mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-24 18:23:41 +08:00
7fda568229
This patch moves tests of ccos, ccosh, cexp, clog, csqrt, ctan and ctanh to auto-libm-test-in, adding the required support to gen-auto-libm-tests. Other TEST_c_c functions aren't moved for now (although the relevant table entries are put in gen-auto-libm-tests for it to know how to handle them): clog10 because of a known MPC bug causing it to hang for at least some pure imaginary inputs (fixed in SVN, but I'd rather not rely on unreleased versions of MPFR or MPC even if relying on very recent releases); the inverse trig and hyperbolic functions because of known slowness in special cases; and csin / csinh because of observed slowness that I need to investigate and report to the MPC maintainers. Slowness can be bypassed by moving to incremental generation (only for new / changed tests) rather than regenerating the whole of auto-libm-test-out every time, but that needs implementing. (This patch takes the time for running gen-auto-libm-tests from about one second to seven, on my system, which I think is reasonable. The slow functions would make it take several minutes at least, which seems unreasonable.) Tested x86_64 and x86 and ulps updated accordingly. * math/auto-libm-test-in: Add tests of ccos, ccosh, cexp, clog, csqrt, ctan and ctanh. * math/auto-libm-test-out: Regenerated. * math/libm-test.inc (TEST_COND_x86_64): New macro. (TEST_COND_x86): Likewise. (ccos_test_data): Use AUTO_TESTS_c_c. (ccosh_test_data): Likewise. (cexp_test_data): Likewise. (clog_test_data): Likewise. (csqrt_test_data): Likewise. (ctan_test_data): Likewise. (ctan_tonearest_test_data): Likewise. (ctan_towardzero_test_data): Likewise. (ctan_downward_test_data): Likewise. (ctan_upward_test_data): Likewise. (ctanh_test_data): Likewise. (ctanh_tonearest_test_data): Likewise. (ctanh_towardzero_test_data): Likewise. (ctanh_downward_test_data): Likewise. (ctanh_upward_test_data): Likewise. * math/gen-auto-libm-tests.c (func_calc_method): Add value mpc_c_c. (func_calc_desc): Add mpc_c_c union field. (FUNC_mpc_c_c): New macro. (test_functions): Add cacos, cacosh, casin, casinh, catan, catanh, ccos, ccosh, cexp, clog, clog10, csin, csinh, csqrt, ctan and ctanh. (special_fill_min_subnorm_p120): New function. (special_real_inputs): Add min_subnorm_p120. (calc_generic_results): Handle mpc_c_c. * sysdeps/i386/fpu/libm-test-ulps: Update. * sysdeps/x86_64/fpu/libm-test-ulps: Likewise.
