glibc/math/test-tgmath.c
Rajalakshmi Srinivasaraghavan 41a359e22f Add nextup and nextdown math functions
TS 18661 adds nextup and nextdown functions alongside nextafter to provide
support for float128 equivalent to it.  This patch adds nextupl, nextup,
nextupf, nextdownl, nextdown and nextdownf to libm before float128 support.

The nextup functions return the next representable value in the direction of
positive infinity and the nextdown functions return the next representable
value in the direction of negative infinity.  These are currently enabled
as GNU extensions.
2016-06-16 21:37:45 +05:30

1059 lines
15 KiB
C

/* Test compilation of tgmath macros.
Copyright (C) 2001-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Jakub Jelinek <jakub@redhat.com> and
Ulrich Drepper <drepper@redhat.com>, 2001.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#ifndef HAVE_MAIN
#undef __NO_MATH_INLINES
#define __NO_MATH_INLINES 1
#include <math.h>
#include <stdio.h>
#include <tgmath.h>
//#define DEBUG
static void compile_test (void);
static void compile_testf (void);
#ifndef NO_LONG_DOUBLE
static void compile_testl (void);
#endif
float fx;
double dx;
long double lx;
const float fy = 1.25;
const double dy = 1.25;
const long double ly = 1.25;
complex float fz;
complex double dz;
complex long double lz;
int count_double;
int count_float;
int count_ldouble;
int count_cdouble;
int count_cfloat;
int count_cldouble;
#define NCALLS 119
#define NCALLS_INT 4
#define NCCALLS 47
static int
do_test (void)
{
int result = 0;
count_float = count_double = count_ldouble = 0;
count_cfloat = count_cdouble = count_cldouble = 0;
compile_test ();
if (count_float != 0 || count_cfloat != 0)
{
puts ("float function called for double test");
result = 1;
}
if (count_ldouble != 0 || count_cldouble != 0)
{
puts ("long double function called for double test");
result = 1;
}
if (count_double < NCALLS + NCALLS_INT)
{
printf ("double functions not called often enough (%d)\n",
count_double);
result = 1;
}
else if (count_double > NCALLS + NCALLS_INT)
{
printf ("double functions called too often (%d)\n",
count_double);
result = 1;
}
if (count_cdouble < NCCALLS)
{
printf ("double complex functions not called often enough (%d)\n",
count_cdouble);
result = 1;
}
else if (count_cdouble > NCCALLS)
{
printf ("double complex functions called too often (%d)\n",
count_cdouble);
result = 1;
}
count_float = count_double = count_ldouble = 0;
count_cfloat = count_cdouble = count_cldouble = 0;
compile_testf ();
if (count_double != 0 || count_cdouble != 0)
{
puts ("double function called for float test");
result = 1;
}
if (count_ldouble != 0 || count_cldouble != 0)
{
puts ("long double function called for float test");
result = 1;
}
if (count_float < NCALLS)
{
printf ("float functions not called often enough (%d)\n", count_float);
result = 1;
}
else if (count_float > NCALLS)
{
printf ("float functions called too often (%d)\n",
count_double);
result = 1;
}
if (count_cfloat < NCCALLS)
{
printf ("float complex functions not called often enough (%d)\n",
count_cfloat);
result = 1;
}
else if (count_cfloat > NCCALLS)
{
printf ("float complex functions called too often (%d)\n",
count_cfloat);
result = 1;
}
#ifndef NO_LONG_DOUBLE
count_float = count_double = count_ldouble = 0;
count_cfloat = count_cdouble = count_cldouble = 0;
compile_testl ();
if (count_float != 0 || count_cfloat != 0)
{
puts ("float function called for long double test");
result = 1;
}
if (count_double != 0 || count_cdouble != 0)
{
puts ("double function called for long double test");
result = 1;
}
if (count_ldouble < NCALLS)
{
printf ("long double functions not called often enough (%d)\n",
count_ldouble);
result = 1;
}
else if (count_ldouble > NCALLS)
{
printf ("long double functions called too often (%d)\n",
count_double);
result = 1;
}
if (count_cldouble < NCCALLS)
{
printf ("long double complex functions not called often enough (%d)\n",
count_cldouble);
result = 1;
}
else if (count_cldouble > NCCALLS)
{
printf ("long double complex functions called too often (%d)\n",
count_cldouble);
result = 1;
}
#endif
return result;
}
/* Now generate the three functions. */
#define HAVE_MAIN
#define F(name) name
#define TYPE double
#define TEST_INT 1
#define x dx
#define y dy
#define z dz
#define count count_double
#define ccount count_cdouble
#include "test-tgmath.c"
#define F(name) name##f
#define TYPE float
#define x fx
#define y fy
#define z fz
#define count count_float
#define ccount count_cfloat
#include "test-tgmath.c"
#ifndef NO_LONG_DOUBLE
#define F(name) name##l
#define TYPE long double
#define x lx
#define y ly
#define z lz
#define count count_ldouble
#define ccount count_cldouble
