glibc/elf/dl-close.c

690 lines
20 KiB
C

/* Close a shared object opened by `_dl_open'.
Copyright (C) 1996-2002, 2003, 2004 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA. */
#include <assert.h>
#include <dlfcn.h>
#include <libintl.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <bits/libc-lock.h>
#include <ldsodefs.h>
#include <sys/types.h>
#include <sys/mman.h>
/* Type of the constructor functions. */
typedef void (*fini_t) (void);
#ifdef USE_TLS
/* Returns true we an non-empty was found. */
static bool
remove_slotinfo (size_t idx, struct dtv_slotinfo_list *listp, size_t disp,
bool should_be_there)
{
if (idx - disp >= listp->len)
{
if (listp->next == NULL)
{
/* The index is not actually valid in the slotinfo list,
because this object was closed before it was fully set
up due to some error. */
assert (! should_be_there);
}
else
{
if (remove_slotinfo (idx, listp->next, disp + listp->len,
should_be_there))
return true;
/* No non-empty entry. Search from the end of this element's
slotinfo array. */
idx = disp + listp->len;
}
}
else
{
struct link_map *old_map = listp->slotinfo[idx - disp].map;
/* The entry might still be in its unused state if we are closing an
object that wasn't fully set up. */
if (__builtin_expect (old_map != NULL, 1))
{
assert (old_map->l_tls_modid == idx);
/* Mark the entry as unused. */
listp->slotinfo[idx - disp].gen = GL(dl_tls_generation) + 1;
listp->slotinfo[idx - disp].map = NULL;
}
/* If this is not the last currently used entry no need to look
further. */
if (idx != GL(dl_tls_max_dtv_idx))
return true;
}
while (idx - disp > (disp == 0 ? 1 + GL(dl_tls_static_nelem) : 0))
{
--idx;
if (listp->slotinfo[idx - disp].map != NULL)
{
/* Found a new last used index. */
GL(dl_tls_max_dtv_idx) = idx;
return true;
}
}
/* No non-entry in this list element. */
return false;
}
#endif
void
internal_function
_dl_close (void *_map)
{
struct reldep_list
{
struct link_map **rellist;
unsigned int nrellist;
unsigned int nhandled;
struct reldep_list *next;
bool handled[0];
} *reldeps = NULL;
struct link_map **list;
struct link_map *map = _map;
unsigned int i;
unsigned int *new_opencount;
#ifdef USE_TLS
bool any_tls = false;
#endif
/* First see whether we can remove the object at all. */
if (__builtin_expect (map->l_flags_1 & DF_1_NODELETE, 0)
&& map->l_init_called)
/* Nope. Do nothing. */
return;
if (__builtin_expect (map->l_opencount, 1) == 0)
GLRO(dl_signal_error) (0, map->l_name, NULL, N_("shared object not open"));
/* Acquire the lock. */
__rtld_lock_lock_recursive (GL(dl_load_lock));
/* One less direct use. */
assert (map->l_direct_opencount > 0);
--map->l_direct_opencount;
/* Decrement the reference count. */
if (map->l_opencount > 1 || map->l_type != lt_loaded)
{
/* There are still references to this object. Do nothing more. */
if (__builtin_expect (GLRO(dl_debug_mask) & DL_DEBUG_FILES, 0))
GLRO(dl_debug_printf) ("\nclosing file=%s; opencount == %u\n",
map->l_name, map->l_opencount);
/* Decrement the object's reference counter, not the dependencies'. */
--map->l_opencount;
/* If the direct use counter reaches zero we have to decrement
all the dependencies' usage counter. */
if (map->l_direct_opencount == 0)
for (i = 1; i < map->l_searchlist.r_nlist; ++i)
--map->l_searchlist.r_list[i]->l_opencount;
__rtld_lock_unlock_recursive (GL(dl_load_lock));
return;
}
list = map->l_initfini;
/* Compute the new l_opencount values. */
i = map->l_searchlist.r_nlist;
if (__builtin_expect (i == 0, 0))
/* This can happen if we handle relocation dependencies for an
object which wasn't loaded directly. */
for (i = 1; list[i] != NULL; ++i)
;
unsigned int nopencount = i;
new_opencount = (unsigned int *) alloca (i * sizeof (unsigned int));
for (i = 0; list[i] != NULL; ++i)
{
list[i]->l_idx = i;
new_opencount[i] = list[i]->l_opencount;
}
--new_opencount[0];
for (i = 1; list[i] != NULL; ++i)