1913 lines
40 KiB
Plaintext
1913 lines
40 KiB
Plaintext
# libm test inputs for gen-auto-libm-tests.c.
|
|
# Copyright (C) 1997-2013 Free Software Foundation, Inc.
|
|
# This file is part of the GNU C Library.
|
|
#
|
|
# The GNU C Library is free software; you can redistribute it and/or
|
|
# modify it under the terms of the GNU Lesser General Public
|
|
# License as published by the Free Software Foundation; either
|
|
# version 2.1 of the License, or (at your option) any later version.
|
|
#
|
|
# The GNU C Library is distributed in the hope that it will be useful,
|
|
# but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
# Lesser General Public License for more details.
|
|
#
|
|
# You should have received a copy of the GNU Lesser General Public
|
|
# License along with the GNU C Library; if not, see
|
|
# <http://www.gnu.org/licenses/>. */
|
|
|
|
acos 0
|
|
acos -0
|
|
acos 1
|
|
acos -1
|
|
acos 0.5
|
|
acos -0.5
|
|
acos 0.75
|
|
acos 2e-17
|
|
acos 0.0625
|
|
acos 0x0.ffffffp0
|
|
acos -0x0.ffffffp0
|
|
acos 0x0.ffffffff8p0
|
|
acos -0x0.ffffffff8p0
|
|
acos 0x0.ffffffffffffp0
|
|
acos -0x0.ffffffffffffp0
|
|
acos 0x0.ffffffffffffffffp0
|
|
acos -0x0.ffffffffffffffffp0
|
|
|
|
acosh 1
|
|
acosh 7
|
|
|
|
asin 0
|
|
asin -0
|
|
asin 0.5
|
|
asin -0.5
|
|
asin 1.0
|
|
asin -1.0
|
|
asin 0.75
|
|
asin 0x0.ffffffp0
|
|
asin -0x0.ffffffp0
|
|
asin 0x0.ffffffff8p0
|
|
asin -0x0.ffffffff8p0
|
|
asin 0x0.ffffffffffffp0
|
|
asin -0x0.ffffffffffffp0
|
|
asin 0x0.ffffffffffffffffp0
|
|
asin -0x0.ffffffffffffffffp0
|
|
|
|
asinh 0
|
|
asinh -0
|
|
asinh 0.75
|
|
|
|
atan 0
|
|
atan -0
|
|
atan max
|
|
atan -max
|
|
atan 1
|
|
atan -1
|
|
atan 0.75
|
|
# Bug 15319: underflow exception may be missing.
|
|
atan 0x1p-100 missing-underflow
|
|
atan 0x1p-600 missing-underflow
|
|
atan 0x1p-10000 missing-underflow
|
|
|
|
# atan2 (0,x) == 0 for x > 0.
|
|
atan2 0 1
|
|
# atan2 (-0,x) == -0 for x > 0.
|
|
atan2 -0 1
|
|
atan2 0 0
|
|
atan2 -0 0
|
|
# atan2 (+0,x) == +pi for x < 0.
|
|
atan2 0 -1
|
|
# atan2 (-0,x) == -pi for x < 0.
|
|
atan2 -0 -1
|
|
atan2 0 -0
|
|
atan2 -0 -0
|
|
# atan2 (y,+0) == pi/2 for y > 0.
|
|
atan2 1 0
|
|
# atan2 (y,-0) == pi/2 for y > 0.
|
|
atan2 1 -0
|
|
# atan2 (y,+0) == -pi/2 for y < 0.
|
|
atan2 -1 0
|
|
# atan2 (y,-0) == -pi/2 for y < 0.
|
|
atan2 -1 -0
|
|
atan2 max max
|
|
atan2 max min
|
|
atan2 -max -min
|
|
atan2 0.75 1
|
|
atan2 -0.75 1.0
|
|
atan2 0.75 -1.0
|
|
atan2 -0.75 -1.0
|
|
atan2 0.390625 .00029
|
|
atan2 1.390625 0.9296875
|
|
atan2 -0.00756827042671106339 -.001792735857538728036
|
|
atan2 0x1.00000000000001p0 0x1.00000000000001p0
|
|
|
|
atanh 0
|
|
atanh -0
|
|
atanh 0.75
|
|
|
|
# cabs (x,y) == cabs (y,x).
|
|
cabs 0.75 12.390625
|
|
# cabs (x,y) == cabs (-x,y).
|
|
cabs -12.390625 0.75
|
|
# cabs (x,y) == cabs (-y,x).
|
|
cabs -0.75 12.390625
|
|
# cabs (x,y) == cabs (-x,-y).
|
|
cabs -12.390625 -0.75
|
|
# cabs (x,y) == cabs (-y,-x).
|
|
cabs -0.75 -12.390625
|
|
# cabs (x,0) == fabs (x).
|
|
cabs -0.75 0
|
|
cabs 0.75 0
|
|
cabs -1.0 0
|
|
cabs 1.0 0
|
|
cabs -5.7e7 0
|
|
cabs 5.7e7 0
|
|
cabs 0.75 1.25
|
|
|
|
# carg (x + i 0) == 0 for x > 0.
|
|
carg 2.0 0
|
|
# carg (x - i 0) == -0 for x > 0.
|
|
carg 2.0 -0
|
|
carg 0 0
|
|
carg 0 -0
|
|
# carg (x + i 0) == +pi for x < 0.
|
|
carg -2.0 0
|
|
# carg (x - i 0) == -pi for x < 0.
|
|
carg -2.0 -0
|
|
carg -0 0
|
|
carg -0 -0
|
|
# carg (+0 + i y) == pi/2 for y > 0.
|
|
carg 0 2.0
|
|
# carg (-0 + i y) == pi/2 for y > 0.
|
|
carg -0 2.0
|
|
# carg (+0 + i y) == -pi/2 for y < 0.
|
|
carg 0 -2.0
|
|
# carg (-0 + i y) == -pi/2 for y < 0.
|
|
carg -0 -2.0
|
|
|
|
cbrt 0.0
|
|
cbrt -0
|
|
cbrt -0.001
|
|
cbrt 8
|
|
cbrt -27.0
|
|
cbrt 0.9921875
|
|
cbrt 0.75
|
|
cbrt 0x1p16383
|
|
cbrt 0x1p-16383
|
|
|
|
ccos 0.0 0.0
|
|
ccos -0 0.0
|
|
ccos 0.0 -0
|
|
ccos -0 -0
|
|
|
|
ccos 0.75 1.25
|
|
ccos -2 -3
|
|
|
|
ccos 0.75 89.5
|
|
ccos 0.75 -89.5
|
|
ccos -0.75 89.5
|
|
ccos -0.75 -89.5
|
|
ccos 0.75 710.5
|
|
ccos 0.75 -710.5
|
|
ccos -0.75 710.5
|
|
ccos -0.75 -710.5
|
|
ccos 0.75 11357.25
|
|
ccos 0.75 -11357.25
|
|
ccos -0.75 11357.25
|
|
ccos -0.75 -11357.25
|
|
|
|
ccos 0x1p-149 180
|
|
ccos 0x1p-1074 1440
|
|
ccos 0x1p-16434 22730
|
|
|
|
ccos min_subnorm_p120 0x1p-120
|
|
ccos 0x1p-120 min_subnorm_p120
|
|
|
|
ccosh 0.0 0.0
|
|
ccosh -0 0.0
|
|
ccosh 0.0 -0
|
|
ccosh -0 -0
|
|
|
|
ccosh 0.75 1.25
|
|
ccosh -2 -3
|
|
|
|
ccosh 89.5 0.75
|
|
ccosh -89.5 0.75
|
|
ccosh 89.5 -0.75
|
|
ccosh -89.5 -0.75
|
|
ccosh 710.5 0.75
|
|
ccosh -710.5 0.75
|
|
ccosh 710.5 -0.75
|
|
ccosh -710.5 -0.75
|
|
ccosh 11357.25 0.75
|
|
ccosh -11357.25 0.75
|
|
ccosh 11357.25 -0.75
|
|
ccosh -11357.25 -0.75
|
|
|
|
ccosh 180 0x1p-149
|
|
ccosh 1440 0x1p-1074
|
|
ccosh 22730 0x1p-16434
|
|
|
|
ccosh min_subnorm_p120 0x1p-120
|
|
ccosh 0x1p-120 min_subnorm_p120
|
|
|
|
cexp 0 0
|
|
cexp -0 0
|
|
cexp 0 -0
|
|
cexp -0 -0
|
|
|
|
cexp 0.75 1.25
|
|
cexp -2.0 -3.0
|
|
|
|
cexp 0 0x1p65
|
|
cexp 0 -0x1p65
|
|
cexp 50 0x1p127
|
|
|
|
cexp 0 1e22
|
|
cexp 0 0x1p1023
|
|
cexp 500 0x1p1023
|
|
|
|
cexp 0 0x1p16383
|
|
cexp -10000 0x1p16383
|
|
|
|
cexp 88.75 0.75
|
|
cexp -95 0.75
|
|
cexp 709.8125 0.75
|
|
cexp -720 0.75
|
|
cexp 11356.5625 0.75
|
|
cexp -11370 0.75
|
|
|
|
cexp 180 0x1p-149
|
|
cexp 1440 0x1p-1074
|
|
cexp 22730 0x1p-16434
|
|
|
|
cexp 1e6 0
|
|
cexp 1e6 min
|
|
cexp 1e6 -min
|
|
|
|
# Bug 16348: spurious underflow may occur.
|
|
cexp min min_subnorm spurious-underflow:ldbl-96-intel:x86 spurious-underflow:ldbl-96-intel:x86_64
|
|
cexp min -min_subnorm spurious-underflow:ldbl-96-intel:x86 spurious-underflow:ldbl-96-intel:x86_64