#include "test-tgmath.c"
#endif
#define TEST_FUNCTION do_test ()
#include "../test-skeleton.c"
#else
#ifdef DEBUG
#define P() puts (__FUNCTION__)
#else
#define P()
#endif
static void
F(compile_test) (void)
{
TYPE a, b, c = 1.0;
complex TYPE d;
int i;
int saved_count;
long int j;
long long int k;
a = cos (cos (x));
b = acos (acos (a));
a = sin (sin (x));
b = asin (asin (a));
a = tan (tan (x));
b = atan (atan (a));
c = atan2 (atan2 (a, c), atan2 (b, x));
a = cosh (cosh (x));
b = acosh (acosh (a));
a = sinh (sinh (x));
b = asinh (asinh (a));
a = tanh (tanh (x));
b = atanh (atanh (a));
a = exp (exp (x));
b = log (log (a));
a = log10 (log10 (x));
b = ldexp (ldexp (a, 1), 5);
a = frexp (frexp (x, &i), &i);
b = expm1 (expm1 (a));
a = log1p (log1p (x));
b = logb (logb (a));
a = exp2 (exp2 (x));
b = log2 (log2 (a));
a = pow (pow (x, a), pow (c, b));
b = sqrt (sqrt (a));
a = hypot (hypot (x, b), hypot (c, a));
b = cbrt (cbrt (a));
a = ceil (ceil (x));
b = fabs (fabs (a));
a = floor (floor (x));
b = fmod (fmod (a, b), fmod (c, x));
a = nearbyint (nearbyint (x));
b = round (round (a));
a = trunc (trunc (x));
b = remquo (remquo (a, b, &i), remquo (c, x, &i), &i);
j = lrint (x) + lround (a);
k = llrint (b) + llround (c);
a = erf (erf (x));
b = erfc (erfc (a));
a = tgamma (tgamma (x));
b = lgamma (lgamma (a));
a = rint (rint (x));
b = nextafter (nextafter (a, b), nextafter (c, x));
a = nextdown (nextdown (a));
b = nexttoward (nexttoward (x, a), c);
a = nextup (nextup (a));
b = remainder (remainder (a, b), remainder (c, x));
a = scalb (scalb (x, a), (TYPE) (6));
k = scalbn (a, 7) + scalbln (c, 10l);
i = ilogb (x);
a = fdim (fdim (x, a), fdim (c, b));
b = fmax (fmax (a, x), fmax (c, b));
a = fmin (fmin (x, a), fmin (c, b));
b = fma (sin (a), sin (x), sin (c));
#ifdef TEST_INT
a = atan2 (i, b);
b = remquo (i, a, &i);
c = fma (i, b, i);
a = pow (i, c);
#endif
x = a + b + c + i + j + k;
saved_count = count;
if (ccount != 0)
ccount = -10000;
d = cos (cos (z));
z = acos (acos (d));
d = sin (sin (z));
z = asin (asin (d));
d = tan (tan (z));
z = atan (atan (d));
d = cosh (cosh (z));
z = acosh (acosh (d));
d = sinh (sinh (z));
z = asinh (asinh (d));
d = tanh (tanh (z));
z = atanh (atanh (d));
d = exp (exp (z));
z = log (log (d));
d = sqrt (sqrt (z));
z = conj (conj (d));
d = fabs (conj (a));
z = pow (pow (a, d), pow (b, z));
d = cproj (cproj (z));
z += fabs (cproj (a));
a = carg (carg (z));
b = creal (creal (d));
c = cimag (cimag (z));
x += a + b + c + i + j + k;
z += d;
if (saved_count != count)
count = -10000;
if (0)
{
a = cos (y);
a = acos (y);
a = sin (y);
a = asin (y);
a = tan (y);
a = atan (y);
a = atan2 (y, y);
a = cosh (y);
a = acosh (y);
a = sinh (y);
a = asinh (y);
a = tanh (y);
a = atanh (y);
a = exp (y);
a = log (y);
a = log10 (y);
a = ldexp (y, 5);
a = frexp (y, &i);
a = expm1 (y);
a = log1p (y);
a = logb (y);
a = exp2 (y);
a = log2 (y);
a = pow (y, y);
a = sqrt (y);
a = hypot (y, y);
a = cbrt (y);
a = ceil (y);
a = fabs (y);
a = floor (y);
a = fmod (y, y);
a = nearbyint (y);
a = round (y);
a = trunc (y);
a = remquo (y, y, &i);
j = lrint (y) + lround (y);
k = llrint (y) + llround (y);
a = erf (y);
a = erfc (y);
a = tgamma (y);
a = lgamma (y);
a = rint (y);
a = nextafter (y, y);
a = nexttoward (y, y);
a = remainder (y, y);
a = scalb (y, (const TYPE) (6));
k = scalbn (y, 7) + scalbln (y, 10l);
i = ilogb (y);
a = fdim (y, y);
a = fmax (y, y);
a = fmin (y, y);
a = fma (y, y, y);
#ifdef TEST_INT
a = atan2 (i, y);
a = remquo (i, y, &i);
a = fma (i, y, i);
a = pow (i, y);
#endif
d = cos ((const complex TYPE) z);
d = acos ((const complex TYPE) z);
d = sin ((const complex TYPE) z);
d = asin ((const complex TYPE) z);
d = tan ((const complex TYPE) z);
d = atan ((const complex TYPE) z);
d = cosh ((const complex TYPE) z);
d = acosh ((const complex TYPE) z);
d = sinh ((const complex TYPE) z);
d = asinh ((const complex TYPE) z);
d = tanh ((const complex TYPE) z);
d = atanh ((const complex TYPE) z);
d = exp ((const complex TYPE) z);
d = log ((const complex TYPE) z);
d = sqrt ((const complex TYPE) z);
d = pow ((const complex TYPE) z, (const complex TYPE) z);
d = fabs ((const complex TYPE) z);
d = carg ((const complex TYPE) z);
d = creal ((const complex TYPE) z);
d = cimag ((const complex TYPE) z);
d = conj ((const complex TYPE) z);
d = cproj ((const complex TYPE) z);
}
}
#undef x
#undef y
#undef z
TYPE
