mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-24 02:03:35 +08:00
34a5a1460e
The GNU Coding Standards specify that line breaks in expressions should go before an operator, not after one. This patch fixes various code to do this. It only changes code that appears to be mostly following GNU style anyway, not files and directories with substantially different formatting. It is not exhaustive even for files using GNU style (for example, changes to sysdeps files are deferred for subsequent cleanups). Some files changed are shared with gnulib, but most are specific to glibc. Changes were made manually, with places to change found by grep (so some cases, e.g. where the operator was followed by a comment at end of line, are particularly liable to have been missed by grep, but I did include cases where the operator was followed by backslash-newline). This patch generally does not attempt to address other coding style issues in the expressions changed (for example, missing spaces before '(', or lack of parentheses to ensure indentation of continuation lines properly reflects operator precedence). Tested for x86_64, and with build-many-glibcs.py. * benchtests/bench-memmem.c (simple_memmem): Break lines before rather than after operators. * benchtests/bench-skeleton.c (TIMESPEC_AFTER): Likewise. * crypt/md5.c (md5_finish_ctx): Likewise. * crypt/sha256.c (__sha256_finish_ctx): Likewise. * crypt/sha512.c (__sha512_finish_ctx): Likewise. * elf/cache.c (load_aux_cache): Likewise. * elf/dl-load.c (open_verify): Likewise. * elf/get-dynamic-info.h (elf_get_dynamic_info): Likewise. * elf/readelflib.c (process_elf_file): Likewise. * elf/rtld.c (dl_main): Likewise. * elf/sprof.c (generate_call_graph): Likewise. * hurd/ctty-input.c (_hurd_ctty_input): Likewise. * hurd/ctty-output.c (_hurd_ctty_output): Likewise. * hurd/dtable.c (reauth_dtable): Likewise. * hurd/getdport.c (__getdport): Likewise. * hurd/hurd/signal.h (_hurd_interrupted_rpc_timeout): Likewise. * hurd/hurd/sigpreempt.h (HURD_PREEMPT_SIGNAL_P): Likewise. * hurd/hurdfault.c (_hurdsig_fault_catch_exception_raise): Likewise. * hurd/hurdioctl.c (fioctl): Likewise. * hurd/hurdselect.c (_hurd_select): Likewise. * hurd/hurdsig.c (_hurdsig_abort_rpcs): Likewise. (STOPSIGS): Likewise. * hurd/hurdstartup.c (_hurd_startup): Likewise. * hurd/intr-msg.c (_hurd_intr_rpc_mach_msg): Likewise. * hurd/lookup-retry.c (__hurd_file_name_lookup_retry): Likewise. * hurd/msgportdemux.c (msgport_server): Likewise. * hurd/setauth.c (_hurd_setauth): Likewise. * include/features.h (__GLIBC_USE_DEPRECATED_SCANF): Likewise. * libio/libioP.h [IO_DEBUG] (CHECK_FILE): Likewise. * locale/programs/ld-ctype.c (set_class_defaults): Likewise. * localedata/tests-mbwc/tst_swscanf.c (tst_swscanf): Likewise. * login/tst-utmp.c (do_check): Likewise. (simulate_login): Likewise. * mach/lowlevellock.h (lll_lock): Likewise. (lll_trylock): Likewise. * math/test-fenv.c (ALL_EXC): Likewise. * math/test-fenvinline.c (ALL_EXC): Likewise. * misc/sys/cdefs.h (__attribute_deprecated_msg__): Likewise. * nis/nis_call.c (__do_niscall3): Likewise. * nis/nis_callback.c (cb_prog_1): Likewise. * nis/nis_defaults.c (searchaccess): Likewise. * nis/nis_findserv.c (__nis_findfastest_with_timeout): Likewise. * nis/nis_ismember.c (internal_ismember): Likewise. * nis/nis_local_names.c (nis_local_principal): Likewise. * nis/nss_nis/nis-rpc.c (_nss_nis_getrpcbyname_r): Likewise. * nis/nss_nisplus/nisplus-netgrp.c (_nss_nisplus_getnetgrent_r): Likewise. * nis/ypclnt.c (yp_match): Likewise. (yp_first): Likewise. (yp_next): Likewise. (yp_master): Likewise. (yp_order): Likewise. * nscd/hstcache.c (cache_addhst): Likewise. * nscd/initgrcache.c (addinitgroupsX): Likewise. * nss/nss_compat/compat-pwd.c (copy_pwd_changes): Likewise. (internal_getpwuid_r): Likewise. * nss/nss_compat/compat-spwd.c (copy_spwd_changes): Likewise. * posix/glob.h (__GLOB_FLAGS): Likewise. * posix/regcomp.c (peek_token): Likewise. (peek_token_bracket): Likewise. (parse_expression): Likewise. * posix/regexec.c (sift_states_iter_mb): Likewise. (check_node_accept_bytes): Likewise. * posix/tst-spawn3.c (do_test): Likewise. * posix/wordexp-test.c (testit): Likewise. * posix/wordexp.c (parse_tilde): Likewise. (exec_comm): Likewise. * posix/wordexp.h (__WRDE_FLAGS): Likewise. * resource/vtimes.c (TIMEVAL_TO_VTIMES): Likewise. * setjmp/sigjmp.c (__sigjmp_save): Likewise. * stdio-common/printf_fp.c (__printf_fp_l): Likewise. * stdio-common/tst-fileno.c (do_test): Likewise. * stdio-common/vfprintf-internal.c (vfprintf): Likewise. * stdlib/strfmon_l.c (__vstrfmon_l_internal): Likewise. * stdlib/strtod_l.c (round_and_return): Likewise. (____STRTOF_INTERNAL): Likewise. * stdlib/tst-strfrom.h (TEST_STRFROM): Likewise. * string/strcspn.c (STRCSPN): Likewise. * string/test-memmem.c (simple_memmem): Likewise. * termios/tcsetattr.c (tcsetattr): Likewise. * time/alt_digit.c (_nl_parse_alt_digit): Likewise. * time/asctime.c (asctime_internal): Likewise. * time/strptime_l.c (__strptime_internal): Likewise. * time/sys/time.h (timercmp): Likewise. * time/tzfile.c (__tzfile_compute): Likewise.
571 lines
16 KiB
C
571 lines
16 KiB
C
/* Cache handling for host lookup.
|
|
Copyright (C) 1998-2019 Free Software Foundation, Inc.
|
|
This file is part of the GNU C Library.
|
|
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1998.
|
|
|
|
This program is free software; you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published
|
|
by the Free Software Foundation; version 2 of the License, or
|
|
(at your option) any later version.
|
|
|
|
This program is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with this program; if not, see <http://www.gnu.org/licenses/>. */
|
|
|
|
#include <alloca.h>
|
|
#include <assert.h>
|
|
#include <errno.h>
|
|
#include <error.h>
|
|
#include <libintl.h>
|
|
#include <netdb.h>
|
|
#include <stdbool.h>
|
|
#include <stddef.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
#include <stdint.h>
|
|
#include <arpa/inet.h>
|
|
#include <arpa/nameser.h>
|
|
#include <sys/mman.h>
|
|
#include <stackinfo.h>
|
|
#include <scratch_buffer.h>
|
|
|
|
#include "nscd.h"
|
|
#include "dbg_log.h"
|
|
|
|
|
|
/* This is the standard reply in case the service is disabled. */
|
|
static const hst_response_header disabled =
|
|
{
|
|
.version = NSCD_VERSION,
|
|
.found = -1,
|
|
.h_name_len = 0,
|
|
.h_aliases_cnt = 0,
|
|
.h_addrtype = -1,
|
|
.h_length = -1,
|
|
.h_addr_list_cnt = 0,
|
|
.error = NETDB_INTERNAL
|
|
};