|
|
|
|
clog 0.75 1.25
|
|
clog -2 -3
|
|
|
|
clog 0x1.fffffep+127 0x1.fffffep+127
|
|
clog 0x1.fffffep+127 1.0
|
|
clog 0x1p-149 0x1p-149
|
|
clog 0x1p-147 0x1p-147
|
|
clog 0x1.fffffffffffffp+1023 0x1.fffffffffffffp+1023
|
|
clog 0x1.fffffffffffffp+1023 0x1p+1023
|
|
clog 0x1p-1074 0x1p-1074
|
|
clog 0x1p-1073 0x1p-1073
|
|
clog 0x1.fp+16383 0x1.fp+16383
|
|
clog 0x1.fp+16383 0x1p+16383
|
|
clog 0x1p-16440 0x1p-16441
|
|
|
|
clog 0x1p-149 0x1.fp+127
|
|
clog -0x1p-149 0x1.fp+127
|
|
clog 0x1p-149 -0x1.fp+127
|
|
clog -0x1p-149 -0x1.fp+127
|
|
clog -0x1.fp+127 0x1p-149
|
|
clog -0x1.fp+127 -0x1p-149
|
|
clog 0x1.fp+127 0x1p-149
|
|
clog 0x1.fp+127 -0x1p-149
|
|
clog 0x1p-1074 0x1.fp+1023
|
|
clog -0x1p-1074 0x1.fp+1023
|
|
clog 0x1p-1074 -0x1.fp+1023
|
|
clog -0x1p-1074 -0x1.fp+1023
|
|
clog -0x1.fp+1023 0x1p-1074
|
|
clog -0x1.fp+1023 -0x1p-1074
|
|
clog 0x1.fp+1023 0x1p-1074
|
|
clog 0x1.fp+1023 -0x1p-1074
|
|
clog 0x1p-16445 0x1.fp+16383
|
|
clog -0x1p-16445 0x1.fp+16383
|
|
clog 0x1p-16445 -0x1.fp+16383
|
|
clog -0x1p-16445 -0x1.fp+16383
|
|
clog -0x1.fp+16383 0x1p-16445
|
|
clog -0x1.fp+16383 -0x1p-16445
|
|
clog 0x1.fp+16383 0x1p-16445
|
|
clog 0x1.fp+16383 -0x1p-16445
|
|
clog 0x1p-16494 0x1.fp+16383
|
|
clog -0x1p-16494 0x1.fp+16383
|
|
clog 0x1p-16494 -0x1.fp+16383
|
|
clog -0x1p-16494 -0x1.fp+16383
|
|
clog -0x1.fp+16383 0x1p-16494
|
|
clog -0x1.fp+16383 -0x1p-16494
|
|
clog 0x1.fp+16383 0x1p-16494
|
|
clog 0x1.fp+16383 -0x1p-16494
|
|
|
|
clog 1.0 0x1.234566p-10
|
|
clog -1.0 0x1.234566p-20
|
|
clog 0x1.234566p-30 1.0
|
|
clog -0x1.234566p-40 -1.0
|
|
clog 0x1.234566p-50 1.0
|
|
clog 0x1.234566p-60 1.0
|
|
clog 0x1p-62 1.0
|
|
clog 0x1p-63 1.0
|
|
clog 0x1p-64 1.0
|
|
clog 0x1p-510 1.0
|
|
clog 0x1p-511 1.0
|
|
clog 0x1p-512 1.0
|
|
clog 0x1p-8190 1.0
|
|
clog 0x1p-8191 1.0
|
|
clog 0x1p-8192 1.0
|
|
|
|
clog 0x1.000566p0 0x1.234p-10
|
|
clog 0x1.000566p0 0x1.234p-100
|
|
clog -0x1.0000000123456p0 0x1.2345678p-30
|
|
clog -0x1.0000000123456p0 0x1.2345678p-1000
|
|
clog 0x1.00000000000000123456789abcp0 0x1.23456789p-60
|
|
clog 0x1.00000000000000123456789abcp0 0x1.23456789p-1000
|
|
|
|
clog 0x0.ffffffp0 0x0.ffffffp-100
|
|
clog 0x0.fffffffffffff8p0 0x0.fffffffffffff8p-1000
|
|
clog 0x0.ffffffffffffffffp0 0x0.ffffffffffffffffp-15000
|
|
|
|
clog 0x1a6p-10 0x3a5p-10
|
|
clog 0xf2p-10 0x3e3p-10
|
|
clog 0x4d4ep-15 0x6605p-15
|
|
clog 0x2818p-15 0x798fp-15
|
|
clog 0x9b57bp-20 0xcb7b4p-20
|
|
clog 0x2731p-20 0xfffd0p-20
|
|
clog 0x2ede88p-23 0x771c3fp-23
|
|
clog 0x11682p-23 0x7ffed1p-23
|
|
clog 0xa1f2c1p-24 0xc643aep-24
|
|
clog 0x659feap-24 0xeaf6f9p-24
|
|
clog 0x4447d7175p-35 0x6c445e00ap-35
|
|
clog 0x2dd46725bp-35 0x7783a1284p-35
|
|
clog 0x164c74eea876p-45 0x16f393482f77p-45
|
|
clog 0xfe961079616p-45 0x1bc37e09e6d1p-45
|
|
clog 0xa4722f19346cp-51 0x7f9631c5e7f07p-51
|
|
clog 0x10673dd0f2481p-51 0x7ef1d17cefbd2p-51
|
|
clog 0x8ecbf810c4ae6p-52 0xd479468b09a37p-52
|
|
clog 0x5b06b680ea2ccp-52 0xef452b965da9fp-52
|
|
clog 0x659b70ab7971bp-53 0x1f5d111e08abecp-53
|
|
clog 0x15cfbd1990d1ffp-53 0x176a3973e09a9ap-53
|
|
clog 0x1367a310575591p-54 0x3cfcc0a0541f60p-54
|
|
clog 0x55cb6d0c83af5p-55 0x7fe33c0c7c4e90p-55
|
|
clog 0x298c62cb546588a7p-63 0x7911b1dfcc4ecdaep-63
|
|
clog 0x4d9c37e2b5cb4533p-63 0x65c98be2385a042ep-63
|
|
clog 0x602fd5037c4792efp-64 0xed3e2086dcca80b8p-64
|
|
clog 0x6b10b4f3520217b6p-64 0xe8893cbb449253a1p-64
|
|
clog 0x81b7efa81fc35ad1p-65 0x1ef4b835f1c79d812p-65
|
|
clog 0x3f96469050f650869c2p-75 0x6f16b2c9c8b05988335p-75
|
|
clog 0x3157fc1d73233e580c8p-75 0x761b52ccd435d7c7f5fp-75
|
|
clog 0x155f8afc4c48685bf63610p-85 0x17d0cf2652cdbeb1294e19p-85
|
|
clog 0x13836d58a13448d750b4b9p-85 0x195ca7bc3ab4f9161edbe6p-85
|
|
clog 0x1df515eb171a808b9e400266p-95 0x7c71eb0cd4688dfe98581c77p-95
|
|
clog 0xe33f66c9542ca25cc43c867p-95 0x7f35a68ebd3704a43c465864p-95
|
|
clog 0x6771f22c64ed551b857c128b4cp-105 0x1f570e7a13cc3cf2f44fd793ea1p-105
|
|
clog 0x15d8ab6ed05ca514086ac3a1e84p-105 0x1761e480aa094c0b10b34b09ce9p-105
|
|
clog 0x187190c1a334497bdbde5a95f48p-106 0x3b25f08062d0a095c4cfbbc338dp-106
|
|
clog 0x6241ef0da53f539f02fad67dabp-106 0x3fb46641182f7efd9caa769dac0p-106
|
|
clog 0x3e1d0a105ac4ebeacd9c6952d34cp-112 0xf859b3d1b06d005dcbb5516d5479p-112
|
|
clog 0x47017a2e36807acb1e5214b209dep-112 0xf5f4a550c9d75e3bb1839d865f0dp-112
|
|
clog 0x148f818cb7a9258fca942ade2a0cap-113 0x18854a34780b8333ec53310ad7001p-113
|
|
clog 0xfd95243681c055c2632286921092p-113 0x1bccabcd29ca2152860ec29e34ef7p-113
|
|
clog 0xdb85c467ee2aadd5f425fe0f4b8dp-114 0x3e83162a0f95f1dcbf97dddf410eap-114
|
|
clog 0x1415bcaf2105940d49a636e98ae59p-115 0x7e6a150adfcd1b0921d44b31f40f4p-115
|
|
|
|
cos 0
|
|
cos -0
|
|
cos pi/3
|
|
cos 2pi/3
|
|
cos pi/2
|
|
cos 0.75
|
|
cos 0x1p65
|
|
cos -0x1p65
|
|
cos 0.80190127184058835
|
|
cos 0x1.442f74p+15
|
|
cos 1e22
|
|
cos 0x1p1023
|
|
cos 0x1p16383
|
|
cos 0x1p+120
|
|
cos 0x1p+127
|
|
cos 0x1.fffff8p+127
|
|
cos 0x1.fffffep+127
|
|
cos 0x1p+50
|
|
cos 0x1p+28
|
|
cos 0x1.000000cf4a2a2p0
|
|
cos 0x1.0000010b239a9p0
|
|
cos 0x1.00000162a932bp0
|
|
cos 0x1.000002d452a10p0
|
|
cos 0x1.000005bc7d86dp0
|
|
cos 1
|
|
cos 2
|
|
cos 3
|
|
cos 4
|
|
cos 5
|
|
cos 6
|
|
cos 7
|
|
cos 8
|
|
cos 9
|
|
cos 10
|
|
|
|
cosh 0
|
|
cosh -0
|
|
cosh 0.75
|
|
cosh 709.8893558127259666434838436543941497802734375
|
|
cosh -709.8893558127259666434838436543941497802734375
|
|
cosh 22
|
|
cosh 23
|
|
cosh 24
|
|
|
|
csqrt 0 0
|
|
csqrt 0 -0
|
|
csqrt -0 0
|
|
csqrt -0 -0
|
|
|
|
csqrt 16.0 -30.0
|
|
csqrt -1 0
|
|
csqrt 0 2
|
|
csqrt 119 120
|
|
csqrt 0.75 1.25
|
|
csqrt -2 -3
|
|
csqrt -2 3
|
|
# Principal square root should be returned (i.e., non-negative real part).
|
|
csqrt 0 -1
|
|
|
|
csqrt 0x1.fffffep+127 0x1.fffffep+127
|
|
csqrt 0x1.fffffep+127 1.0
|
|
csqrt 0x1p-149 0x1p-149
|
|
csqrt 0x1p-147 0x1p-147
|
|
|
|
csqrt 0 0x1p-149
|
|
csqrt 0x1p-50 0x1p-149
|
|
csqrt 0x1p+127 0x1p-149
|
|
csqrt 0x1p-149 0x1p+127
|
|
csqrt 0x1.000002p-126 0x1.000002p-126
|
|
csqrt -0x1.000002p-126 -0x1.000002p-126
|
|
|
|
csqrt 0x1.fffffffffffffp+1023 0x1.fffffffffffffp+1023
|
|
csqrt 0x1.fffffffffffffp+1023 0x1p+1023
|
|
csqrt 0x1p-1074 0x1p-1074
|
|
csqrt 0x1p-1073 0x1p-1073
|
|
|
|
csqrt 0 0x1p-1074
|
|
csqrt 0x1p-500 0x1p-1074
|
|
csqrt 0x1p+1023 0x1p-1074
|
|
csqrt 0x1p-1074 0x1p+1023
|
|
csqrt 0x1.0000000000001p-1022 0x1.0000000000001p-1022
|
|
csqrt -0x1.0000000000001p-1022 -0x1.0000000000001p-1022
|
|
|
|
csqrt 0x1.fp+16383 0x1.fp+16383
|
|
csqrt 0x1.fp+16383 0x1p+16383
|
|
csqrt 0x1p-16440 0x1p-16441
|
|
|
|
csqrt 0 0x1p-16445
|
|
csqrt 0x1p-5000 0x1p-16445
|
|
csqrt 0x1p+16383 0x1p-16445
|
|
csqrt 0x1p-16445 0x1p+16383
|
|
csqrt 0x1.0000000000000002p-16382 0x1.0000000000000002p-16382
|
|
csqrt -0x1.0000000000000002p-16382 -0x1.0000000000000002p-16382
|
|
|
|
csqrt 0 0x1p-16494
|
|
csqrt 0x1p-5000 0x1p-16494
|
|
csqrt 0x1p+16383 0x1p-16494
|
|
csqrt 0x1p-16494 0x1p+16383
|
|
csqrt 0x1.0000000000000000000000000001p-16382 0x1.0000000000000000000000000001p-16382
|
|
csqrt -0x1.0000000000000000000000000001p-16382 -0x1.0000000000000000000000000001p-16382
