glibc/math/README.libm-test
Joseph Myers 4f1bc131db Split auto-libm-test-out by function.
math/auto-libm-test-out is, at over 30 MB, by far the largest file in
the glibc source tree.  This patch splits it by function, so reducing
it to auto-libm-test-out-<func> files that are all under 5 MB in size.

This is preliminary to splitting up libm-test.inc as well so that each
function's tests can also be processed separately by
gen-libm-test.pl.  As a preliminary patch it doesn't actually
implement that step; rather, all the separate files get concatenated
by the Makefile to produce the monolithic auto-libm-test-out file
again as an input to gen-libm-test.pl.  (The concatentation is
identical to the file in the source tree before this patch.)

Even this preliminary step, however, is of use independent of
splitting up libm-test.inc: some tests for csin and csinh have not
been moved to auto-libm-test-in because they result in
auto-libm-test-out generation taking several minutes rather than a few
seconds (all released MPC versions are very slow for certain sin /
sinh inputs; there are some old improvements in MPC mainline which
should eventually become MPC 1.1, but the complex inverse trig and
hyperbolic functions are slow even in MPC mainline and have yet to be
moved to auto-libm-test-in at all), and it seems much more reasonable
to add such inputs to auto-libm-test-in when it will only slow down
regeneration for particular functions than when it will slow down
regeneration globally.

gen-auto-libm-tests still parses the whole input file, but only
generates output for the requested function.  This ensures bad syntax
in the file is always detected, and parsing the whole file is quick;
it's output generation that is comparatively slow for some functions.

Tested for x86_64.

	* math/gen-auto-libm-tests.c: Update comment about use of program.
	(generate_output): Add argument FUNCTION.
	(main): Require extra argument.  Pass function name to
	generate_output.
	* math/Makefile (generated): Add auto-libm-test-out.
	(libm-test-funcs-auto): New variable.
	(auto-libm-test-out-files): New variable.
	($(objpfx)libm-test.c): Depend on $(auto-libm-test-out-files).
	Concatenate those files to form $(objpfx)auto-libm-test-out and
	use it as input to gen-libm-test.pl.
	* math/README.libm-test: Update.
	* math/auto-libm-test-out: Remove.
	* math/auto-libm-test-out-acos: New generated file.
	* math/auto-libm-test-out-acosh: Likewise.
	* math/auto-libm-test-out-asin: Likewise.
	* math/auto-libm-test-out-asinh: Likewise.
	* math/auto-libm-test-out-atan: Likewise.
	* math/auto-libm-test-out-atan2: Likewise.
	* math/auto-libm-test-out-atanh: Likewise.
	* math/auto-libm-test-out-cabs: Likewise.
	* math/auto-libm-test-out-carg: Likewise.
	* math/auto-libm-test-out-cbrt: Likewise.
	* math/auto-libm-test-out-ccos: Likewise.
	* math/auto-libm-test-out-ccosh: Likewise.
	* math/auto-libm-test-out-cexp: Likewise.
	* math/auto-libm-test-out-clog: Likewise.
	* math/auto-libm-test-out-clog10: Likewise.
	* math/auto-libm-test-out-cos: Likewise.
	* math/auto-libm-test-out-cosh: Likewise.
	* math/auto-libm-test-out-cpow: Likewise.
	* math/auto-libm-test-out-csin: Likewise.
	* math/auto-libm-test-out-csinh: Likewise.
	* math/auto-libm-test-out-csqrt: Likewise.
	* math/auto-libm-test-out-ctan: Likewise.
	* math/auto-libm-test-out-ctanh: Likewise.
	* math/auto-libm-test-out-erf: Likewise.
	* math/auto-libm-test-out-erfc: Likewise.
	* math/auto-libm-test-out-exp: Likewise.
	* math/auto-libm-test-out-exp10: Likewise.
	* math/auto-libm-test-out-exp2: Likewise.
	* math/auto-libm-test-out-expm1: Likewise.
	* math/auto-libm-test-out-fma: Likewise.
	* math/auto-libm-test-out-hypot: Likewise.
	* math/auto-libm-test-out-j0: Likewise.
	* math/auto-libm-test-out-j1: Likewise.
	* math/auto-libm-test-out-jn: Likewise.
	* math/auto-libm-test-out-lgamma: Likewise.
	* math/auto-libm-test-out-log: Likewise.
	* math/auto-libm-test-out-log10: Likewise.
	* math/auto-libm-test-out-log1p: Likewise.
	* math/auto-libm-test-out-log2: Likewise.
	* math/auto-libm-test-out-pow: Likewise.
	* math/auto-libm-test-out-sin: Likewise.
	* math/auto-libm-test-out-sincos: Likewise.
	* math/auto-libm-test-out-sinh: Likewise.
	* math/auto-libm-test-out-sqrt: Likewise.
	* math/auto-libm-test-out-tan: Likewise.
	* math/auto-libm-test-out-tanh: Likewise.
	* math/auto-libm-test-out-tgamma: Likewise.
	* math/auto-libm-test-out-y0: Likewise.
	* math/auto-libm-test-out-y1: Likewise.
	* math/auto-libm-test-out-yn: Likewise.
2017-02-06 18:41:20 +00:00