|
|
|
|
/* This is the struct describing how to write this record. */
|
|
const struct iovec hst_iov_disabled =
|
|
{
|
|
.iov_base = (void *) &disabled,
|
|
.iov_len = sizeof (disabled)
|
|
};
|
|
|
|
|
|
/* This is the standard reply in case we haven't found the dataset. */
|
|
static const hst_response_header notfound =
|
|
{
|
|
.version = NSCD_VERSION,
|
|
.found = 0,
|
|
.h_name_len = 0,
|
|
.h_aliases_cnt = 0,
|
|
.h_addrtype = -1,
|
|
.h_length = -1,
|
|
.h_addr_list_cnt = 0,
|
|
.error = HOST_NOT_FOUND
|
|
};
|
|
|
|
|
|
/* This is the standard reply in case there are temporary problems. */
|
|
static const hst_response_header tryagain =
|
|
{
|
|
.version = NSCD_VERSION,
|
|
.found = 0,
|
|
.h_name_len = 0,
|
|
.h_aliases_cnt = 0,
|
|
.h_addrtype = -1,
|
|
.h_length = -1,
|
|
.h_addr_list_cnt = 0,
|
|
.error = TRY_AGAIN
|
|
};
|
|
|
|
|
|
static time_t
|
|
cache_addhst (struct database_dyn *db, int fd, request_header *req,
|
|
const void *key, struct hostent *hst, uid_t owner,
|
|
struct hashentry *const he, struct datahead *dh, int errval,
|
|
int32_t ttl)
|
|
{
|
|
bool all_written = true;
|
|
time_t t = time (NULL);
|
|
|
|
/* We allocate all data in one memory block: the iov vector,
|
|
the response header and the dataset itself. */
|
|
struct dataset
|
|
{
|
|
struct datahead head;
|
|
hst_response_header resp;
|
|
char strdata[0];
|
|
} *dataset;
|
|
|
|
assert (offsetof (struct dataset, resp) == offsetof (struct datahead, data));
|
|
|
|
time_t timeout = MAX_TIMEOUT_VALUE;
|
|
if (hst == NULL)
|
|
{
|
|
if (he != NULL && errval == EAGAIN)
|
|
{
|
|
/* If we have an old record available but cannot find one
|
|
now because the service is not available we keep the old
|
|
record and make sure it does not get removed. */
|
|
if (reload_count != UINT_MAX)
|
|
/* Do not reset the value if we never not reload the record. */
|
|
dh->nreloads = reload_count - 1;
|
|
|
|
/* Reload with the same time-to-live value. */
|
|
timeout = dh->timeout = t + dh->ttl;
|
|
}
|
|
else
|
|
{
|
|
/* We have no data. This means we send the standard reply for this
|
|
case. Possibly this is only temporary. */
|
|
ssize_t total = sizeof (notfound);
|
|
assert (sizeof (notfound) == sizeof (tryagain));
|
|
|
|
const hst_response_header *resp = (errval == EAGAIN
|
|
? &tryagain : ¬found);
|
|
|
|
if (fd != -1
|
|
&& TEMP_FAILURE_RETRY (send (fd, resp, total,
|
|
MSG_NOSIGNAL)) != total)
|
|
all_written = false;
|
|
|
|
/* If we have a transient error or cannot permanently store
|
|
the result, so be it. */
|
|
if (errval == EAGAIN || __builtin_expect (db->negtimeout == 0, 0))
|
|
{
|
|
/* Mark the old entry as obsolete. */
|
|
if (dh != NULL)
|
|
dh->usable = false;
|
|
}
|
|
else if ((dataset = mempool_alloc (db, (sizeof (struct dataset)
|
|
+ req->key_len), 1)) != NULL)
|
|
{
|
|
timeout = datahead_init_neg (&dataset->head,
|
|
(sizeof (struct dataset)
|
|
+ req->key_len), total,
|
|
(ttl == INT32_MAX
|
|
? db->negtimeout : ttl));
|
|
|
|
/* This is the reply. */
|
|
memcpy (&dataset->resp, resp, total);
|
|
|
|
/* Copy the key data. */
|
|
memcpy (dataset->strdata, key, req->key_len);
|
|
|
|
/* If necessary, we also propagate the data to disk. */
|
|
if (db->persistent)
|
|
{
|
|
// XXX async OK?