|
|
|
|
ctan 0 0
|
|
ctan 0 -0
|
|
ctan -0 0
|
|
ctan -0 -0
|
|
|
|
ctan 0.75 1.25
|
|
ctan -2 -3
|
|
|
|
ctan 1 45
|
|
ctan 1 47
|
|
ctan 1 355
|
|
ctan 1 365
|
|
ctan 1 5680
|
|
ctan 1 5690
|
|
|
|
ctan 0x3.243f6cp-1 0
|
|
|
|
ctan 0x1p127 1
|
|
ctan 0x1p1023 1
|
|
ctan 0x1p16383 1
|
|
|
|
ctan 50000 50000
|
|
ctan 50000 -50000
|
|
ctan -50000 50000
|
|
ctan -50000 -50000
|
|
|
|
ctan 0x1.921fb6p+0 0x1p-149
|
|
ctan 0x1.921fb54442d18p+0 0x1p-1074
|
|
ctan 0x1.921fb54442d1846ap+0 0x1p-16445
|
|
|
|
ctanh 0 0
|
|
ctanh 0 -0
|
|
ctanh -0 0
|
|
ctanh -0 -0
|
|
|
|
ctanh 0 pi/4
|
|
|
|
ctanh 0.75 1.25
|
|
ctanh -2 -3
|
|
|
|
ctanh 45 1
|
|
ctanh 47 1
|
|
ctanh 355 1
|
|
ctanh 365 1
|
|
ctanh 5680 1
|
|
ctanh 5690 1
|
|
|
|
ctanh 0 0x3.243f6cp-1
|
|
|
|
ctanh 1 0x1p127
|
|
ctanh 1 0x1p1023
|
|
ctanh 1 0x1p16383
|
|
|
|
ctanh 50000 50000
|
|
ctanh 50000 -50000
|
|
ctanh -50000 50000
|
|
ctanh -50000 -50000
|
|
|
|
ctanh 0x1p-149 0x1.921fb6p+0
|
|
ctanh 0x1p-1074 0x1.921fb54442d18p+0
|
|
ctanh 0x1p-16445 0x1.921fb54442d1846ap+0
|
|
|
|
erf 0
|
|
erf -0
|
|
erf 0.125
|
|
erf 0.75
|
|
erf 1.25
|
|
erf 2.0
|
|
erf 4.125
|
|
erf 27.0
|
|
erf -27.0
|
|
erf -0x1.fffffffffffff8p-2
|
|
|
|
erfc 0.0
|
|
erfc -0
|
|
erfc 0.125
|
|
erfc 0.75
|
|
erfc 1.25
|
|
erfc 2.0
|
|
erfc 0x1.f7303cp+1
|
|
erfc 4.125
|
|
erfc 0x1.ffa002p+2
|
|
erfc 0x1.ffffc8p+2
|
|
erfc -0x1.fffffffffffff8p-2
|
|
erfc 26.0
|
|
erfc 27.0
|
|
erfc 28.0
|
|
erfc 0x1.ffff56789abcdef0123456789a8p+2
|
|
erfc 100
|
|
erfc 106
|
|
erfc 106.5
|
|
erfc 106.625
|
|
erfc 107
|
|
erfc 108
|
|
erfc 1000
|
|
erfc max
|
|
|
|
exp 0
|
|
exp -0
|
|
exp 1
|
|
exp 2
|
|
exp 3
|
|
exp 0.75
|
|
exp 50.0
|
|
exp 88.72269439697265625
|
|
exp 709.75
|
|
# Bug 16284: results on directed rounding may be incorrect.
|
|
exp 1000.0 xfail-rounding:dbl-64
|
|
exp 710 xfail-rounding:dbl-64
|
|
exp -1234
|
|
# Bug 16284: results on directed rounding may be incorrect.
|
|
exp 1e5 xfail-rounding:dbl-64
|
|
exp max xfail-rounding:dbl-64
|
|
exp -7.4444006192138124e+02
|
|
exp -0x1.75f113c30b1c8p+9
|
|
exp -max
|
|
|
|
exp10 0
|
|
exp10 -0
|
|
exp10 3
|
|
exp10 -1
|
|
exp10 36
|
|
exp10 -36
|
|
exp10 305
|
|
exp10 -305
|
|
exp10 4932
|
|
exp10 -4932
|
|
exp10 1e5
|
|
exp10 -1e5
|
|
exp10 1e6
|
|
exp10 -1e6
|
|
exp10 max
|
|
exp10 -max
|
|
exp10 0.75
|
|
|
|
exp2 0
|
|
exp2 -0
|
|
exp2 10
|
|
exp2 -1
|
|
exp2 1e6
|
|
exp2 -1e6
|
|
exp2 max
|
|
exp2 -max
|
|
exp2 0.75
|
|
exp2 100.5
|
|
exp2 127
|
|
exp2 -149
|
|
exp2 1000.25
|
|
exp2 1023
|
|
exp2 -1074
|
|
exp2 16383
|
|
exp2 -16400
|
|
|
|
expm1 0
|
|
expm1 -0
|
|
expm1 1
|
|
expm1 0.75
|
|
expm1 50.0
|
|
expm1 127.0
|
|
expm1 500.0
|
|
expm1 11356.25
|
|
expm1 -10.0
|
|
expm1 -16.0
|
|
expm1 -17.0
|
|
expm1 -18.0
|
|
expm1 -36.0
|
|
expm1 -37.0
|
|
expm1 -38.0
|
|
expm1 -44.0
|
|
expm1 -45.0
|
|
expm1 -46.0
|
|
expm1 -73.0
|
|
expm1 -74.0
|
|
expm1 -75.0
|
|
expm1 -78.0
|
|
expm1 -79.0
|
|
expm1 -80.0
|
|
expm1 -100.0
|
|
expm1 -1000.0
|
|
expm1 -10000.0
|
|
expm1 -100000.0
|
|
expm1 100000.0
|
|
expm1 max
|
|
expm1 -max
|
|
expm1 0x1p-2
|
|
expm1 -0x1p-2
|
|
expm1 0x1p-10
|
|
expm1 -0x1p-10
|
|
expm1 0x1p-20
|
|
expm1 -0x1p-20
|
|
expm1 0x1p-29
|
|
expm1 -0x1p-29
|
|
expm1 0x1p-32
|
|
expm1 -0x1p-32
|
|
expm1 0x1p-50
|
|
expm1 -0x1p-50
|
|
expm1 0x1p-64
|
|
expm1 -0x1p-64
|
|
expm1 0x1p-100
|
|
expm1 -0x1p-100
|
|
|
|
hypot 0 0
|
|
hypot 0 -0
|
|
hypot -0 0
|
|
hypot -0 -0
|
|
# hypot (x,y) == hypot (+-x, +-y).
|
|
hypot 0.7 12.4
|
|
hypot -0.7 12.4
|
|
hypot 0.7 -12.4
|
|
hypot -0.7 -12.4
|
|
hypot 12.4 0.7
|
|
hypot -12.4 0.7
|
|
hypot 12.4 -0.7
|
|
hypot -12.4 -0.7
|
|
# hypot (x,0) == fabs (x).
|
|
hypot 0.75 0
|
|
hypot -0.75 0
|
|
hypot -5.7e7 0
|
|
hypot 0.75 1.25
|
|
hypot 1.0 0x1p-61
|
|
hypot 0x1p+0 0x1.fp-129
|
|
hypot 0x1.23456789abcdef0123456789ab8p-500 0x1.23456789abcdef0123456789ab8p-500
|
|
hypot 0x3p125 0x4p125 no-test-inline:flt-32
|
|
hypot 0x1.234566p-126 0x1.234566p-126 no-test-inline:flt-32
|
|
hypot 0x3p1021 0x4p1021 no-test-inline:dbl-64
|
|
hypot 0x1p+0 0x0.3ep-1022 no-test-inline:dbl-64
|
|
hypot 0x3p16381 0x4p16381 no-test-inline
|
|
hypot 0x1p-149 0x1p-149
|
|
hypot 0x1p-1074 0x1p-1074
|
|
hypot 0x1p-16445 0x1p-16445 no-test-inline
|
|
hypot 0x1p-16494 0x1p-16494 no-test-inline
|
|
hypot 0x0.fffffep-126 0x0.fp-127
|
|
hypot 0x0.fffffep-126 0x0.fp-130
|
|
hypot 0x0.fffffffffffffp-1022 0x0.fp-1023
|
|
hypot 0x0.fffffffffffffp-1022 0x0.fp-1026
|
|
hypot 0x0.ffffffp-16382 0x0.fp-16383 no-test-inline
|
|
hypot 0x0.ffffffp-16382 0x0.fp-16386 no-test-inline
|
|
hypot 0 min_subnorm no-test-inline
|
|
|
|
j0 -1.0
|
|
j0 0.0
|
|
j0 0.125
|
|
j0 0.75
|
|
j0 1.0
|
|
j0 1.5
|
|
j0 2.0
|
|
j0 8.0
|
|
j0 10.0
|
|
j0 4.0
|
|
j0 -4.0
|
|
j0 0x1.d7ce3ap+107
|
|
j0 -0x1.001000001p+593
|
|
j0 0x1p1023
|
|
j0 0x1p16382
|
|
j0 0x1p16383
|
|
|
|
j1 -1.0
|
|
j1 0.0
|
|
j1 0.125
|
|
j1 0.75
|
|
j1 1.0
|
|
j1 1.5
|
|
j1 2.0
|
|
j1 8.0
|
|
j1 10.0
|
|
j1 0x1.3ffp+74
|
|
j1 0x1.ff00000000002p+840
|
|
j1 0x1p1023
|
|
j1 0x1p16382
|
|
j1 0x1p16383
|
|
|
|
# jn (0, x) == j0 (x).
|
|
jn 0 -1.0
|
|
jn 0 0.0
|
|
jn 0 0.125
|
|
jn 0 0.75
|
|
jn 0 1.0
|
|
jn 0 1.5
|
|
jn 0 2.0
|
|
jn 0 8.0
|
|
jn 0 10.0
|
|
jn 0 4.0
|
|
jn 0 -4.0
|
|
|
|
# jn (1, x) == j1 (x).
|
|
jn 1 -1.0
|
|
jn 1 0.0
|
|
jn 1 0.125
|
|
jn 1 0.75
|
|
jn 1 1.0
|
|
jn 1 1.5
|
|
jn 1 2.0
|
|
jn 1 8.0
|
|
jn 1 10.0
|
|
|
|
jn 3 -1.0
|
|
jn 3 0.0
|
|
jn 3 0.125
|
|
jn 3 0.75
|
|
jn 3 1.0
|
|
jn 3 2.0
|
|
jn 3 10.0
|
|
|
|
jn 10 -1.0
|
|
jn 10 0.0
|
|
jn 10 0.125
|
|
jn 10 0.75
|
|
jn 10 1.0
|
|
jn 10 2.0
|
|
jn 10 10.0
|
|
|
|
jn 2 2.4048255576957729
|
|
jn 3 2.4048255576957729
|
|
jn 4 2.4048255576957729
|
|
jn 5 2.4048255576957729
|
|
jn 6 2.4048255576957729
|
|
jn 7 2.4048255576957729
|
|
jn 8 2.4048255576957729
|
|
jn 9 2.4048255576957729
|
|
|
|
jn 2 0x1.ffff62p+99
|
|
jn 2 0x1p127
|
|
jn 2 0x1p1023
|
|
jn 2 0x1p16383
|
|
|
|
lgamma max
|
|
lgamma 1
|
|
lgamma 3
|
|
lgamma 0.5
|
|
lgamma -0.5
|
|
lgamma 0.7
|
|
lgamma 1.2
|
|
lgamma 0x1p-5
|
|
lgamma -0x1p-5
|
|
lgamma 0x1p-10
|
|
lgamma -0x1p-10
|
|
lgamma 0x1p-15
|
|
lgamma -0x1p-15
|
|
lgamma 0x1p-20
|
|
lgamma -0x1p-20
|
|
lgamma 0x1p-25
|
|
lgamma -0x1p-25
|
|
lgamma 0x1p-30
|
|
lgamma -0x1p-30
|
|
lgamma 0x1p-40
|
|
lgamma -0x1p-40
|
|
lgamma 0x1p-50
|
|
lgamma -0x1p-50
|
|
lgamma 0x1p-60
|
|
lgamma -0x1p-60
|
|
lgamma 0x1p-64
|
|
lgamma -0x1p-64
|
|
lgamma 0x1p-70
|
|
lgamma -0x1p-70
|
|
lgamma 0x1p-100
|
|
lgamma -0x1p-100
|
|
lgamma 0x1p-126
|
|
lgamma -0x1p-126
|
|
lgamma 0x1p-149
|
|
lgamma -0x1p-149
|
|
lgamma 0x1p-200
|
|
lgamma -0x1p-200
|
|
lgamma 0x1p-500
|
|
lgamma -0x1p-500
|
|
lgamma 0x1p-1000
|
|
lgamma -0x1p-1000
|
|
lgamma 0x1p-1022
|
|
lgamma -0x1p-1022
|
|
lgamma 0x1p-1074
|
|
lgamma -0x1p-1074
|
|
lgamma 0x1p-5000
|
|
lgamma -0x1p-5000
|
|
lgamma 0x1p-10000
|
|
lgamma -0x1p-10000
|
|
lgamma 0x1p-16382
|
|
lgamma -0x1p-16382
|
|
lgamma 0x1p-16445
|
|
lgamma -0x1p-16445
|
|
lgamma 0x1p-16494
|
|
lgamma -0x1p-16494
|
|
|
|
log 1
|
|
log e
|
|
log 1/e
|
|
log 2
|
|
log 10
|
|
log 0.75
|
|
log min
|
|
log min_subnorm
|
|
|
|
log10 1
|
|
log10 0.1
|
|
log10 10.0
|
|
log10 100.0
|
|
log10 10000.0
|
|
log10 e
|
|
log10 0.75
|
|
log10 min
|
|
log10 min_subnorm
|
|
|
|
log1p 0
|
|
log1p -0
|
|
log1p e-1
|
|
log1p -0.25
|
|
log1p -0.875
|
|
# Bug 16339: underflow exception may be missing.
|
|
log1p min missing-underflow
|
|
log1p min_subnorm missing-underflow
|
|
log1p -min missing-underflow
|
|
log1p -min_subnorm missing-underflow
|
|
|
|
log2 1
|
|
log2 e
|
|
log2 2.0
|
|
log2 16.0
|
|
log2 256.0
|
|
log2 0.75
|
|
log2 min
|
|
log2 min_subnorm
|
|
|
|
pow 0 0
|
|
pow 0 -0
|
|
pow -0 0
|
|
pow -0 -0
|
|
|
|
pow 10 0
|
|
pow 10 -0
|
|
pow -10 0
|
|
pow -10 -0
|
|
|
|
pow 1 1
|
|
pow 1 -1
|
|
pow 1 1.25
|
|
pow 1 -1.25
|
|
pow 1 0x1p62
|
|
pow 1 0x1p63
|
|
pow 1 0x1p64
|
|
pow 1 0x1p72
|
|
pow 1 min_subnorm
|
|
pow 1 -min_subnorm
|
|
|
|
# pow (x, +-0) == 1.
|
|
pow 32.75 0
|
|
pow 32.75 -0
|
|
pow -32.75 0
|
|
pow -32.75 -0
|
|
pow 0x1p72 0
|
|
pow 0x1p72 -0
|
|
pow 0x1p-72 0
|
|
pow 0x1p-72 -0
|
|
|
|
pow 0x1p72 0x1p72
|
|
pow 10 -0x1p72
|
|
pow max max
|
|
pow 10 -max
|
|
|
|
pow 0 1
|
|
pow 0 11
|
|
|
|
pow -0 1
|
|
pow -0 11
|
|
|
|
pow 0 2
|
|
pow 0 11.1
|
|
|
|
pow -0 2
|
|
pow -0 11.1
|
|
|
|
# pow (+0, y) == +0 for y an odd integer > 0.
|
|
pow 0.0 27
|
|
pow 0.0 0xffffff
|
|
pow 0.0 0x1.fffffffffffffp+52
|
|
pow 0.0 0x1.fffffffffffffffep+63
|
|
pow 0.0 0x1.ffffffffffffffffffffffffff8p+105
|
|
pow 0.0 0x1.ffffffffffffffffffffffffffffp+112
|
|
|
|
# pow (-0, y) == -0 for y an odd integer > 0.
|
|
pow -0 27
|
|
pow -0 0xffffff
|
|
pow -0 0x1fffffe
|
|
pow -0 0x1.fffffffffffffp+52
|
|
pow -0 0x1.fffffffffffffp+53
|
|
pow -0 0x1.fffffffffffffffep+63
|
|
pow -0 0x1.fffffffffffffffep+64
|
|
pow -0 0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -0 0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -0 0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -0 0x1.ffffffffffffffffffffffffffffp+113
