"] = content
raw_response = gl_gql.query("job_details.gql", params)
if merged_yaml := raw_response["ciConfig"]["mergedYaml"]:
return yaml.safe_load(merged_yaml)
gl_gql.invalidate_query_cache()
raise ValueError(
"""
Could not fetch any content for merged YAML,
please verify if the git SHA exists in remote.
Maybe you forgot to `git push`? """
)
def recursive_fill(job, relationship_field, target_data, acc_data: dict, merged_yaml):
if relatives := job.get(relationship_field):
if isinstance(relatives, str):
relatives = [relatives]
for relative in relatives:
parent_job = merged_yaml[relative]
acc_data = recursive_fill(parent_job, acc_data, merged_yaml) # type: ignore
acc_data |= job.get(target_data, {})
return acc_data
def get_variables(job, merged_yaml, project_path, sha) -> dict[str, str]:
p = get_project_root_dir() / ".gitlab-ci" / "image-tags.yml"
image_tags = yaml.safe_load(p.read_text())
variables = image_tags["variables"]
variables |= merged_yaml["variables"]
variables |= job["variables"]
variables["CI_PROJECT_PATH"] = project_path
variables["CI_PROJECT_NAME"] = project_path.split("/")[1]
variables["CI_REGISTRY_IMAGE"] = "registry.freedesktop.org/${CI_PROJECT_PATH}"
variables["CI_COMMIT_SHA"] = sha
while recurse_among_variables_space(variables):
pass
return variables
# Based on: https://stackoverflow.com/a/2158532/1079223
def flatten(xs):
for x in xs:
if isinstance(x, Iterable) and not isinstance(x, (str, bytes)):
yield from flatten(x)
else:
yield x
def get_full_script(job) -> list[str]:
script = []
for script_part in ("before_script", "script", "after_script"):
script.append(f"# {script_part}")
lines = flatten(job.get(script_part, []))
script.extend(lines)
script.append("")
return script
def recurse_among_variables_space(var_graph) -> bool:
updated = False
for var, value in var_graph.items():
value = str(value)
dep_vars = []
if match := re.findall(r"(\$[{]?[\w\d_]*[}]?)", value):
all_dep_vars = [v.lstrip("${").rstrip("}") for v in match]
# print(value, match, all_dep_vars)
dep_vars = [v for v in all_dep_vars if v in var_graph]
for dep_var in dep_vars:
dep_value = str(var_graph[dep_var])
new_value = var_graph[var]
new_value = new_value.replace(f"${{{dep_var}}}", dep_value)
new_value = new_value.replace(f"${dep_var}", dep_value)
var_graph[var] = new_value
updated |= dep_value != new_value
return updated
def get_job_final_definition(job_name, merged_yaml, project_path, sha):
job = merged_yaml[job_name]
variables = get_variables(job, merged_yaml, project_path, sha)
print("# --------- variables ---------------")
for var, value in sorted(variables.items()):
print(f"export {var}={value!r}")
# TODO: Recurse into needs to get full script
# TODO: maybe create a extra yaml file to avoid too much rework
script = get_full_script(job)
print()
print()
print("# --------- full script ---------------")
print("\n".join(script))
if image := variables.get("MESA_IMAGE"):
print()
print()
print("# --------- container image ---------------")
print(image)
def from_sha_to_pipeline_iid(gl_gql: GitlabGQL, params) -> str:
result = gl_gql.query("pipeline_utils.gql", params)
return result["project"]["pipelines"]["nodes"][0]["iid"]
def parse_args() -> Namespace:
parser = ArgumentParser(
formatter_class=ArgumentDefaultsHelpFormatter,
description="CLI and library with utility functions to debug jobs via Gitlab GraphQL",
epilog=f"""Example:
{Path(__file__).name} --print-dag""",
)
parser.add_argument("-pp", "--project-path", type=str, default="mesa/mesa")
parser.add_argument("--sha", "--rev", type=str, default='HEAD')
parser.add_argument(
"--regex",
type=str,
required=False,
help="Regex pattern for the job name to be considered",
)
parser.add_argument("--print-dag", action="store_true", help="Print job needs DAG")
parser.add_argument(
"--print-merged-yaml",
action="store_true",
help="Print the resulting YAML for the specific SHA",
)
parser.add_argument(
"--print-job-manifest", type=str, help="Print the resulting job data"
)
parser.add_argument(
"--gitlab-token-file",
type=str,
default=get_token_from_default_dir(),
help="force GitLab token, otherwise it's read from $XDG_CONFIG_HOME/gitlab-token",
)
args = parser.parse_args()
args.gitlab_token = Path(args.gitlab_token_file).read_text().strip()
return args
def main():
args = parse_args()
gl_gql = GitlabGQL(token=args.gitlab_token)
sha = check_output(['git', 'rev-parse', args.sha]).decode('ascii').strip()
if args.print_dag:
iid = from_sha_to_pipeline_iid(gl_gql, {"projectPath": args.project_path, "sha": sha})
dag = create_job_needs_dag(
gl_gql, {"projectPath": args.project_path, "iid": iid}, disable_cache=True
)
if args.regex:
dag = filter_dag(dag, re.compile(args.regex))
print_dag(dag)
if args.print_merged_yaml:
print(
fetch_merged_yaml(
gl_gql, {"projectPath": args.project_path, "sha": sha}
)
)
if args.print_job_manifest:
merged_yaml = fetch_merged_yaml(
gl_gql, {"projectPath": args.project_path, "sha": sha}
)
get_job_final_definition(
args.print_job_manifest, merged_yaml, args.project_path, sha
)
if __name__ == "__main__":
main()