|
|
uintptr_t pval = (uintptr_t) dataset & ~pagesize_m1;
|
|
msync ((void *) pval,
|
|
((uintptr_t) dataset & pagesize_m1)
|
|
+ sizeof (struct dataset) + req->key_len, MS_ASYNC);
|
|
}
|
|
|
|
(void) cache_add (req->type, &dataset->strdata, req->key_len,
|
|
&dataset->head, true, db, owner, he == NULL);
|
|
|
|
pthread_rwlock_unlock (&db->lock);
|
|
|
|
/* Mark the old entry as obsolete. */
|
|
if (dh != NULL)
|
|
dh->usable = false;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* Determine the I/O structure. */
|
|
size_t h_name_len = strlen (hst->h_name) + 1;
|
|
size_t h_aliases_cnt;
|
|
uint32_t *h_aliases_len;
|
|
size_t h_addr_list_cnt;
|
|
char *addresses;
|
|
char *aliases;
|
|
char *key_copy = NULL;
|
|
char *cp;
|
|
size_t cnt;
|
|
ssize_t total;
|
|
|
|
/* Determine the number of aliases. */
|
|
h_aliases_cnt = 0;
|
|
for (cnt = 0; hst->h_aliases[cnt] != NULL; ++cnt)
|
|
++h_aliases_cnt;
|
|
/* Determine the length of all aliases. */
|
|
h_aliases_len = (uint32_t *) alloca (h_aliases_cnt * sizeof (uint32_t));
|
|
total = 0;
|
|
for (cnt = 0; cnt < h_aliases_cnt; ++cnt)
|
|
{
|
|
h_aliases_len[cnt] = strlen (hst->h_aliases[cnt]) + 1;
|
|
total += h_aliases_len[cnt];
|
|
}
|
|
|
|
/* Determine the number of addresses. */
|
|
h_addr_list_cnt = 0;
|
|
while (hst->h_addr_list[h_addr_list_cnt] != NULL)
|
|
++h_addr_list_cnt;
|
|
|
|
if (h_addr_list_cnt == 0)
|
|
/* Invalid entry. */
|
|
return MAX_TIMEOUT_VALUE;
|
|
|
|
total += (sizeof (struct dataset)
|
|
+ h_name_len
|
|
+ h_aliases_cnt * sizeof (uint32_t)
|
|
+ h_addr_list_cnt * hst->h_length);
|
|
|
|
/* If we refill the cache, first assume the reconrd did not
|
|
change. Allocate memory on the cache since it is likely
|
|
discarded anyway. If it turns out to be necessary to have a
|
|
new record we can still allocate real memory. */
|
|
bool alloca_used = false;
|
|
dataset = NULL;
|
|
|
|
/* If the record contains more than one IP address (used for
|
|
load balancing etc) don't cache the entry. This is something
|
|
the current cache handling cannot handle and it is more than
|
|
questionable whether it is worthwhile complicating the cache
|
|
handling just for handling such a special case. */
|
|
if (he == NULL && h_addr_list_cnt == 1)
|
|
dataset = (struct dataset *) mempool_alloc (db, total + req->key_len,
|
|
1);
|
|
|
|
if (dataset == NULL)
|
|
{
|
|
/* We cannot permanently add the result in the moment. But
|
|
we can provide the result as is. Store the data in some
|
|
temporary memory. */
|
|
dataset = (struct dataset *) alloca (total + req->key_len);
|
|
|
|
/* We cannot add this record to the permanent database. */
|
|
alloca_used = true;
|
|
}
|
|
|
|
timeout = datahead_init_pos (&dataset->head, total + req->key_len,
|
|
total - offsetof (struct dataset, resp),
|
|
he == NULL ? 0 : dh->nreloads + 1,
|
|
ttl == INT32_MAX ? db->postimeout : ttl);
|
|
|
|
dataset->resp.version = NSCD_VERSION;
|
|
dataset->resp.found = 1;
|
|
dataset->resp.h_name_len = h_name_len;
|
|
dataset->resp.h_aliases_cnt = h_aliases_cnt;
|
|
dataset->resp.h_addrtype = hst->h_addrtype;
|
|
dataset->resp.h_length = hst->h_length;
|
|
dataset->resp.h_addr_list_cnt = h_addr_list_cnt;
|
|
dataset->resp.error = NETDB_SUCCESS;
|
|
|
|
/* Make sure there is no gap. */
|
|
assert ((char *) (&dataset->resp.error + 1) == dataset->strdata);