|
|
|
|
# pow (+0, y) == +0 for y > 0 and not an odd integer.
|
|
pow 0.0 4
|
|
pow 0.0 0x1p24
|
|
pow 0.0 0x1p127
|
|
pow 0.0 max
|
|
pow 0.0 min_subnorm
|
|
|
|
# pow (-0, y) == +0 for y > 0 and not an odd integer.
|
|
pow -0 4
|
|
pow -0 0x1p24
|
|
pow -0 0x1p127
|
|
pow -0 max
|
|
pow -0 min_subnorm
|
|
|
|
pow 16 0.25
|
|
pow 0x1p64 0.125
|
|
pow 2 4
|
|
pow 256 8
|
|
|
|
pow 0.75 1.25
|
|
|
|
pow -7.49321e+133 -9.80818e+16
|
|
|
|
pow -1.0 -0xffffff
|
|
pow -1.0 -0x1fffffe
|
|
pow -1.0 -0x1.fffffffffffffp+52
|
|
pow -1.0 -0x1.fffffffffffffp+53
|
|
pow -1.0 -0x1.fffffffffffffffep+63
|
|
pow -1.0 -0x1.fffffffffffffffep+64
|
|
pow -1.0 -0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -1.0 -0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -1.0 -0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -1.0 -0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -1.0 -max
|
|
|
|
pow -1.0 0xffffff
|
|
pow -1.0 0x1fffffe
|
|
pow -1.0 0x1.fffffffffffffp+52
|
|
pow -1.0 0x1.fffffffffffffp+53
|
|
pow -1.0 0x1.fffffffffffffffep+63
|
|
pow -1.0 0x1.fffffffffffffffep+64
|
|
pow -1.0 0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -1.0 0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -1.0 0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -1.0 0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -1.0 max
|
|
|
|
pow -2.0 126
|
|
pow -2.0 127
|
|
pow -2.0 -126
|
|
pow -2.0 -127
|
|
|
|
pow -2.0 -0xffffff
|
|
pow -2.0 -0x1fffffe
|
|
pow -2.0 -0x1.fffffffffffffp+52
|
|
pow -2.0 -0x1.fffffffffffffp+53
|
|
pow -2.0 -0x1.fffffffffffffffep+63
|
|
pow -2.0 -0x1.fffffffffffffffep+64
|
|
pow -2.0 -0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -2.0 -0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -2.0 -0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -2.0 -0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -2.0 -max
|
|
|
|
pow -2.0 0xffffff
|
|
pow -2.0 0x1fffffe
|
|
pow -2.0 0x1.fffffffffffffp+52
|
|
pow -2.0 0x1.fffffffffffffp+53
|
|
pow -2.0 0x1.fffffffffffffffep+63
|
|
pow -2.0 0x1.fffffffffffffffep+64
|
|
pow -2.0 0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -2.0 0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -2.0 0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -2.0 0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -2.0 max
|
|
|
|
pow -max -2
|
|
pow -max -3
|
|
pow -max 2
|
|
pow -max 3
|
|
|
|
pow -max -0xffffff
|
|
pow -max -0x1fffffe
|
|
pow -max -0x1.fffffffffffffp+52
|
|
pow -max -0x1.fffffffffffffp+53
|
|
pow -max -0x1.fffffffffffffffep+63
|
|
pow -max -0x1.fffffffffffffffep+64
|
|
pow -max -0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -max -0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -max -0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -max -0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -max -max
|
|
|
|
pow -max 0xffffff
|
|
pow -max 0x1fffffe
|
|
pow -max 0x1.fffffffffffffp+52
|
|
pow -max 0x1.fffffffffffffp+53
|
|
pow -max 0x1.fffffffffffffffep+63
|
|
pow -max 0x1.fffffffffffffffep+64
|
|
pow -max 0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -max 0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -max 0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -max 0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -max max
|
|
|
|
pow -0.5 126
|
|
pow -0.5 127
|
|
pow -0.5 -126
|
|
pow -0.5 -127
|
|
|
|
pow -0.5 -0xffffff
|
|
pow -0.5 -0x1fffffe
|
|
pow -0.5 -0x1.fffffffffffffp+52
|
|
pow -0.5 -0x1.fffffffffffffp+53
|
|
pow -0.5 -0x1.fffffffffffffffep+63
|
|
pow -0.5 -0x1.fffffffffffffffep+64
|
|
pow -0.5 -0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -0.5 -0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -0.5 -0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -0.5 -0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -0.5 -max
|
|
|
|
pow -0.5 0xffffff
|
|
pow -0.5 0x1fffffe
|
|
pow -0.5 0x1.fffffffffffffp+52
|
|
pow -0.5 0x1.fffffffffffffp+53
|
|
pow -0.5 0x1.fffffffffffffffep+63
|
|
pow -0.5 0x1.fffffffffffffffep+64
|
|
pow -0.5 0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -0.5 0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -0.5 0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -0.5 0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -0.5 max
|
|
|
|
pow -min -2
|
|
pow -min -3
|
|
pow -min 1
|
|
pow -min 2
|
|
pow -min 3
|
|
|
|
pow -min -0xffffff
|
|
pow -min -0x1fffffe
|
|
pow -min -0x1.fffffffffffffp+52
|
|
pow -min -0x1.fffffffffffffp+53
|
|
pow -min -0x1.fffffffffffffffep+63
|
|
pow -min -0x1.fffffffffffffffep+64
|
|
pow -min -0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -min -0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -min -0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -min -0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -min -max
|
|
|
|
pow -min 0xffffff
|
|
pow -min 0x1fffffe
|
|
pow -min 0x1.fffffffffffffp+52
|
|
pow -min 0x1.fffffffffffffp+53
|
|
pow -min 0x1.fffffffffffffffep+63
|
|
pow -min 0x1.fffffffffffffffep+64
|
|
pow -min 0x1.ffffffffffffffffffffffffff8p+105
|
|
pow -min 0x1.ffffffffffffffffffffffffff8p+106
|
|
pow -min 0x1.ffffffffffffffffffffffffffffp+112
|
|
pow -min 0x1.ffffffffffffffffffffffffffffp+113
|
|
pow -min max
|
|
|
|
pow 0x0.ffffffp0 10
|
|
pow 0x0.ffffffp0 100
|
|
pow 0x0.ffffffp0 1000
|
|
pow 0x0.ffffffp0 0x1p24
|
|
pow 0x0.ffffffp0 0x1p30
|
|
pow 0x0.ffffffp0 0x1.234566p30
|
|
pow 0x0.ffffffp0 -10
|
|
pow 0x0.ffffffp0 -100
|
|
pow 0x0.ffffffp0 -1000
|
|
pow 0x0.ffffffp0 -0x1p24
|
|
pow 0x0.ffffffp0 -0x1p30
|
|
pow 0x0.ffffffp0 -0x1.234566p30
|
|
pow 0x1.000002p0 0x1p24
|
|
pow 0x1.000002p0 0x1.234566p29
|
|
pow 0x1.000002p0 -0x1.234566p29
|
|
|
|
pow 0x0.fffffffffffff8p0 0x1.23456789abcdfp62
|
|
pow 0x0.fffffffffffff8p0 -0x1.23456789abcdfp62
|
|
pow 0x1.0000000000001p0 0x1.23456789abcdfp61
|
|
pow 0x1.0000000000001p0 -0x1.23456789abcdfp61
|
|
|
|
pow 0x0.ffffffffffffffffp0 0x1.23456789abcdef0ep77
|
|
pow 0x0.ffffffffffffffffp0 -0x1.23456789abcdef0ep77
|
|
pow 0x1.0000000000000002p0 0x1.23456789abcdef0ep76
|
|
pow 0x1.0000000000000002p0 -0x1.23456789abcdef0ep76
|
|
|
|
pow 0x0.ffffffffffffffffffffffffffff8p0 0x1.23456789abcdef0123456789abcdp126
|
|
pow 0x0.ffffffffffffffffffffffffffff8p0 -0x1.23456789abcdef0123456789abcdp126
|
|
pow 0x1.0000000000000000000000000001p0 0x1.23456789abcdef0123456789abcdp125
|
|
pow 0x1.0000000000000000000000000001p0 -0x1.23456789abcdef0123456789abcdp125
|
|
|
|
pow 1e4932 0.75
|
|
pow 1e4928 0.75
|
|
pow 1e4924 0.75
|
|
pow 1e4920 0.75
|
|
pow 10.0 4932.0
|
|
pow 10.0 4931.0
|
|
pow 10.0 4930.0
|
|
pow 10.0 4929.0
|
|
pow 10.0 -4931.0
|
|
pow 10.0 -4930.0
|
|
pow 10.0 -4929.0
|
|
pow 1e27 182.0
|
|
pow 1e27 -182.0
|
|
|
|
pow min_subnorm min_subnorm
|
|
pow min_subnorm -min_subnorm
|
|
pow max min_subnorm
|
|
pow max -min_subnorm
|
|
pow 0.99 min_subnorm
|
|
pow 0.99 -min_subnorm
|
|
pow 1.01 min_subnorm
|
|
pow 1.01 -min_subnorm
|
|
|
|
