lua/lopcodes.h
2017-10-04 18:56:32 -03:00

299 lines
9.2 KiB
C

/*
** $Id: lopcodes.h,v 1.165 2017/10/04 15:49:24 roberto Exp roberto $
** Opcodes for Lua virtual machine
** See Copyright Notice in lua.h
*/
#ifndef lopcodes_h
#define lopcodes_h
#include "llimits.h"
/*===========================================================================
We assume that instructions are unsigned 32-bit integers.
All instructions have an opcode in the first 7 bits.
Instructions can have the following formats:
3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
iABC |k| C(8) | | B(8) | | A(8) | | Op(7) |
iABx | Bx(17) | | A(8) | | Op(7) |
iAsBx | sBx (signed)(17) | | A(8) | | Op(7) |
iAx | Ax(25) | | Op(7) |
A signed argument is represented in excess K: the represented value is
the written unsigned value minus K, where K is half the maximum for the
corresponding unsigned argument.
===========================================================================*/
enum OpMode {iABC, iABx, iAsBx, iAx}; /* basic instruction format */
/*
** size and position of opcode arguments.
*/
#define SIZE_C 8
#define SIZE_Cx (SIZE_C + 1)
#define SIZE_B 8
#define SIZE_Bx (SIZE_Cx + SIZE_B)
#define SIZE_A 8
#define SIZE_Ax (SIZE_Cx + SIZE_B + SIZE_A)
#define SIZE_OP 7
#define POS_OP 0
#define POS_A (POS_OP + SIZE_OP)
#define POS_B (POS_A + SIZE_A)
#define POS_C (POS_B + SIZE_B)
#define POS_k (POS_C + SIZE_C)
#define POS_Bx POS_B
#define POS_Ax POS_A
/*
** limits for opcode arguments.
** we use (signed) int to manipulate most arguments,
** so they must fit in LUAI_BITSINT-1 bits (-1 for sign)
*/
#if SIZE_Bx < LUAI_BITSINT-1
#define MAXARG_Bx ((1<<SIZE_Bx)-1)
#define MAXARG_sBx (MAXARG_Bx>>1) /* 'sBx' is signed */
#else
#define MAXARG_Bx MAX_INT
#define MAXARG_sBx MAX_INT
#endif
#if SIZE_Ax < LUAI_BITSINT-1
#define MAXARG_Ax ((1<<SIZE_Ax)-1)
#else
#define MAXARG_Ax MAX_INT
#endif
#define MAXARG_A ((1<<SIZE_A)-1)
#define MAXARG_B ((1<<SIZE_B)-1)
#define MAXARG_C ((1<<SIZE_C)-1)
#define MAXARG_sC (MAXARG_C >> 1)
#define MAXARG_Cx ((1<<(SIZE_C + 1))-1)
/* creates a mask with 'n' 1 bits at position 'p' */
#define MASK1(n,p) ((~((~(Instruction)0)<<(n)))<<(p))
/* creates a mask with 'n' 0 bits at position 'p' */
#define MASK0(n,p) (~MASK1(n,p))
/*
** the following macros help to manipulate instructions
*/
#define GET_OPCODE(i) (cast(OpCode, ((i)>>POS_OP) & MASK1(SIZE_OP,0)))
#define SET_OPCODE(i,o) ((i) = (((i)&MASK0(SIZE_OP,POS_OP)) | \
((cast(Instruction, o)<<POS_OP)&MASK1(SIZE_OP,POS_OP))))
#define checkopm(i,m) (getOpMode(GET_OPCODE(i)) == m)
#define getarg(i,pos,size) (cast(int, ((i)>>(pos)) & MASK1(size,0)))
#define setarg(i,v,pos,size) ((i) = (((i)&MASK0(size,pos)) | \
((cast(Instruction, v)<<pos)&MASK1(size,pos))))
#define GETARG_A(i) getarg(i, POS_A, SIZE_A)
#define SETARG_A(i,v) setarg(i, v, POS_A, SIZE_A)
#define GETARG_B(i) check_exp(checkopm(i, iABC), getarg(i, POS_B, SIZE_B))
#define SETARG_B(i,v) setarg(i, v, POS_B, SIZE_B)