|
|
|
|
cp = dataset->strdata;
|
|
|
|
cp = mempcpy (cp, hst->h_name, h_name_len);
|
|
cp = mempcpy (cp, h_aliases_len, h_aliases_cnt * sizeof (uint32_t));
|
|
|
|
/* The normal addresses first. */
|
|
addresses = cp;
|
|
for (cnt = 0; cnt < h_addr_list_cnt; ++cnt)
|
|
cp = mempcpy (cp, hst->h_addr_list[cnt], hst->h_length);
|
|
|
|
/* Then the aliases. */
|
|
aliases = cp;
|
|
for (cnt = 0; cnt < h_aliases_cnt; ++cnt)
|
|
cp = mempcpy (cp, hst->h_aliases[cnt], h_aliases_len[cnt]);
|
|
|
|
assert (cp
|
|
== dataset->strdata + total - offsetof (struct dataset,
|
|
strdata));
|
|
|
|
/* If we are adding a GETHOSTBYNAME{,v6} entry we must be prepared
|
|
that the answer we get from the NSS does not contain the key
|
|
itself. This is the case if the resolver is used and the name
|
|
is extended by the domainnames from /etc/resolv.conf. Therefore
|
|
we explicitly add the name here. */
|
|
key_copy = memcpy (cp, key, req->key_len);
|
|
|
|
assert ((char *) &dataset->resp + dataset->head.recsize == cp);
|
|
|
|
/* Now we can determine whether on refill we have to create a new
|
|
record or not. */
|
|
if (he != NULL)
|
|
{
|
|
assert (fd == -1);
|
|
|
|
if (total + req->key_len == dh->allocsize
|
|
&& total - offsetof (struct dataset, resp) == dh->recsize
|
|
&& memcmp (&dataset->resp, dh->data,
|
|
dh->allocsize - offsetof (struct dataset, resp)) == 0)
|
|
{
|
|
/* The data has not changed. We will just bump the
|
|
timeout value. Note that the new record has been
|
|
allocated on the stack and need not be freed. */
|
|
assert (h_addr_list_cnt == 1);
|
|
dh->ttl = dataset->head.ttl;
|
|
dh->timeout = dataset->head.timeout;
|
|
++dh->nreloads;
|
|
}
|
|
else
|
|
{
|
|
if (h_addr_list_cnt == 1)
|
|
{
|
|
/* We have to create a new record. Just allocate
|
|
appropriate memory and copy it. */
|
|
struct dataset *newp
|
|
= (struct dataset *) mempool_alloc (db,
|
|
total + req->key_len,
|
|
1);
|
|
if (newp != NULL)
|
|
{
|
|
/* Adjust pointers into the memory block. */
|
|
addresses = (char *) newp + (addresses
|
|
- (char *) dataset);
|
|
aliases = (char *) newp + (aliases - (char *) dataset);
|
|
assert (key_copy != NULL);
|
|
key_copy = (char *) newp + (key_copy - (char *) dataset);
|
|
|
|
dataset = memcpy (newp, dataset, total + req->key_len);
|
|
alloca_used = false;
|
|
}
|
|
}
|
|
|
|
/* Mark the old record as obsolete. */
|
|
dh->usable = false;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* We write the dataset before inserting it to the database
|
|
since while inserting this thread might block and so would
|
|
unnecessarily keep the receiver waiting. */
|
|
assert (fd != -1);
|
|
|
|
if (writeall (fd, &dataset->resp, dataset->head.recsize)
|
|
!= dataset->head.recsize)
|
|
all_written = false;
|
|
}
|
|
|
|
/* Add the record to the database. But only if it has not been
|
|
stored on the stack.
|
|
|
|
If the record contains more than one IP address (used for
|
|
load balancing etc) don't cache the entry. This is something
|
|
the current cache handling cannot handle and it is more than
|
|
questionable whether it is worthwhile complicating the cache
|
|
handling just for handling such a special case. */
|
|
if (! alloca_used)
|
|
{
|
|
/* If necessary, we also propagate the data to disk. */
|
|
if (db->persistent)
|
|
{
|
|
// XXX async OK?