pow 2.0 -100000.0
|
|
|
|
pow 1.0625 1.125
|
|
pow 1.5 1.03125
|
|
|
|
sin 0
|
|
sin -0
|
|
sin pi/6
|
|
sin -pi/6
|
|
sin pi/2
|
|
sin -pi/2
|
|
sin 0.75
|
|
sin 0x1p65
|
|
sin -0x1p65
|
|
sin 0x1.7f4134p+103
|
|
sin 0.80190127184058835
|
|
sin 2.522464e-1
|
|
sin 1e22
|
|
sin 0x1p1023
|
|
sin 0x1p16383
|
|
sin 0x1p+120
|
|
sin 0x1p+127
|
|
sin 0x1.fffff8p+127
|
|
sin 0x1.fffffep+127
|
|
sin 0x1p+50
|
|
sin 0x1p+28
|
|
sin 0.93340582292648832662962377071381
|
|
sin 2.3328432680770916363144351635128
|
|
sin 3.7439477503636453548097051680088
|
|
sin 3.9225160069792437411706487182528
|
|
sin 4.0711651639931289992091478779912
|
|
sin 4.7858438478542097982426639646292
|
|
sin 5.9840767662578002727968851104379
|
|
sin 1
|
|
sin 2
|
|
sin 3
|
|
sin 4
|
|
sin 5
|
|
sin 6
|
|
sin 7
|
|
sin 8
|
|
sin 9
|
|
sin 10
|
|
|
|
sincos 0
|
|
sincos -0
|
|
sincos pi/2
|
|
sincos pi/6
|
|
sincos pi/3
|
|
sincos 0.75
|
|
sincos 0x1p65
|
|
sincos -0x1p65
|
|
sincos 0.80190127184058835
|
|
sincos 1e22
|
|
sincos 0x1p1023
|
|
sincos 0x1p16383
|
|
sincos 0x1p+120
|
|
sincos 0x1p+127
|
|
sincos 0x1.fffff8p+127
|
|
sincos 0x1.fffffep+127
|
|
sincos 0x1p+50
|
|
sincos 0x1p+28
|
|
|
|
sinh 0
|
|
sinh -0
|
|
sinh 0.75
|
|
sinh 0x8p-32
|
|
sinh 22
|
|
sinh 23
|
|
sinh 24
|
|
|
|
sqrt 0
|
|
sqrt -0
|
|
sqrt 2209
|
|
sqrt 4
|
|
sqrt 2
|
|
sqrt 0.25
|
|
sqrt 6642.25
|
|
sqrt 15190.5625
|
|
sqrt 0.75
|
|
sqrt 0x1.fffffffffffffp+1023
|
|
sqrt 0x1.ffffffffffffbp+1023
|
|
sqrt 0x1.ffffffffffff7p+1023
|
|
sqrt 0x1.ffffffffffff3p+1023
|
|
sqrt 0x1.fffffffffffefp+1023
|
|
sqrt 0x1.fffffffffffebp+1023
|
|
sqrt 0x1.fffffffffffe7p+1023
|
|
sqrt 0x1.fffffffffffe3p+1023
|
|
sqrt 0x1.fffffffffffdfp+1023
|
|
sqrt 0x1.fffffffffffdbp+1023
|
|
sqrt 0x1.fffffffffffd7p+1023
|
|
sqrt 0x1.0000000000003p-1022
|
|
sqrt 0x1.0000000000007p-1022
|
|
sqrt 0x1.000000000000bp-1022
|
|
sqrt 0x1.000000000000fp-1022
|
|
sqrt 0x1.0000000000013p-1022
|
|
sqrt 0x1.0000000000017p-1022
|
|
sqrt 0x1.000000000001bp-1022
|
|
sqrt 0x1.000000000001fp-1022
|
|
sqrt 0x1.0000000000023p-1022
|
|
sqrt 0x1.0000000000027p-1022
|
|
sqrt 0x1.000000000002bp-1022
|
|
sqrt 0x1.000000000002fp-1022
|
|
sqrt 0x1.0000000000033p-1022
|
|
sqrt 0x1.0000000000037p-1022
|
|
sqrt 0x1.7167bc36eaa3bp+6
|
|
sqrt 0x1.7570994273ad7p+6
|
|
sqrt 0x1.7dae969442fe6p+6
|
|
sqrt 0x1.7f8444fcf67e5p+6
|
|
sqrt 0x1.8364650e63a54p+6
|
|
sqrt 0x1.85bedd274edd8p+6
|
|
sqrt 0x1.8609cf496ab77p+6
|
|
sqrt 0x1.873849c70a375p+6
|
|
sqrt 0x1.8919c962cbaaep+6
|
|
sqrt 0x1.8de4493e22dc6p+6
|
|
sqrt 0x1.924829a17a288p+6
|
|
sqrt 0x1.92702cd992f12p+6
|
|
sqrt 0x1.92b763a8311fdp+6
|
|
sqrt 0x1.947da013c7293p+6
|
|
sqrt 0x1.9536091c494d2p+6
|
|
sqrt 0x1.61b04c6p-1019
|
|
sqrt 0x1.93789f1p-1018
|
|
sqrt 0x1.a1989b4p-1018
|
|
sqrt 0x1.f93bc9p-1018
|
|
sqrt 0x1.2f675e3p-1017
|
|
sqrt 0x1.a158508p-1017
|
|
sqrt 0x1.cd31f078p-1017
|
|
sqrt 0x1.33b43b08p-1016
|
|
sqrt 0x1.6e66a858p-1016
|
|
sqrt 0x1.8661cbf8p-1016
|
|
sqrt 0x1.bbb221b4p-1016
|
|
sqrt 0x1.c4942f3cp-1016
|
|
sqrt 0x1.dbb258c8p-1016
|
|
sqrt 0x1.57103ea4p-1015
|
|
sqrt 0x1.9b294f88p-1015
|
|
sqrt 0x1.0000000000001p+0
|
|
sqrt 0x1.fffffffffffffp-1
|
|
|
|
tan 0
|
|
tan -0
|
|
tan pi/4
|
|
tan 0.75
|
|
tan 0x1p65
|
|
tan -0x1p65
|
|
tan 0xc.9p-4
|
|
tan 0xc.908p-4
|
|
tan 0xc.90cp-4
|
|
tan 0xc.90ep-4
|
|
tan 0xc.90fp-4
|
|
tan 0xc.90f8p-4
|
|
tan 0xc.90fcp-4
|
|
tan 0xc.90fdp-4
|
|
tan 0xc.90fd8p-4
|
|
tan 0xc.90fdap-4
|
|
tan 0xc.ap-4
|
|
tan 0xc.98p-4
|
|
tan 0xc.94p-4
|
|
tan 0xc.92p-4
|
|
tan 0xc.91p-4
|
|
tan 0xc.90fep-4
|
|
tan 0xc.90fdcp-4
|
|
tan 0xc.90fdbp-4
|
|
tan -0xc.9p-4
|
|
tan -0xc.908p-4
|
|
tan -0xc.90cp-4
|
|
tan -0xc.90ep-4
|
|
tan -0xc.90fp-4
|
|
tan -0xc.90f8p-4
|
|
tan -0xc.90fcp-4
|
|
tan -0xc.90fdp-4
|
|
tan -0xc.90fd8p-4
|
|
tan -0xc.90fdap-4
|
|
tan -0xc.ap-4
|
|
tan -0xc.98p-4
|
|
tan -0xc.94p-4
|
|
tan -0xc.92p-4
|
|
tan -0xc.91p-4
|
|
tan -0xc.90fep-4
|
|
tan -0xc.90fdcp-4
|
|
tan -0xc.90fdbp-4
|
|
tan 1e22
|
|
tan 0x1p1023
|
|
tan 0x1p16383
|
|
tan 1
|
|
tan 2
|
|
tan 3
|
|
tan 4
|
|
tan 5
|
|
tan 6
|
|
tan 7
|
|
tan 8
|
|
tan 9
|
|
tan 10
|
|
|
|
tanh 0
|
|
tanh -0
|
|
tanh 0.75
|
|
tanh -0.75
|
|
tanh 1.0
|
|
tanh -1.0
|
|
tanh 0x1p-57
|
|
|
|
tgamma 0.5
|
|
tgamma -0.5
|
|
|
|
tgamma 1
|
|
tgamma 2
|
|
tgamma 3
|
|
tgamma 4
|
|
tgamma 5
|
|
tgamma 6
|
|
tgamma 7
|
|
tgamma 8
|
|
tgamma 9
|
|
tgamma 10
|
|
|
|
tgamma 0.7
|
|
tgamma 1.2
|
|
|
|
tgamma 1.5
|
|
tgamma 2.5
|
|
tgamma 3.5
|
|
tgamma 4.5
|
|
tgamma 5.5
|
|
tgamma 6.5
|
|
tgamma 7.5
|
|
tgamma 8.5
|
|
tgamma 9.5
|
|
tgamma -1.5
|
|
tgamma -2.5
|
|
tgamma -3.5
|
|
tgamma -4.5
|
|
tgamma -5.5
|
|
tgamma -6.5
|
|
tgamma -7.5
|
|
tgamma -8.5
|
|
tgamma -9.5
|
|
tgamma 0x1p-24
|
|
tgamma -0x1p-24
|
|
tgamma 0x1p-53
|
|
tgamma -0x1p-53
|
|
tgamma 0x1p-64
|
|
tgamma -0x1p-64
|
|
tgamma 0x1p-106
|
|
tgamma -0x1p-106
|
|
tgamma 0x1p-113
|
|
tgamma -0x1p-113
|
|
tgamma 0x1p-127
|
|
tgamma -0x1p-127
|
|
tgamma 0x1p-128
|
|
tgamma -0x1p-128
|
|
tgamma 0x1p-149
|
|
tgamma -0x1p-149
|
|
tgamma 0x1p-1023
|
|
tgamma -0x1p-1023
|
|
tgamma 0x1p-1024
|
|
tgamma -0x1p-1024
|
|
tgamma 0x1p-1074
|
|
tgamma -0x1p-1074
|
|
tgamma 0x1p-16383
|
|
tgamma -0x1p-16383
|
|
tgamma 0x1p-16384
|
|
tgamma -0x1p-16384
|
|
tgamma 0x1p-16445
|
|
tgamma -0x1p-16445
|
|
tgamma 0x1p-16494
|
|
tgamma -0x1p-16494
|
|
tgamma 0x8.00001p0
|
|
tgamma 0x7.fffff8p0
|
|
tgamma 0x7.000008p0
|
|
tgamma 0x6.fffff8p0
|
|
tgamma 0x6.000008p0
|
|
tgamma 0x5.fffff8p0
|
|
tgamma 0x5.000008p0
|
|
tgamma 0x4.fffff8p0
|
|
tgamma 0x4.000008p0
|
|
tgamma 0x3.fffffcp0
|
|
tgamma 0x3.000004p0
|
|
tgamma 0x2.fffffcp0
|
|
tgamma 0x2.000004p0
|
|
tgamma 0x1.fffffep0
|
|
tgamma 0x1.000002p0
|
|
tgamma 0x0.ffffffp0
|
|
tgamma -0x0.ffffffp0
|
|
tgamma -0x1.000002p0
|
|
tgamma -0x1.fffffep0
|
|
tgamma -0x2.000004p0
|
|
tgamma -0x2.fffffcp0
|
|
tgamma -0x3.000004p0
|
|
tgamma -0x3.fffffcp0
|
|
tgamma -0x4.000008p0
|
|
tgamma -0x4.fffff8p0
|
|
tgamma -0x5.000008p0
|
|
tgamma -0x5.fffff8p0
|
|
tgamma -0x6.000008p0
|
|
tgamma -0x6.fffff8p0
|
|
tgamma -0x7.000008p0
|
|
tgamma -0x7.fffff8p0
|
|
tgamma -0x8.00001p0
|
|
tgamma -0x9.fffffp0
|
|
tgamma -0xa.00001p0
|
|
tgamma -0x13.ffffep0
|
|
tgamma -0x14.00002p0
|
|
tgamma -0x1d.ffffep0
|
|
tgamma -0x1e.00002p0
|
|
tgamma -0x27.ffffcp0
|
|
tgamma -0x28.00004p0
|
|
tgamma -0x28.ffffcp0
|
|
tgamma -0x29.00004p0
|
|
tgamma -0x29.ffffcp0
|
|
tgamma -0x2a.00004p0
|
|
tgamma 0x8.0000000000008p0
|
|
tgamma 0x7.ffffffffffffcp0
|
|
tgamma 0x7.0000000000004p0
|
|
tgamma 0x6.ffffffffffffcp0
|
|
tgamma 0x6.0000000000004p0
|
|
tgamma 0x5.ffffffffffffcp0
|
|
tgamma 0x5.0000000000004p0
|
|
tgamma 0x4.ffffffffffffcp0
|
|
tgamma 0x4.0000000000004p0
|
|
tgamma 0x3.ffffffffffffep0
|
|
tgamma 0x3.0000000000002p0
|
|
tgamma 0x2.ffffffffffffep0
|
|
tgamma 0x2.0000000000002p0
|
|
tgamma 0x1.fffffffffffffp0
|
|
tgamma 0x1.0000000000001p0
|
|
tgamma 0x0.fffffffffffff8p0
|
|
tgamma -0x0.fffffffffffff8p0
|
|
tgamma -0x1.0000000000001p0