if ((list[i]->l_flags_1 & DF_1_NODELETE) == 0
/* Decrement counter. */
&& (assert (new_opencount[i] > 0), --new_opencount[i] == 0))
{
void mark_removed (struct link_map *remmap)
{
/* Test whether this object was also loaded directly. */
if (remmap->l_searchlist.r_list != NULL
&& remmap->l_direct_opencount > 0)
{
/* In this case we have to decrement all the dependencies of
this object. They are all in MAP's dependency list. */
unsigned int j;
struct link_map **dep_list = remmap->l_searchlist.r_list;
for (j = 1; j < remmap->l_searchlist.r_nlist; ++j)
if (! (dep_list[j]->l_flags_1 & DF_1_NODELETE)
|| ! dep_list[j]->l_init_called)
{
assert (dep_list[j]->l_idx < map->l_searchlist.r_nlist);
assert (new_opencount[dep_list[j]->l_idx] > 0);
if (--new_opencount[dep_list[j]->l_idx] == 0)
{
assert (dep_list[j]->l_type == lt_loaded);
mark_removed (dep_list[j]);
}
}
}
if (remmap->l_reldeps != NULL)
{
unsigned int j;
for (j = 0; j < remmap->l_reldepsact; ++j)
{
struct link_map *depmap = remmap->l_reldeps[j];
/* Find out whether this object is in our list. */
if (depmap->l_idx < nopencount
&& list[depmap->l_idx] == depmap)
{
/* Yes, it is. If is has a search list, make a
recursive call to handle this. */
if (depmap->l_searchlist.r_list != NULL)
{
assert (new_opencount[depmap->l_idx] > 0);
if (--new_opencount[depmap->l_idx] == 0)
{
/* This one is now gone, too. */
assert (depmap->l_type == lt_loaded);
mark_removed (depmap);
}
}
else
{
/* Otherwise we have to handle the dependency
deallocation here. */
unsigned int k;
for (k = 0; depmap->l_initfini[k] != NULL; ++k)
{
struct link_map *rl = depmap->l_initfini[k];
if (rl->l_idx < nopencount
&& list[rl->l_idx] == rl)
{
assert (new_opencount[rl->l_idx] > 0);
if (--new_opencount[rl->l_idx] == 0)
{
/* Another module to remove. */
assert (rl->l_type == lt_loaded);
mark_removed (rl);
}
}
else
{
assert (rl->l_opencount > 0);
if (--rl->l_opencount == 0)
mark_removed (rl);
}
}
}
}
}
}
}
mark_removed (list[i]);
}
assert (new_opencount[0] == 0);
/* Call all termination functions at once. */
for (i = 0; list[i] != NULL; ++i)
{
struct link_map *imap = list[i];
if (new_opencount[i] == 0 && imap->l_type == lt_loaded
&& (imap->l_flags_1 & DF_1_NODELETE) == 0)
{
/* When debugging print a message first. */
if (__builtin_expect (GLRO(dl_debug_mask) & DL_DEBUG_IMPCALLS, 0))
GLRO(dl_debug_printf) ("\ncalling fini: %s [%lu]\n\n",
imap->l_name, imap->l_ns);
/* Call its termination function. Do not do it for
half-cooked objects. */
if (imap->l_init_called)
{
if (imap->l_info[DT_FINI_ARRAY] != NULL)
{
ElfW(Addr) *array =
(ElfW(Addr) *) (imap->l_addr
+ imap->l_info[DT_FINI_ARRAY]->d_un.d_ptr);
unsigned int sz = (imap->l_info[DT_FINI_ARRAYSZ]->d_un.d_val
/ sizeof (ElfW(Addr)));
while (sz-- > 0)
((fini_t) array[sz]) ();
}
/* Next try the old-style destructor. */
if (imap->l_info[DT_FINI] != NULL)
(*(void (*) (void)) DL_DT_FINI_ADDRESS
(imap, ((void *) imap->l_addr
+ imap->l_info[DT_FINI]->d_un.d_ptr))) ();
}
/* This object must not be used anymore. We must remove the
reference from the scope. */
unsigned int j;
struct link_map **searchlist = map->l_searchlist.r_list;
unsigned int nsearchlist = map->l_searchlist.r_nlist;
#ifndef NDEBUG
bool found = false;
#endif
for (j = 0; j < nsearchlist; ++j)
if (imap == searchlist[j])
{
/* This is the object to remove. Copy all the
following ones. */
while (++j < nsearchlist)
searchlist[j - 1] = searchlist[j];
searchlist[j - 1] = NULL;
--map->l_searchlist.r_nlist;
#ifndef NDEBUG
found = true;
#endif
break;
}
assert (found);
}
else if (new_opencount[i] != 0 && imap->l_type == lt_loaded
&& imap->l_searchlist.r_list == NULL
&& imap->l_initfini != NULL)
{
/* The object is still used. But the object we are
unloading right now is responsible for loading it. If
the current object does not have it's own scope yet we
have to create one. This has to be done before running
the finalizers.