(F(cos)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(acos)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(sin)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(asin)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(tan)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(atan)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(atan2)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(cosh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(acosh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(sinh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(asinh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(tanh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(atanh)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(exp)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(log)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(log10)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(ldexp)) (TYPE x, int y)
{
++count;
P ();
return x + y;
}
TYPE
(F(frexp)) (TYPE x, int *y)
{
++count;
P ();
return x + *y;
}
TYPE
(F(expm1)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(log1p)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(logb)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(exp2)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(log2)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(pow)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(sqrt)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(hypot)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(cbrt)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(ceil)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(fabs)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(floor)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(fmod)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(nearbyint)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(round)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(trunc)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(remquo)) (TYPE x, TYPE y, int *i)
{
++count;
P ();
return x + y + *i;
}
long int
(F(lrint)) (TYPE x)
{
++count;
P ();
return x;
}
long int
(F(lround)) (TYPE x)
{
++count;
P ();
return x;
}
long long int
(F(llrint)) (TYPE x)
{
++count;
P ();
return x;
}
long long int
(F(llround)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(erf)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(erfc)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(tgamma)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(lgamma)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(rint)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(nextafter)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(nextdown)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(nexttoward)) (TYPE x, long double y)
{
++count;
P ();
return x + y;
}
TYPE
(F(nextup)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(remainder)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(scalb)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(scalbn)) (TYPE x, int y)
{
++count;
P ();
return x + y;
}
TYPE
(F(scalbln)) (TYPE x, long int y)
{
++count;
P ();
return x + y;
}
int
(F(ilogb)) (TYPE x)
{
++count;
P ();
return x;
}
TYPE
(F(fdim)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fmin)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fmax)) (TYPE x, TYPE y)
{
++count;
P ();
return x + y;
}
TYPE
(F(fma)) (TYPE x, TYPE y, TYPE z)
{
++count;
P ();
return x + y + z;
}
complex TYPE
(F(cacos)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(casin)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(catan)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(ccos)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(csin)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(ctan)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(cacosh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(casinh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(catanh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(ccosh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(csinh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(ctanh)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(cexp)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(clog)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(csqrt)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(cpow)) (complex TYPE x, complex TYPE y)
{
++ccount;
P ();
return x + y;
}
TYPE
(F(cabs)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
TYPE
(F(carg)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
TYPE
(F(creal)) (complex TYPE x)
{
++ccount;
P ();
return __real__ x;
}
TYPE
(F(cimag)) (complex TYPE x)
{
++ccount;
P ();
return __imag__ x;
}
complex TYPE
(F(conj)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
complex TYPE
(F(cproj)) (complex TYPE x)
{
++ccount;
P ();
return x;
}
#undef F
#undef TYPE
#undef count
#undef ccount
#undef TEST_INT
#endif