#define GETARG_C(i) check_exp(checkopm(i, iABC), getarg(i, POS_C, SIZE_C))
#define GETARG_sC(i) (GETARG_C(i) - MAXARG_sC)
#define SETARG_C(i,v) setarg(i, v, POS_C, SIZE_C)
#define GETARG_k(i) (cast(int, ((i) & (1 << POS_k))))
#define GETARG_Bx(i) check_exp(checkopm(i, iABx), getarg(i, POS_Bx, SIZE_Bx))
#define SETARG_Bx(i,v) setarg(i, v, POS_Bx, SIZE_Bx)
#define GETARG_Ax(i) check_exp(checkopm(i, iAx), getarg(i, POS_Ax, SIZE_Ax))
#define SETARG_Ax(i,v) setarg(i, v, POS_Ax, SIZE_Ax)
#define GETARG_sBx(i) \
check_exp(checkopm(i, iAsBx), getarg(i, POS_Bx, SIZE_Bx) - MAXARG_sBx)
#define SETARG_sBx(i,b) SETARG_Bx((i),cast(unsigned int, (b)+MAXARG_sBx))
#define CREATE_ABCk(o,a,b,c,k) ((cast(Instruction, o)<<POS_OP) \
| (cast(Instruction, a)<<POS_A) \
| (cast(Instruction, b)<<POS_B) \
| (cast(Instruction, c)<<POS_C)) \
| (cast(Instruction, k)<<POS_k)
#define CREATE_ABx(o,a,bc) ((cast(Instruction, o)<<POS_OP) \
| (cast(Instruction, a)<<POS_A) \
| (cast(Instruction, bc)<<POS_Bx))
#define CREATE_Ax(o,a) ((cast(Instruction, o)<<POS_OP) \
| (cast(Instruction, a)<<POS_Ax))
#if !defined(MAXINDEXRK) /* (for debugging only) */
#define MAXINDEXRK MAXARG_B
#endif
/*
** invalid register that fits in 8 bits
*/
#define NO_REG MAXARG_A
/*
** R(x) - register
** K(x) - constant (in constant table)
** RK(x) == if k(i) then K(x) else R(x)
*/
/*
** grep "ORDER OP" if you change these enums
*/
typedef enum {
/*----------------------------------------------------------------------
name args description
------------------------------------------------------------------------*/
OP_MOVE,/* A B R(A) := R(B) */
OP_LOADI,/* A sBx R(A) := sBx */
OP_LOADF,/* A sBx R(A) := (lua_Number)sBx */
OP_LOADK,/* A Bx R(A) := K(Bx) */
OP_LOADKX,/* A R(A) := K(extra arg) */
OP_LOADBOOL,/* A B C R(A) := (Bool)B; if (C) pc++ */
OP_LOADNIL,/* A B R(A), R(A+1), ..., R(A+B) := nil */
OP_GETUPVAL,/* A B R(A) := UpValue[B] */
OP_SETUPVAL,/* A B UpValue[B] := R(A) */
OP_GETTABUP,/* A B C R(A) := UpValue[B][K(C):string] */
OP_GETTABLE,/* A B C R(A) := R(B)[R(C)] */
OP_GETI,/* A B C R(A) := R(B)[C] */
OP_GETFIELD,/* A B C R(A) := R(B)[K(C):string] */
OP_SETTABUP,/* A B C UpValue[A][K(B):string] := RK(C) */
OP_SETTABLE,/* A B C R(A)[R(B)] := RK(C) */
OP_SETI,/* A B C R(A)[B] := RK(C) */
OP_SETFIELD,/* A B C R(A)[K(B):string] := RK(C) */
OP_NEWTABLE,/* A B C R(A) := {} (size = B,C) */
OP_SELF,/* A B C R(A+1) := R(B); R(A) := R(B)[RK(C):string] */
OP_ADDI,/* A B sC R(A) := R(B) + C */
OP_SUBI,/* A B sC R(A) := R(B) - C */
OP_MULI,/* A B sC R(A) := R(B) * C */
OP_MODI,/* A B sC R(A) := R(B) % C */
OP_POWI,/* A B sC R(A) := R(B) ^ C */
OP_DIVI,/* A B sC R(A) := R(B) / C */
OP_IDIVI,/* A B sC R(A) := R(B) // C */
OP_ADD,/* A B C R(A) := R(B) + R(C) */
OP_SUB,/* A B C R(A) := R(B) - R(C) */
OP_MUL,/* A B C R(A) := R(B) * R(C) */
OP_MOD,/* A B C R(A) := R(B) % R(C) */
OP_POW,/* A B C R(A) := R(B) ^ R(C) */
OP_DIV,/* A B C R(A) := R(B) / R(C) */
OP_IDIV,/* A B C R(A) := R(B) // R(C) */