166 lines
7.7 KiB
Plaintext

README for libm-test math test suite
====================================
The libm-test math test suite tests a number of function points of
math functions in the GNU C library. The following sections contain a
brief overview. Please note that the test drivers and the Perl script
"gen-libm-test.pl" have some options. A full list of options is
available with --help (for the test drivers) and -h for
"gen-libm-test.pl".
What is tested?
===============
The tests just evaluate the functions at specified points and compare
the results with precomputed values and the requirements of the ISO
C99 standard.
Besides testing the special values mandated by IEEE 754 (infinities,
NaNs and minus zero), some more or less random values are tested.
Files that are part of libm-test
================================
The main file is "libm-test.inc". It is independent of the target
platform and the specific real floating type and format and contains
placeholder test "templates" for math functions defined in libm.
The file, along with generated files named "auto-libm-test-out-<func>",
is preprocessed by the Perl script "gen-libm-test.pl" to expand
the templates and produce a set of test cases for each math function
that are specific to the target platform but still independent of
the real floating type. The results of the processing are
"libm-test.c" and a file "libm-test-ulps.h" with platform specific
deltas by which the actual math function results may deviate from
the expected results and still be considered correct.
The test drivers "test-double.c", "test-float.c", and "test-ldouble.c"
test the normal double, float and long double implementation of libm.
The test drivers with an 'i' in their name ("test-idouble.c",
"test-ifloat.c", and "test-ildoubl.c") test the corresponding inline
functions (where available - otherwise they also test the real
functions in libm). Each driver selects the desired real floating
type to exercise the math functions to test with (float, double, or
long double) by defining a small set of macros just before including
the generic "libm-test.c" file. Each driver also either defines or
undefines the __NO_MATH_INLINES macro just before including
"libm-test.c" to select either the real or inline functions,
respectively. Each driver is compiled into a single executable test
program with the corresponding name.
As mentioned above, the "gen-libm-test.pl" script looks for a file
named "libm-test-ulps" in the platform specific sysdep directory (or
its fpu or nofpu subdirectory) and for each variant (real floating
type and rounding mode) of every tested function reads from it the
maximum difference expressed as Units of Least Precision (ULP) the
actual result of the function may deviate from the expected result
before it's considered incorrect.
The "auto-libm-test-out-<func>" files contain sets of test cases to
exercise, the conditions under which to exercise each, and the
expected results. The files are generated by the
"gen-auto-libm-tests" program from the "auto-libm-test-in" file. See
the comments in gen-auto-libm-tests.c for details about the content
and format of the -in and -out files.
How can I generate "libm-test-ulps"?
====================================
To automatically generate a new "libm-test-ulps" run "make regen-ulps".
This generates the file "math/NewUlps" in the build directory. The file
contains the sorted results of all the tests. You can use the "NewUlps"
file as the machine's updated "libm-test-ulps" file. Copy "NewUlps" to
"libm-test-ulps" in the appropriate machine sysdep directory. Verify
the changes, post your patch, and check it in after review.
To manually generate a new "libm-test-ulps" file, first remove "ULPs"
file in the current directory, then you can execute for example:
./testrun.sh math/test-double -u --ignore-max-ulp=yes
This generates a file "ULPs" with all double ULPs in it, ignoring any