To do this count the number of dependencies. */
unsigned int cnt;
for (cnt = 1; imap->l_initfini[cnt] != NULL; ++cnt)
if (imap->l_initfini[cnt]->l_idx >= i
&& imap->l_initfini[cnt]->l_idx < nopencount)
++new_opencount[imap->l_initfini[cnt]->l_idx];
else
++imap->l_initfini[cnt]->l_opencount;
/* We simply reuse the l_initfini list. */
imap->l_searchlist.r_list = &imap->l_initfini[cnt + 1];
imap->l_searchlist.r_nlist = cnt;
for (cnt = 0; imap->l_scope[cnt] != NULL; ++cnt)
if (imap->l_scope[cnt] == &map->l_searchlist)
{
imap->l_scope[cnt] = &imap->l_searchlist;
break;
}
}
/* Store the new l_opencount value. */
imap->l_opencount = new_opencount[i];
/* Just a sanity check. */
assert (imap->l_type == lt_loaded || imap->l_opencount > 0);
}
/* Notify the debugger we are about to remove some loaded objects. */
_r_debug.r_state = RT_DELETE;
GLRO(dl_debug_state) ();
#ifdef USE_TLS
size_t tls_free_start;
size_t tls_free_end;
tls_free_start = tls_free_end = NO_TLS_OFFSET;
#endif
/* Check each element of the search list to see if all references to
it are gone. */
for (i = 0; list[i] != NULL; ++i)
{
struct link_map *imap = list[i];
if (imap->l_opencount == 0 && imap->l_type == lt_loaded)
{
struct libname_list *lnp;
/* That was the last reference, and this was a dlopen-loaded
object. We can unmap it. */
if (__builtin_expect (imap->l_global, 0))
{
/* This object is in the global scope list. Remove it. */
unsigned int cnt
= GL(dl_ns)[imap->l_ns]._ns_main_searchlist->r_nlist;
do
--cnt;
while (GL(dl_ns)[imap->l_ns]._ns_main_searchlist->r_list[cnt]
!= imap);
/* The object was already correctly registered. */
while (++cnt
< GL(dl_ns)[imap->l_ns]._ns_main_searchlist->r_nlist)
GL(dl_ns)[imap->l_ns]._ns_main_searchlist->r_list[cnt - 1]
= GL(dl_ns)[imap->l_ns]._ns_main_searchlist->r_list[cnt];
--GL(dl_ns)[imap->l_ns]._ns_main_searchlist->r_nlist;
}
#ifdef USE_TLS
/* Remove the object from the dtv slotinfo array if it uses TLS. */
if (__builtin_expect (imap->l_tls_blocksize > 0, 0))
{
any_tls = true;
if (! remove_slotinfo (imap->l_tls_modid,
GL(dl_tls_dtv_slotinfo_list), 0,
imap->l_init_called))
/* All dynamically loaded modules with TLS are unloaded. */
GL(dl_tls_max_dtv_idx) = GL(dl_tls_static_nelem);
if (imap->l_tls_offset != NO_TLS_OFFSET)
{
/* Collect a contiguous chunk built from the objects in
this search list, going in either direction. When the
whole chunk is at the end of the used area then we can
reclaim it. */
# if TLS_TCB_AT_TP
if (tls_free_start == NO_TLS_OFFSET
|| (size_t) imap->l_tls_offset == tls_free_start)
{
/* Extend the contiguous chunk being reclaimed. */
tls_free_start
= imap->l_tls_offset - imap->l_tls_blocksize;
if (tls_free_end == NO_TLS_OFFSET)
tls_free_end = imap->l_tls_offset;
}
else if (imap->l_tls_offset - imap->l_tls_blocksize
== tls_free_end)
/* Extend the chunk backwards. */
tls_free_end = imap->l_tls_offset;
else
{
/* This isn't contiguous with the last chunk freed.