|
|
tgamma -0x1.fffffffffffffp0
|
|
tgamma -0x2.0000000000002p0
|
|
tgamma -0x2.ffffffffffffep0
|
|
tgamma -0x3.0000000000002p0
|
|
tgamma -0x3.ffffffffffffep0
|
|
tgamma -0x4.0000000000004p0
|
|
tgamma -0x4.ffffffffffffcp0
|
|
tgamma -0x5.0000000000004p0
|
|
tgamma -0x5.ffffffffffffcp0
|
|
tgamma -0x6.0000000000004p0
|
|
tgamma -0x6.ffffffffffffcp0
|
|
tgamma -0x7.0000000000004p0
|
|
tgamma -0x7.ffffffffffffcp0
|
|
tgamma -0x8.0000000000008p0
|
|
tgamma -0x9.ffffffffffff8p0
|
|
tgamma -0xa.0000000000008p0
|
|
tgamma -0x13.ffffffffffffp0
|
|
tgamma -0x14.000000000001p0
|
|
tgamma -0x1d.ffffffffffffp0
|
|
tgamma -0x1e.000000000001p0
|
|
tgamma -0x27.fffffffffffep0
|
|
tgamma -0x28.000000000002p0
|
|
tgamma -0x28.fffffffffffep0
|
|
tgamma -0x29.000000000002p0
|
|
tgamma -0x29.fffffffffffep0
|
|
tgamma -0x2a.000000000002p0
|
|
tgamma -0x31.fffffffffffep0
|
|
tgamma -0x32.000000000002p0
|
|
tgamma -0x63.fffffffffffcp0
|
|
tgamma -0x64.000000000004p0
|
|
tgamma -0x95.fffffffffff8p0
|
|
tgamma -0x96.000000000008p0
|
|
tgamma -0xb4.fffffffffff8p0
|
|
tgamma -0xb5.000000000008p0
|
|
tgamma -0xb5.fffffffffff8p0
|
|
tgamma -0xb6.000000000008p0
|
|
tgamma -0xb6.fffffffffff8p0
|
|
tgamma -0xb7.000000000008p0
|
|
tgamma -0xb7.fffffffffff8p0
|
|
tgamma -0xb8.000000000008p0
|
|
tgamma 0x8.00000000000000000000000004p0
|
|
tgamma 0x7.fffffffffffffffffffffffffep0
|
|
tgamma 0x7.00000000000000000000000002p0
|
|
tgamma 0x6.fffffffffffffffffffffffffep0
|
|
tgamma 0x6.00000000000000000000000002p0
|
|
tgamma 0x5.fffffffffffffffffffffffffep0
|
|
tgamma 0x5.00000000000000000000000002p0
|
|
tgamma 0x4.fffffffffffffffffffffffffep0
|
|
tgamma 0x4.00000000000000000000000002p0
|
|
tgamma 0x3.ffffffffffffffffffffffffffp0
|
|
tgamma 0x3.00000000000000000000000001p0
|
|
tgamma 0x2.ffffffffffffffffffffffffffp0
|
|
tgamma 0x2.00000000000000000000000001p0
|
|
tgamma 0x1.ffffffffffffffffffffffffff8p0
|
|
tgamma 0x1.000000000000000000000000008p0
|
|
tgamma 0x0.ffffffffffffffffffffffffffcp0
|
|
tgamma -0x0.ffffffffffffffffffffffffffcp0
|
|
tgamma -0x1.000000000000000000000000008p0
|
|
tgamma -0x1.ffffffffffffffffffffffffff8p0
|
|
tgamma -0x2.00000000000000000000000001p0
|
|
tgamma -0x2.ffffffffffffffffffffffffffp0
|
|
tgamma -0x3.00000000000000000000000001p0
|
|
tgamma -0x3.ffffffffffffffffffffffffffp0
|
|
tgamma -0x4.00000000000000000000000002p0
|
|
tgamma -0x4.fffffffffffffffffffffffffep0
|
|
tgamma -0x5.00000000000000000000000002p0
|
|
tgamma -0x5.fffffffffffffffffffffffffep0
|
|
tgamma -0x6.00000000000000000000000002p0
|
|
tgamma -0x6.fffffffffffffffffffffffffep0
|
|
tgamma -0x7.00000000000000000000000002p0
|
|
tgamma -0x7.fffffffffffffffffffffffffep0
|
|
tgamma -0x8.00000000000000000000000004p0
|
|
tgamma -0x9.fffffffffffffffffffffffffcp0
|
|
tgamma -0xa.00000000000000000000000004p0
|
|
tgamma -0x13.fffffffffffffffffffffffff8p0
|
|
tgamma -0x14.00000000000000000000000008p0
|
|
tgamma -0x1d.fffffffffffffffffffffffff8p0
|
|
tgamma -0x1e.00000000000000000000000008p0
|
|
tgamma -0x27.fffffffffffffffffffffffffp0
|
|
tgamma -0x28.0000000000000000000000001p0
|
|
tgamma -0x28.fffffffffffffffffffffffffp0
|
|
tgamma -0x29.0000000000000000000000001p0
|
|
tgamma -0x29.fffffffffffffffffffffffffp0
|
|
tgamma -0x2a.0000000000000000000000001p0
|
|
tgamma -0x31.fffffffffffffffffffffffffp0
|
|
tgamma -0x32.0000000000000000000000001p0
|
|
tgamma -0x63.ffffffffffffffffffffffffep0
|
|
tgamma -0x64.0000000000000000000000002p0
|
|
tgamma -0x95.ffffffffffffffffffffffffcp0
|
|
tgamma -0x96.0000000000000000000000004p0
|
|
tgamma -0xb4.ffffffffffffffffffffffffcp0
|
|
tgamma -0xb5.0000000000000000000000004p0
|
|
tgamma -0xb5.ffffffffffffffffffffffffcp0
|
|
tgamma -0xb6.0000000000000000000000004p0
|
|
tgamma -0xb6.ffffffffffffffffffffffffcp0
|
|
tgamma -0xb7.0000000000000000000000004p0
|
|
tgamma -0xb7.ffffffffffffffffffffffffcp0
|
|
tgamma -0xb8.0000000000000000000000004p0
|
|
tgamma -0xbb.ffffffffffffffffffffffffcp0
|
|
tgamma -0xbc.0000000000000000000000004p0
|
|
tgamma -0xbc.ffffffffffffffffffffffffcp0
|
|
tgamma -0xbd.0000000000000000000000004p0
|
|
tgamma -0xbd.ffffffffffffffffffffffffcp0
|
|
tgamma -0xbe.0000000000000000000000004p0
|
|
tgamma -0xbe.ffffffffffffffffffffffffcp0
|
|
tgamma -0xbf.0000000000000000000000004p0
|
|
tgamma 0x8.000000000000001p0
|
|
tgamma 0x7.fffffffffffffff8p0
|
|
tgamma 0x7.0000000000000008p0
|
|
tgamma 0x6.fffffffffffffff8p0
|
|
tgamma 0x6.0000000000000008p0
|
|
tgamma 0x5.fffffffffffffff8p0
|
|
tgamma 0x5.0000000000000008p0
|
|
tgamma 0x4.fffffffffffffff8p0
|
|
tgamma 0x4.0000000000000008p0
|
|
tgamma 0x3.fffffffffffffffcp0
|
|
tgamma 0x3.0000000000000004p0
|
|
tgamma 0x2.fffffffffffffffcp0
|
|
tgamma 0x2.0000000000000004p0
|
|
tgamma 0x1.fffffffffffffffep0
|
|
tgamma 0x1.0000000000000002p0
|
|
tgamma 0x0.ffffffffffffffffp0
|
|
tgamma -0x0.ffffffffffffffffp0
|
|
tgamma -0x1.0000000000000002p0
|
|
tgamma -0x1.fffffffffffffffep0
|
|
tgamma -0x2.0000000000000004p0
|
|
tgamma -0x2.fffffffffffffffcp0
|
|
tgamma -0x3.0000000000000004p0
|
|
tgamma -0x3.fffffffffffffffcp0
|
|
tgamma -0x4.0000000000000008p0
|
|
tgamma -0x4.fffffffffffffff8p0
|
|
tgamma -0x5.0000000000000008p0
|
|
tgamma -0x5.fffffffffffffff8p0
|
|
tgamma -0x6.0000000000000008p0
|
|
tgamma -0x6.fffffffffffffff8p0
|
|
tgamma -0x7.0000000000000008p0
|
|
tgamma -0x7.fffffffffffffff8p0
|
|
tgamma -0x8.000000000000001p0
|
|
tgamma -0x9.fffffffffffffffp0
|
|
tgamma -0xa.000000000000001p0
|
|
tgamma -0x13.ffffffffffffffep0
|
|
tgamma -0x14.000000000000002p0
|
|
tgamma -0x1d.ffffffffffffffep0
|
|
tgamma -0x1e.000000000000002p0
|
|
tgamma -0x27.ffffffffffffffcp0
|
|
tgamma -0x28.000000000000004p0
|
|
tgamma -0x28.ffffffffffffffcp0
|
|
tgamma -0x29.000000000000004p0
|
|
tgamma -0x29.ffffffffffffffcp0
|
|
tgamma -0x2a.000000000000004p0
|
|
tgamma -0x31.ffffffffffffffcp0
|
|
tgamma -0x32.000000000000004p0
|
|
tgamma -0x63.ffffffffffffff8p0
|
|
tgamma -0x64.000000000000008p0
|
|
tgamma -0x95.ffffffffffffffp0
|
|
tgamma -0x96.00000000000001p0
|
|
tgamma -0xb4.ffffffffffffffp0
|
|
tgamma -0xb5.00000000000001p0
|
|
tgamma -0xb5.ffffffffffffffp0
|
|
tgamma -0xb6.00000000000001p0
|
|
tgamma -0xb6.ffffffffffffffp0
|
|
tgamma -0xb7.00000000000001p0
|
|
tgamma -0xb7.ffffffffffffffp0
|
|
tgamma -0xb8.00000000000001p0
|
|
tgamma -0xbb.ffffffffffffffp0
|
|
tgamma -0xbc.00000000000001p0
|
|
tgamma -0xbc.ffffffffffffffp0
|
|
tgamma -0xbd.00000000000001p0
|
|
tgamma -0xbd.ffffffffffffffp0
|
|
tgamma -0xbe.00000000000001p0
|
|
tgamma -0xbe.ffffffffffffffp0
|
|
tgamma -0xbf.00000000000001p0
|
|
tgamma -0xf9.ffffffffffffffp0
|
|
tgamma -0xfa.00000000000001p0
|
|
tgamma -0x1f3.fffffffffffffep0
|
|
tgamma -0x1f4.00000000000002p0
|
|
tgamma -0x2ed.fffffffffffffcp0
|
|
tgamma -0x2ee.00000000000004p0
|
|
tgamma -0x3e7.fffffffffffffcp0
|
|
tgamma -0x3e8.00000000000004p0
|
|
tgamma -0x4e1.fffffffffffff8p0
|
|
tgamma -0x4e2.00000000000008p0
|
|
tgamma -0x5db.fffffffffffff8p0
|
|
tgamma -0x5dc.00000000000008p0