OP_BAND,/* A B C R(A) := R(B) & R(C) */
OP_BOR,/* A B C R(A) := R(B) | R(C) */
OP_BXOR,/* A B C R(A) := R(B) ~ R(C) */
OP_SHL,/* A B C R(A) := R(B) << R(C) */
OP_SHR,/* A B C R(A) := R(B) >> R(C) */
OP_UNM,/* A B R(A) := -R(B) */
OP_BNOT,/* A B R(A) := ~R(B) */
OP_NOT,/* A B R(A) := not R(B) */
OP_LEN,/* A B R(A) := length of R(B) */
OP_CONCAT,/* A B C R(A) := R(B).. ... ..R(C) */
OP_CLOSE,/* A close all upvalues >= R(A) */
OP_JMP,/* sBx pc+=sBx */
OP_EQ,/* A B C if ((R(B) == R(C)) ~= A) then pc++ */
OP_LT,/* A B C if ((R(B) < R(C)) ~= A) then pc++ */
OP_LE,/* A B C if ((R(B) <= R(C)) ~= A) then pc++ */
OP_TEST,/* A C if not (R(A) <=> C) then pc++ */
OP_TESTSET,/* A B C if (R(B) <=> C) then R(A) := R(B) else pc++ */
OP_CALL,/* A B C R(A), ... ,R(A+C-2) := R(A)(R(A+1), ... ,R(A+B-1)) */
OP_TAILCALL,/* A B C return R(A)(R(A+1), ... ,R(A+B-1)) */
OP_RETURN,/* A B return R(A), ... ,R(A+B-2) (see note) */
OP_FORLOOP,/* A Bx R(A)+=R(A+2);
if R(A) <?= R(A+1) then { pc-=Bx; R(A+3)=R(A) }*/
OP_FORPREP,/* A Bx R(A)-=R(A+2); pc+=Bx */
OP_TFORCALL,/* A C R(A+3), ... ,R(A+2+C) := R(A)(R(A+1), R(A+2)); */
OP_TFORLOOP,/* A Bx if R(A+1) ~= nil then { R(A)=R(A+1); pc -= Bx }*/
OP_SETLIST,/* A B C R(A)[(C-1)*FPF+i] := R(A+i), 1 <= i <= B */
OP_CLOSURE,/* A Bx R(A) := closure(KPROTO[Bx]) */
OP_VARARG,/* A B C R(A), R(A+1), ..., R(A+B-2) = vararg(C) */
OP_EXTRAARG/* Ax extra (larger) argument for previous opcode */
} OpCode;
#define NUM_OPCODES (cast(int, OP_EXTRAARG) + 1)
/*===========================================================================
Notes:
(*) In OP_CALL, if (B == 0) then B = top. If (C == 0), then 'top' is
set to last_result+1, so next open instruction (OP_CALL, OP_RETURN,
OP_SETLIST) may use 'top'.
(*) In OP_VARARG, if (B == 0) then use actual number of varargs and
set top (like in OP_CALL with C == 0). C is the vararg parameter.
(*) In OP_RETURN, if (B == 0) then return up to 'top'.
(*) In OP_SETLIST, if (B == 0) then B = 'top'; if (C == 0) then next
'instruction' is EXTRAARG(real C).
(*) In OP_LOADKX, the next 'instruction' is always EXTRAARG.
(*) For comparisons, A specifies what condition the test should accept
(true or false).
(*) All 'skips' (pc++) assume that next instruction is a jump.
===========================================================================*/
/*
** masks for instruction properties. The format is:
** bits 0-2: op mode
** bit 3: instruction set register A
** bit 4: operator is a test (next instruction must be a jump)
*/
LUAI_DDEC const lu_byte luaP_opmodes[NUM_OPCODES];
#define getOpMode(m) (cast(enum OpMode, luaP_opmodes[m] & 7))
#define testAMode(m) (luaP_opmodes[m] & (1 << 3))
#define testTMode(m) (luaP_opmodes[m] & (1 << 4))
#define opmode(t,a,m) (((t)<<4) | ((a)<<3) | (m))
LUAI_DDEC const char *const luaP_opnames[NUM_OPCODES+1]; /* opcode names */
/* number of list items to accumulate before a SETLIST instruction */
#define LFIELDS_PER_FLUSH 50
#endif