One of them will be leaked unless we can free
one block right away. */
if (tls_free_end == GL(dl_tls_static_used))
{
GL(dl_tls_static_used) = tls_free_start;
tls_free_end = imap->l_tls_offset;
tls_free_start
= tls_free_end - imap->l_tls_blocksize;
}
else if ((size_t) imap->l_tls_offset
== GL(dl_tls_static_used))
GL(dl_tls_static_used)
= imap->l_tls_offset - imap->l_tls_blocksize;
else if (tls_free_end < (size_t) imap->l_tls_offset)
{
/* We pick the later block. It has a chance to
be freed. */
tls_free_end = imap->l_tls_offset;
tls_free_start
= tls_free_end - imap->l_tls_blocksize;
}
}
# elif TLS_DTV_AT_TP
if ((size_t) imap->l_tls_offset == tls_free_end)
/* Extend the contiguous chunk being reclaimed. */
tls_free_end -= imap->l_tls_blocksize;
else if (imap->l_tls_offset + imap->l_tls_blocksize
== tls_free_start)
/* Extend the chunk backwards. */
tls_free_start = imap->l_tls_offset;
else
{
/* This isn't contiguous with the last chunk freed.
One of them will be leaked. */
if (tls_free_end == GL(dl_tls_static_used))
GL(dl_tls_static_used) = tls_free_start;
tls_free_start = imap->l_tls_offset;
tls_free_end = tls_free_start + imap->l_tls_blocksize;
}
# else
# error "Either TLS_TCB_AT_TP or TLS_DTV_AT_TP must be defined"
# endif
}
}
#endif
/* We can unmap all the maps at once. We determined the
start address and length when we loaded the object and
the `munmap' call does the rest. */
DL_UNMAP (imap);
/* Finally, unlink the data structure and free it. */
if (imap->l_prev != NULL)
imap->l_prev->l_next = imap->l_next;
else
{
#ifdef SHARED
assert (imap->l_ns != LM_ID_BASE);
#endif
GL(dl_ns)[imap->l_ns]._ns_loaded = imap->l_next;
}
--GL(dl_ns)[imap->l_ns]._ns_nloaded;
if (imap->l_next != NULL)
imap->l_next->l_prev = imap->l_prev;
free (imap->l_versions);
if (imap->l_origin != (char *) -1)
free ((char *) imap->l_origin);
/* If the object has relocation dependencies save this
information for latter. */
if (__builtin_expect (imap->l_reldeps != NULL, 0))
{
struct reldep_list *newrel;
newrel = (struct reldep_list *) alloca (sizeof (*reldeps)
+ (imap->l_reldepsact
* sizeof (bool)));
newrel->rellist = imap->l_reldeps;
newrel->nrellist = imap->l_reldepsact;
newrel->next = reldeps;
newrel->nhandled = imap->l_reldepsact;
unsigned int j;
for (j = 0; j < imap->l_reldepsact; ++j)
{
/* Find out whether this object is in our list. */
if (imap->l_reldeps[j]->l_idx < nopencount
&& list[imap->l_reldeps[j]->l_idx] == imap->l_reldeps[j])
/* Yes, it is. */
newrel->handled[j] = true;
else
newrel->handled[j] = false;
}
reldeps = newrel;
}
/* This name always is allocated. */
free (imap->l_name);
/* Remove the list with all the names of the shared object. */
lnp = imap->l_libname;
do
{
struct libname_list *this = lnp;
lnp = lnp->next;
if (!this->dont_free)
free (this);
}
while (lnp != NULL);
/* Remove the searchlists. */
if (imap != map)
free (imap->l_initfini);
/* Remove the scope array if we allocated it. */
if (imap->l_scope != imap->l_scope_mem)
free (imap->l_scope);
if (imap->l_phdr_allocated)
free ((void *) imap->l_phdr);
if (imap->l_rpath_dirs.dirs != (void *) -1)
free (imap->l_rpath_dirs.dirs);
if (imap->l_runpath_dirs.dirs != (void *) -1)
