glibc/hurd/hurdstartup.c
Roland McGrath a2fe9c76a9 Fri May 19 17:16:46 1995 Roland McGrath <roland@churchy.gnu.ai.mit.edu>
* sysdeps/mach/hurd/i386/init-first.c: In cthreads case, handle
 	args on stack from kernel.

	* posix/Makefile, sysdeps/alpha/Makefile,
	* sysdeps/mach/hurd/Makefile, sysdeps/sparc/Makefile, Makefile,
	* Makerules, Make-dist: Fix "cvs commit" cmds in rules to not fail
	in the absence of CVS dirs.

	* hurd/hurdstartup.c: Don't call __mach_init.  Grok args from the
 	kernel on the stack properly.

	* set-init.c: Never call _init/_fini; just run __libc_subinit.

	* Makerules (LDFLAGS-c.so): Add -nostartfiles.
	* mach/Machrules (LDFLAGS-$(interface.so)): Likewise.

	* configure.in: Move defaulting of --with-elf and --with-gnu-*
 	based on host os outside the AC_CACHE_VAL for the sysdirs
 	calculation.

	* Makeconfig (localedir, nlsdir): New variables.

	* values.h: New file.
	* Makefile (headers): Add values.h.

	* locale/Makefile (distribute): Add error.h.
	* locale/localedef.c: Include "error.h".
	(main): Use error_message_count instead of warning_cntr.
1995-05-20 00:13:43 +00:00