previously calculated ULPs, and running with the newly built dynamic
loader and math library (assumes you didn't install your build). Now
generate the ULPs for all other formats, the tests will be appending the
data to the "ULPs" file. As final step run "gen-libm-test.pl" with the
file as input and ask to generate a pretty printed output in the file
"NewUlps":
gen-libm-test.pl -u ULPs -n NewUlps
Copy "NewUlps" to "libm-test-ulps" in the appropriate machine sysdep
directory.
Note that the test drivers have an option "-u" to output an unsorted
list of all epsilons that the functions have. The output can be read
in directly but it's better to pretty print it first.
"gen-libm-test.pl" has an option to generate a pretty-printed and
sorted new ULPs file from the output of the test drivers.
Contents of libm-test-ulps
==========================
Since libm-test-ulps can be generated automatically, just a few notes.
The file contains lines for maximal errors of single functions, like:
Function "yn":
idouble: 6
The keywords are float, ifloat, double, idouble, ldouble and ildouble
(the prefix i stands for inline).
Adding tests to libm-test.inc
=============================
The tests are evaluated by a set of special test macros. The macros
start with "TEST_" followed by a specification the input values, an
underscore and a specification of the output values. As an example,
the test macro for a function with input of type FLOAT (FLOAT is
either float, double, long double) and output of type FLOAT is
"TEST_f_f". The macro's parameter are the name of the function, the
input parameter, output parameter and optionally one exception
parameter.
The accepted parameter types are:
- "f" for FLOAT
- "j" for long double.
- "b" for boolean - just tests if the output parameter evaluates to 0
or 1 (only for output).
- "c" for complex. This parameter needs two values, first the real,
then the imaginary part.
- "i" for int.
- "l" for long int.
- "L" for long long int.
- "u" for unsigned int.
- "M" for intmax_t.
- "U" for uintmax_t.
- "p" for an argument (described in the previous character) passed
through a pointer rather than directly.
- "F" for the address of a FLOAT (only as input parameter)
- "I" for the address of an int (only as input parameter)
- "1" for an additional output (either output through a pointer passed
as an argument, or to a global variable such as signgam).
How to read the test output
===========================
Running each test on its own at the default level of verbosity will
print on stdout a line describing the implementation of math functions
exercised by the test (float, double, or long double), along with
whether the inline set has been selected, regardless of whether or
not any inline functions actually exist. This is then followed by
the details of test failures (if any). The output concludes by
a summary listing the number of test cases exercised and the number
of test failures uncovered.
For each test failure (and for each test case at higher levels of
verbosity), the output contains the name of the function under test
and its arguments or conditions that triggered the failure. Note
that the name of the function in the output need not correspond
exactly to the name of the math function actually invoked. For example,
the output will refer to the "acos" function even if the actual function
under test is acosf (for the float version) or acosl (for the long
double version). Also note that the function arguments may be shown
in either the decimal or the hexadecimal floating point format which
may or may not correspond to the format used in the auto-libm-test-in
file. Besides the name of the function, for each test failure the
output contains the actual and expected results and the difference
between the two, printed in both the decimal and hexadecimal
floating point format, and the ULP and maximum ULP for the test
case.