free (imap->l_runpath_dirs.dirs);
free (imap);
}
}
#ifdef USE_TLS
/* If we removed any object which uses TLS bump the generation counter. */
if (any_tls)
{
if (__builtin_expect (++GL(dl_tls_generation) == 0, 0))
__libc_fatal (_("TLS generation counter wrapped! Please report as described in <http://www.gnu.org/software/libc/bugs.html>."));
if (tls_free_end == GL(dl_tls_static_used))
GL(dl_tls_static_used) = tls_free_start;
}
#endif
/* Notify the debugger those objects are finalized and gone. */
_r_debug.r_state = RT_CONSISTENT;
GLRO(dl_debug_state) ();
/* Now we can perhaps also remove the modules for which we had
dependencies because of symbol lookup. */
while (__builtin_expect (reldeps != NULL, 0))
{
while (reldeps->nrellist-- > 0)
/* Some of the relocation dependencies might be on the
dependency list of the object we are closing right now.
They were already handled. Do not close them again. */
if (reldeps->nrellist < reldeps->nhandled
&& ! reldeps->handled[reldeps->nrellist])
_dl_close (reldeps->rellist[reldeps->nrellist]);
free (reldeps->rellist);
reldeps = reldeps->next;
}
free (list);
/* Release the lock. */
__rtld_lock_unlock_recursive (GL(dl_load_lock));
}
libc_hidden_def (_dl_close)
#ifdef USE_TLS
static bool __libc_freeres_fn_section
free_slotinfo (struct dtv_slotinfo_list **elemp)
{
size_t cnt;
if (*elemp == NULL)
/* Nothing here, all is removed (or there never was anything). */
return true;
if (!free_slotinfo (&(*elemp)->next))
/* We cannot free the entry. */
return false;
/* That cleared our next pointer for us. */
for (cnt = 0; cnt < (*elemp)->len; ++cnt)
if ((*elemp)->slotinfo[cnt].map != NULL)
/* Still used. */
return false;
/* We can remove the list element. */
free (*elemp);
*elemp = NULL;
return true;
}
#endif
libc_freeres_fn (free_mem)
{
for (Lmid_t ns = 0; ns < DL_NNS; ++ns)
if (__builtin_expect (GL(dl_ns)[ns]._ns_global_scope_alloc, 0) != 0
&& (GL(dl_ns)[ns]._ns_main_searchlist->r_nlist
// XXX Check whether we need NS-specific initial_searchlist
== GLRO(dl_initial_searchlist).r_nlist))
{
/* All object dynamically loaded by the program are unloaded. Free
the memory allocated for the global scope variable. */
struct link_map **old = GL(dl_ns)[ns]._ns_main_searchlist->r_list;
/* Put the old map in. */
GL(dl_ns)[ns]._ns_main_searchlist->r_list
// XXX Check whether we need NS-specific initial_searchlist
= GLRO(dl_initial_searchlist).r_list;
/* Signal that the original map is used. */
GL(dl_ns)[ns]._ns_global_scope_alloc = 0;
/* Now free the old map. */
free (old);
}
#ifdef USE_TLS
if (USE___THREAD || GL(dl_tls_dtv_slotinfo_list) != NULL)
{
/* Free the memory allocated for the dtv slotinfo array. We can do
this only if all modules which used this memory are unloaded. */
# ifdef SHARED
if (GL(dl_initial_dtv) == NULL)
/* There was no initial TLS setup, it was set up later when
it used the normal malloc. */
free_slotinfo (&GL(dl_tls_dtv_slotinfo_list));
else
# endif
/* The first element of the list does not have to be deallocated.
It was allocated in the dynamic linker (i.e., with a different
malloc), and in the static library it's in .bss space. */
free_slotinfo (&GL(dl_tls_dtv_slotinfo_list)->next);
}
#endif
}