|
|
uintptr_t pval = (uintptr_t) dataset & ~pagesize_m1;
|
|
msync ((void *) pval,
|
|
((uintptr_t) dataset & pagesize_m1)
|
|
+ total + req->key_len, MS_ASYNC);
|
|
}
|
|
|
|
/* NB: the following code is really complicated. It has
|
|
seemlingly duplicated code paths which do the same. The
|
|
problem is that we always must add the hash table entry
|
|
with the FIRST flag set first. Otherwise we get dangling
|
|
pointers in case memory allocation fails. */
|
|
assert (hst->h_addr_list[1] == NULL);
|
|
|
|
/* Avoid adding names if more than one address is available. See
|
|
above for more info. */
|
|
assert (req->type == GETHOSTBYNAME
|
|
|| req->type == GETHOSTBYNAMEv6
|
|
|| req->type == GETHOSTBYADDR
|
|
|| req->type == GETHOSTBYADDRv6);
|
|
|
|
(void) cache_add (req->type, key_copy, req->key_len,
|
|
&dataset->head, true, db, owner, he == NULL);
|
|
|
|
pthread_rwlock_unlock (&db->lock);
|
|
}
|
|
}
|
|
|
|
if (__builtin_expect (!all_written, 0) && debug_level > 0)
|
|
{
|
|
char buf[256];
|
|
dbg_log (_("short write in %s: %s"), __FUNCTION__,
|
|
strerror_r (errno, buf, sizeof (buf)));
|
|
}
|
|
|
|
return timeout;
|
|
}
|
|
|
|
|
|
static int
|
|
lookup (int type, void *key, struct hostent *resultbufp, char *buffer,
|
|
size_t buflen, struct hostent **hst, int32_t *ttlp)
|
|
{
|
|
if (type == GETHOSTBYNAME)
|
|
return __gethostbyname3_r (key, AF_INET, resultbufp, buffer, buflen, hst,
|
|
&h_errno, ttlp, NULL);
|
|
if (type == GETHOSTBYNAMEv6)
|
|
return __gethostbyname3_r (key, AF_INET6, resultbufp, buffer, buflen, hst,
|
|
&h_errno, ttlp, NULL);
|
|
if (type == GETHOSTBYADDR)
|
|
return __gethostbyaddr2_r (key, NS_INADDRSZ, AF_INET, resultbufp, buffer,
|
|
buflen, hst, &h_errno, ttlp);
|
|
return __gethostbyaddr2_r (key, NS_IN6ADDRSZ, AF_INET6, resultbufp, buffer,
|
|
buflen, hst, &h_errno, ttlp);
|
|
}
|
|
|
|
|
|
static time_t
|
|
addhstbyX (struct database_dyn *db, int fd, request_header *req,
|
|
void *key, uid_t uid, struct hashentry *he, struct datahead *dh)
|
|
{
|
|
/* Search for the entry matching the key. Please note that we don't
|
|
look again in the table whether the dataset is now available. We
|
|
simply insert it. It does not matter if it is in there twice. The
|
|
pruning function only will look at the timestamp. */
|
|
struct hostent resultbuf;
|
|
struct hostent *hst;
|
|
int errval = 0;
|
|
int32_t ttl = INT32_MAX;
|
|
|
|
if (__glibc_unlikely (debug_level > 0))
|
|
{
|
|
const char *str;
|
|
char buf[INET6_ADDRSTRLEN + 1];
|
|
if (req->type == GETHOSTBYNAME || req->type == GETHOSTBYNAMEv6)
|
|
str = key;
|
|
else
|
|
str = inet_ntop (req->type == GETHOSTBYADDR ? AF_INET : AF_INET6,
|
|
key, buf, sizeof (buf));
|
|
|
|
if (he == NULL)
|
|
dbg_log (_("Haven't found \"%s\" in hosts cache!"), (char *) str);
|
|