|
|
tgamma -0x6d5.fffffffffffff8p0
|
|
tgamma -0x6d6.00000000000008p0
|
|
tgamma -0x6e2.fffffffffffff8p0
|
|
tgamma -0x6e3.00000000000008p0
|
|
tgamma -0x6e3.fffffffffffff8p0
|
|
tgamma -0x6e4.00000000000008p0
|
|
tgamma -0x6e4.fffffffffffff8p0
|
|
tgamma -0x6e5.00000000000008p0
|
|
tgamma -0x6e5.fffffffffffff8p0
|
|
tgamma -0x6e6.00000000000008p0
|
|
tgamma 0x8.0000000000000000000000000008p0
|
|
tgamma 0x7.fffffffffffffffffffffffffffcp0
|
|
tgamma 0x7.0000000000000000000000000004p0
|
|
tgamma 0x6.fffffffffffffffffffffffffffcp0
|
|
tgamma 0x6.0000000000000000000000000004p0
|
|
tgamma 0x5.fffffffffffffffffffffffffffcp0
|
|
tgamma 0x5.0000000000000000000000000004p0
|
|
tgamma 0x4.fffffffffffffffffffffffffffcp0
|
|
tgamma 0x4.0000000000000000000000000004p0
|
|
tgamma 0x3.fffffffffffffffffffffffffffep0
|
|
tgamma 0x3.0000000000000000000000000002p0
|
|
tgamma 0x2.fffffffffffffffffffffffffffep0
|
|
tgamma 0x2.0000000000000000000000000002p0
|
|
tgamma 0x1.ffffffffffffffffffffffffffffp0
|
|
tgamma 0x1.0000000000000000000000000001p0
|
|
tgamma 0x0.ffffffffffffffffffffffffffff8p0
|
|
tgamma -0x0.ffffffffffffffffffffffffffff8p0
|
|
tgamma -0x1.0000000000000000000000000001p0
|
|
tgamma -0x1.ffffffffffffffffffffffffffffp0
|
|
tgamma -0x2.0000000000000000000000000002p0
|
|
tgamma -0x2.fffffffffffffffffffffffffffep0
|
|
tgamma -0x3.0000000000000000000000000002p0
|
|
tgamma -0x3.fffffffffffffffffffffffffffep0
|
|
tgamma -0x4.0000000000000000000000000004p0
|
|
tgamma -0x4.fffffffffffffffffffffffffffcp0
|
|
tgamma -0x5.0000000000000000000000000004p0
|
|
tgamma -0x5.fffffffffffffffffffffffffffcp0
|
|
tgamma -0x6.0000000000000000000000000004p0
|
|
tgamma -0x6.fffffffffffffffffffffffffffcp0
|
|
tgamma -0x7.0000000000000000000000000004p0
|
|
tgamma -0x7.fffffffffffffffffffffffffffcp0
|
|
tgamma -0x8.0000000000000000000000000008p0
|
|
tgamma -0x9.fffffffffffffffffffffffffff8p0
|
|
tgamma -0xa.0000000000000000000000000008p0
|
|
tgamma -0x13.fffffffffffffffffffffffffffp0
|
|
tgamma -0x14.000000000000000000000000001p0
|
|
tgamma -0x1d.fffffffffffffffffffffffffffp0
|
|
tgamma -0x1e.000000000000000000000000001p0
|
|
tgamma -0x27.ffffffffffffffffffffffffffep0
|
|
tgamma -0x28.000000000000000000000000002p0
|
|
tgamma -0x28.ffffffffffffffffffffffffffep0
|
|
tgamma -0x29.000000000000000000000000002p0
|
|
tgamma -0x29.ffffffffffffffffffffffffffep0
|
|
tgamma -0x2a.000000000000000000000000002p0
|
|
tgamma -0x31.ffffffffffffffffffffffffffep0
|
|
tgamma -0x32.000000000000000000000000002p0
|
|
tgamma -0x63.ffffffffffffffffffffffffffcp0
|
|
tgamma -0x64.000000000000000000000000004p0
|
|
tgamma -0x95.ffffffffffffffffffffffffff8p0
|
|
tgamma -0x96.000000000000000000000000008p0
|
|
tgamma -0xb4.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xb5.000000000000000000000000008p0
|
|
tgamma -0xb5.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xb6.000000000000000000000000008p0
|
|
tgamma -0xb6.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xb7.000000000000000000000000008p0
|
|
tgamma -0xb7.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xb8.000000000000000000000000008p0
|
|
tgamma -0xbb.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xbc.000000000000000000000000008p0
|
|
tgamma -0xbc.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xbd.000000000000000000000000008p0
|
|
tgamma -0xbd.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xbe.000000000000000000000000008p0
|
|
tgamma -0xbe.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xbf.000000000000000000000000008p0
|
|
tgamma -0xf9.ffffffffffffffffffffffffff8p0
|
|
tgamma -0xfa.000000000000000000000000008p0
|
|
tgamma -0x1f3.ffffffffffffffffffffffffffp0
|
|
tgamma -0x1f4.00000000000000000000000001p0
|
|
tgamma -0x2ed.fffffffffffffffffffffffffep0
|
|
tgamma -0x2ee.00000000000000000000000002p0
|
|
tgamma -0x3e7.fffffffffffffffffffffffffep0
|
|
tgamma -0x3e8.00000000000000000000000002p0
|
|
tgamma -0x4e1.fffffffffffffffffffffffffcp0
|
|
tgamma -0x4e2.00000000000000000000000004p0
|
|
tgamma -0x5db.fffffffffffffffffffffffffcp0
|
|
tgamma -0x5dc.00000000000000000000000004p0
|
|
tgamma -0x6d5.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6d6.00000000000000000000000004p0
|
|
tgamma -0x6e2.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6e3.00000000000000000000000004p0
|
|
tgamma -0x6e3.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6e4.00000000000000000000000004p0
|
|
tgamma -0x6e4.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6e5.00000000000000000000000004p0
|
|
tgamma -0x6e5.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6e6.00000000000000000000000004p0
|
|
tgamma -0x6eb.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6ec.00000000000000000000000004p0
|
|
tgamma -0x6ec.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6ed.00000000000000000000000004p0
|
|
tgamma -0x6ed.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6ee.00000000000000000000000004p0
|
|
tgamma -0x6ee.fffffffffffffffffffffffffcp0
|
|
tgamma -0x6ef.00000000000000000000000004p0
|
|
tgamma -0x1.0a32a2p+5
|
|
tgamma -0x1.5800000080001p+7
|
|
tgamma 18.5
|
|
tgamma 19.5
|
|
tgamma 23.5
|
|
tgamma 29.5
|
|
tgamma 30.5
|
|
tgamma 31.5
|
|
tgamma 32.5
|
|
tgamma 33.5
|
|
tgamma 34.5
|
|
tgamma 0x2.30a43cp+4
|
|
tgamma 0x2.30a44p+4
|
|
tgamma 0xa.b9fd72b0fb238p+4
|
|
tgamma 0xa.b9fd72b0fb24p+4
|
|
tgamma 0xa.b9fd72b0fb23a9ddbf0d3804f4p+4
|
|
tgamma 0xa.b9fd72b0fb23a9ddbf0d3804f8p+4
|
|
tgamma 0x6.db8c603359a97108p+8
|
|
tgamma 0x6.db8c603359a9711p+8
|
|
tgamma 0x6.db8c603359a971081bc4a2e9dfdp+8
|
|
tgamma 0x6.db8c603359a971081bc4a2e9dfd4p+8
|
|
tgamma 1e3
|
|
tgamma -100000.5
|
|
|
|
y0 0.125
|
|
y0 0.75
|
|
y0 1.0
|
|
y0 1.5
|
|
y0 2.0
|
|
y0 8.0
|
|
y0 10.0
|
|
y0 0x1.3ffp+74
|
|
y0 0x1.ff00000000002p+840
|
|
y0 0x1p1023
|
|
y0 0x1p16382
|
|
y0 0x1p16383
|
|
y0 0x1p-10
|
|
y0 0x1p-20
|
|
y0 0x1p-30
|
|
y0 0x1p-40
|
|
y0 0x1p-50
|
|
y0 0x1p-60
|
|
y0 0x1p-70
|
|
y0 0x1p-80
|
|
y0 0x1p-90
|
|
y0 0x1p-100
|
|
y0 0x1p-110
|
|
|
|
y1 0.125
|
|
y1 0.75
|
|
y1 1.0
|
|
y1 1.5
|
|
y1 2.0
|
|
y1 8.0
|
|
y1 10.0
|
|
y1 0x1.27e204p+99
|
|
y1 0x1.001000001p+593
|
|
y1 0x1p1023
|
|
y1 0x1p16382
|
|
y1 0x1p16383
|
|
y1 0x1p-10
|
|
y1 0x1p-20
|
|
y1 0x1p-30
|
|
y1 0x1p-40
|
|
y1 0x1p-50
|
|
y1 0x1p-60
|
|
y1 0x1p-70
|
|
y1 0x1p-80
|
|
y1 0x1p-90
|
|
y1 0x1p-100
|
|
y1 0x1p-110
|
|
|
|
# yn (0, x) == y0 (x).
|
|
yn 0 0.125
|
|
yn 0 0.75
|
|
yn 0 1.0
|
|
yn 0 1.5
|
|
yn 0 2.0
|
|
yn 0 8.0
|
|
yn 0 10.0
|
|
|
|
# yn (1, x) == y1 (x).
|
|
yn 1 0.125
|
|
yn 1 0.75
|
|
yn 1 1.0
|
|
yn 1 1.5
|
|
yn 1 2.0
|
|
yn 1 8.0
|
|
yn 1 10.0
|
|
|
|
# yn (-1, x) == -y1 (x).
|
|
yn -1 1.0
|
|
|
|
# yn (3, x).
|
|
yn 3 0.125
|
|
yn 3 0.75
|
|
yn 3 1.0
|
|
yn 3 2.0
|
|
yn 3 10.0
|
|
|
|
# yn (10, x).
|
|
yn 10 0.125
|
|
yn 10 0.75
|
|
yn 10 1.0
|
|
yn 10 2.0
|
|
yn 10 10.0
|
|
|
|
yn -10 1.0
|
|
|
|
yn 10 min
|
|
|
|
yn 2 0x1.ffff62p+99
|
|
yn 2 0x1p127
|
|
yn 2 0x1p1023
|
|
yn 2 0x1p16383
|