229 lines
6.8 KiB
C

/* Initial program startup for running under the GNU Hurd.
Copyright (C) 1991, 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If
not, write to the Free Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA 02139, USA. */
#include <errno.h>
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <hurd.h>
#include <hurd/exec.h>
#include <sysdep.h>
#include <hurd/threadvar.h>
#include <unistd.h>
#include <elf.h>
#include "set-hooks.h"
#include "hurdmalloc.h" /* XXX */
#include "hurdstartup.h"
mach_port_t *_hurd_init_dtable;
mach_msg_type_number_t _hurd_init_dtablesize;
unsigned int __hurd_threadvar_max;
unsigned long int __hurd_threadvar_stack_mask;
unsigned long int __hurd_threadvar_stack_offset;
/* These are set up by _hurdsig_init. */
unsigned long int __hurd_sigthread_stack_base;
unsigned long int __hurd_sigthread_stack_end;
unsigned long int *__hurd_sigthread_variables;
extern void __mach_init (void);
int _hurd_split_args (char *, size_t, char **);
/* Entry point. This is the first thing in the text segment.
The exec server started the initial thread in our task with this spot the
PC, and a stack that is presumably big enough. We do basic Mach
initialization so mig-generated stubs work, and then do an exec_startup
RPC on our bootstrap port, to which the exec server responds with the
information passed in the exec call, as well as our original bootstrap
port, and the base address and size of the preallocated stack.
If using cthreads, we are given a new stack by cthreads initialization and
deallocate the stack set up by the exec server. On the new stack we call
`start1' (above) to do the rest of the startup work. Since the stack may
disappear out from under us in a machine-dependent way, we use a pile of
static variables to communicate the information from exec_startup to start1.
This is unfortunate but preferable to machine-dependent frobnication to copy
the state from the old stack to the new one. */
void
_hurd_startup (void **argptr, void (*main) (int *data))
{
error_t err;
mach_port_t in_bootstrap;
char *args, *env;
mach_msg_type_number_t argslen, envlen;
struct hurd_startup_data data;
char **argv, **envp;
int argc, envc;
int *argcptr;
if (err = __task_get_special_port (__mach_task_self (), TASK_BOOTSTRAP_PORT,
&in_bootstrap))
LOSE;
if (in_bootstrap != MACH_PORT_NULL)
{
/* Call the exec server on our bootstrap port and
get all our standard information from it. */
argslen = envlen = 0;
data.dtablesize = data.portarraysize = data.intarraysize = 0;
err = __exec_startup (in_bootstrap,
&data.stack_base, &data.stack_size,
&data.flags, &args, &argslen, &env, &envlen,
&data.dtable, &data.dtablesize,
&data.portarray, &data.portarraysize,
&data.intarray, &data.intarraysize);
__mach_port_deallocate (__mach_task_self (), in_bootstrap);
}
if (err || in_bootstrap == MACH_PORT_NULL)
{
/* Either we have no bootstrap port, or the RPC to the exec server
failed. Try to snarf the args in the canonical Mach way.
Hopefully either they will be on the stack as expected, or the
stack will be zeros so we don't crash. Set all our other
variables to have empty information. */
argcptr = (int *) argptr;
argc = argcptr[0];
argv = (char **) &argcptr[1];
envp = &argv[argc + 1];
envc = 0;
while (envp[envc])
++envc;
data.flags = 0;
args = env = NULL;
argslen = envlen = 0;
data.dtable = NULL;
data.dtablesize = 0;
data.portarray = NULL;
data.portarraysize = 0;
data.intarray = NULL;
data.intarraysize = 0;
}
else
argv = envp = NULL;
/* Turn the block of null-separated strings we were passed for the
arguments and environment into vectors of pointers to strings. */
if (! argv)
{
/* Count up the arguments so we can allocate ARGV. */
argc = _hurd_split_args (args, argslen, NULL);
/* Count up the environment variables so we can allocate ENVP. */
envc = _hurd_split_args (env, envlen, NULL);
/* There were some arguments. Allocate space for the vectors of
pointers and fill them in. We allocate the space for the
environment pointers immediately after the argv pointers because
the ELF ABI will expect it. */
argcptr = __alloca (sizeof (int) +
(argc + 1 + envc + 1) * sizeof (char *) +
sizeof (struct hurd_startup_data));
*argcptr = argc;
argv = (void *) (argcptr + 1);
_hurd_split_args (args, argslen, argv);
/* There was some environment. */
envp = &argv[argc + 1];
_hurd_split_args (env, envlen, envp);
}
{
struct hurd_startup_data *d = (void *) &envp[envc + 1];
/* XXX hardcoded until exec_startup changes */
#ifdef PIC
#if 0
const Elf32_Ehdr *ehdr = (const void *) 0x08000000;
vm_address_t phdr = 0x08000000 + ehdr->e_phoff;
vm_size_t phdrsz = ehdr->e_phnum * ehdr->e_phentsize;
vm_address_t user_entry = ehdr->e_entry;
#else
vm_address_t phdr = 0;
vm_size_t phdrsz = 0;
extern void _start();
vm_address_t user_entry = (vm_address_t) &_start;
#endif
#else
vm_address_t phdr = 0;
vm_size_t phdrsz = 0;
vm_address_t user_entry = 0;
#endif
if ((void *) d != argv[0])
{
*d = data;
_hurd_init_dtable = d->dtable;
_hurd_init_dtablesize = d->dtablesize;
d->phdr = phdr;
d->phdrsz = phdrsz;
d->user_entry = user_entry;
}
(*main) (argcptr);
}
/* Should never get here. */
LOSE;
abort ();
}
/* Split ARGSLEN bytes at ARGS into words, breaking at NUL characters. If
ARGV is not a null pointer, store a pointer to the start of each word in
ARGV[n], and null-terminate ARGV. Return the number of words split. */
int
_hurd_split_args (char *args, size_t argslen, char **argv)
{
char *p = args;
size_t n = argslen;
int argc = 0;
while (n > 0)
{
char *end = memchr (p, '\0', n);
if (argv)
argv[argc] = p;
++argc;
if (end == NULL)
/* The last argument is unterminated. */
break;
n -= end + 1 - p;
p = end + 1;
}
if (argv)
argv[argc] = NULL;
return argc;
}