else
|
|
dbg_log (_("Reloading \"%s\" in hosts cache!"), (char *) str);
|
|
}
|
|
|
|
struct scratch_buffer tmpbuf;
|
|
scratch_buffer_init (&tmpbuf);
|
|
|
|
while (lookup (req->type, key, &resultbuf,
|
|
tmpbuf.data, tmpbuf.length, &hst, &ttl) != 0
|
|
&& h_errno == NETDB_INTERNAL
|
|
&& (errval = errno) == ERANGE)
|
|
if (!scratch_buffer_grow (&tmpbuf))
|
|
{
|
|
/* We ran out of memory. We cannot do anything but sending a
|
|
negative response. In reality this should never
|
|
happen. */
|
|
hst = NULL;
|
|
/* We set the error to indicate this is (possibly) a temporary
|
|
error and that it does not mean the entry is not
|
|
available at all. */
|
|
h_errno = TRY_AGAIN;
|
|
errval = EAGAIN;
|
|
break;
|
|
}
|
|
|
|
time_t timeout = cache_addhst (db, fd, req, key, hst, uid, he, dh,
|
|
h_errno == TRY_AGAIN ? errval : 0, ttl);
|
|
scratch_buffer_free (&tmpbuf);
|
|
return timeout;
|
|
}
|
|
|
|
|
|
void
|
|
addhstbyname (struct database_dyn *db, int fd, request_header *req,
|
|
void *key, uid_t uid)
|
|
{
|
|
addhstbyX (db, fd, req, key, uid, NULL, NULL);
|
|
}
|
|
|
|
|
|
time_t
|
|
readdhstbyname (struct database_dyn *db, struct hashentry *he,
|
|
struct datahead *dh)
|
|
{
|
|
request_header req =
|
|
{
|
|
.type = GETHOSTBYNAME,
|
|
.key_len = he->len
|
|
};
|
|
|
|
return addhstbyX (db, -1, &req, db->data + he->key, he->owner, he, dh);
|
|
}
|
|
|
|
|
|
void
|
|
addhstbyaddr (struct database_dyn *db, int fd, request_header *req,
|
|
void *key, uid_t uid)
|
|
{
|
|
addhstbyX (db, fd, req, key, uid, NULL, NULL);
|
|
}
|
|
|
|
|
|
time_t
|
|
readdhstbyaddr (struct database_dyn *db, struct hashentry *he,
|
|
struct datahead *dh)
|
|
{
|
|
request_header req =
|
|
{
|
|
.type = GETHOSTBYADDR,
|
|
.key_len = he->len
|
|
};
|
|
|
|
return addhstbyX (db, -1, &req, db->data + he->key, he->owner, he, dh);
|
|
}
|
|
|
|
|
|
void
|
|
addhstbynamev6 (struct database_dyn *db, int fd, request_header *req,
|
|
void *key, uid_t uid)
|
|
{
|
|
addhstbyX (db, fd, req, key, uid, NULL, NULL);
|
|
}
|
|
|
|
|
|
time_t
|
|
readdhstbynamev6 (struct database_dyn *db, struct hashentry *he,
|
|
struct datahead *dh)
|
|
{
|
|
request_header req =
|
|
{
|
|
.type = GETHOSTBYNAMEv6,
|
|
.key_len = he->len
|
|
};
|
|
|
|
return addhstbyX (db, -1, &req, db->data + he->key, he->owner, he, dh);
|
|
}
|
|
|
|
|
|
void
|
|
addhstbyaddrv6 (struct database_dyn *db, int fd, request_header *req,
|
|
void *key, uid_t uid)
|
|
{
|
|
addhstbyX (db, fd, req, key, uid, NULL, NULL);
|
|
}
|
|
|
|
|
|
time_t
|
|
readdhstbyaddrv6 (struct database_dyn *db, struct hashentry *he,
|
|
struct datahead *dh)
|
|
{
|
|
request_header req =
|
|
{
|
|
.type = GETHOSTBYADDRv6,
|
|
.key_len = he->len
|
|
};
|
|
|
|
return addhstbyX (db, -1, &req, db->data + he->key, he->owner, he, dh);
|
|
}
|