glibc/soft-fp/op-common.h
Joseph Myers 0022e688d0 soft-fp: Fix _FP_TO_INT latent bug in overflow handling.
This patch fixes a latent bug in _FP_TO_INT regarding handling of
arguments with maximum exponent (infinities and NaNs).  If the maximum
exponent is below that calculated as an overflow threshold, such
values would incorrectly be treated as normal values for the purposes
of the conversion.  This could not occur for any of the conversions
actually occurring in glibc, libgcc or the Linux kernel (the maximum
exponent for float is, just, big enough to ensure overflow for
unsigned __int128), but would apply if soft-fp were used for IEEE
binary16.  Appropriate checks are inserted to ensure that the maximum
exponent is always treated as an overflowing exponent, and never as a
normal one.

Tested for powerpc-nofpu that the disassembly of installed shared
libraries is unchanged by this patch.

	* soft-fp/op-common.h (_FP_TO_INT): Ensure maximum exponent is
	treated as invalid conversion, not as normal exponent.
2014-10-09 01:07:10 +00:00

1755 lines
55 KiB
C

/* Software floating-point emulation. Common operations.
Copyright (C) 1997-2014 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Richard Henderson (rth@cygnus.com),
Jakub Jelinek (jj@ultra.linux.cz),
David S. Miller (davem@redhat.com) and
Peter Maydell (pmaydell@chiark.greenend.org.uk).
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
In addition to the permissions in the GNU Lesser General Public
License, the Free Software Foundation gives you unlimited
permission to link the compiled version of this file into
combinations with other programs, and to distribute those
combinations without any restriction coming from the use of this
file. (The Lesser General Public License restrictions do apply in
other respects; for example, they cover modification of the file,
and distribution when not linked into a combine executable.)
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<http://www.gnu.org/licenses/>. */
#define _FP_DECL(wc, X) \
_FP_I_TYPE X##_c __attribute__ ((unused)); \
_FP_I_TYPE X##_s __attribute__ ((unused)); \
_FP_I_TYPE X##_e __attribute__ ((unused)); \
_FP_FRAC_DECL_##wc (X)
/* Test whether the qNaN bit denotes a signaling NaN. */
#define _FP_FRAC_SNANP(fs, X) \
((_FP_QNANNEGATEDP) \
? (_FP_FRAC_HIGH_RAW_##fs (X) & _FP_QNANBIT_##fs) \
: !(_FP_FRAC_HIGH_RAW_##fs (X) & _FP_QNANBIT_##fs))
#define _FP_FRAC_SNANP_SEMIRAW(fs, X) \
((_FP_QNANNEGATEDP) \
? (_FP_FRAC_HIGH_##fs (X) & _FP_QNANBIT_SH_##fs) \
: !(_FP_FRAC_HIGH_##fs (X) & _FP_QNANBIT_SH_##fs))
/* Finish truly unpacking a native fp value by classifying the kind
of fp value and normalizing both the exponent and the fraction. */
#define _FP_UNPACK_CANONICAL(fs, wc, X) \
do \
{ \
switch (X##_e) \
{ \
default: \
_FP_FRAC_HIGH_RAW_##fs (X) |= _FP_IMPLBIT_##fs; \
_FP_FRAC_SLL_##wc (X, _FP_WORKBITS); \
X##_e -= _FP_EXPBIAS_##fs; \
X##_c = FP_CLS_NORMAL; \
break; \
\
case 0: \
if (_FP_FRAC_ZEROP_##wc (X)) \
X##_c = FP_CLS_ZERO; \
else \
{ \
/* A denormalized number. */ \
_FP_I_TYPE _FP_UNPACK_CANONICAL_shift; \
_FP_FRAC_CLZ_##wc (_FP_UNPACK_CANONICAL_shift, \
X); \
_FP_UNPACK_CANONICAL_shift -= _FP_FRACXBITS_##fs; \
_FP_FRAC_SLL_##wc (X, (_FP_UNPACK_CANONICAL_shift \
+ _FP_WORKBITS)); \
X##_e -= (_FP_EXPBIAS_##fs - 1 \
+ _FP_UNPACK_CANONICAL_shift); \
X##_c = FP_CLS_NORMAL; \
FP_SET_EXCEPTION (FP_EX_DENORM); \
} \
break; \
\
case _FP_EXPMAX_##fs: \
if (_FP_FRAC_ZEROP_##wc (X)) \
X##_c = FP_CLS_INF; \
else \
{ \
X##_c = FP_CLS_NAN; \
/* Check for signaling NaN. */ \
if (_FP_FRAC_SNANP (fs, X)) \
FP_SET_EXCEPTION (FP_EX_INVALID); \
} \
break; \
} \
} \
while (0)
/* Finish unpacking an fp value in semi-raw mode: the mantissa is
shifted by _FP_WORKBITS but the implicit MSB is not inserted and
other classification is not done. */
#define _FP_UNPACK_SEMIRAW(fs, wc, X) _FP_FRAC_SLL_##wc (X, _FP_WORKBITS)
/* A semi-raw value has overflowed to infinity. Adjust the mantissa
and exponent appropriately. */
#define _FP_OVERFLOW_SEMIRAW(fs, wc, X) \
do \
{ \
if (FP_ROUNDMODE == FP_RND_NEAREST \
|| (FP_ROUNDMODE == FP_RND_PINF && !X##_s) \
|| (FP_ROUNDMODE == FP_RND_MINF && X##_s)) \
{ \
X##_e = _FP_EXPMAX_##fs; \
_FP_FRAC_SET_##wc (X, _FP_ZEROFRAC_##wc); \
} \
else \
{ \
X##_e = _FP_EXPMAX_##fs - 1; \
_FP_FRAC_SET_##wc (X, _FP_MAXFRAC_##wc); \
} \
FP_SET_EXCEPTION (FP_EX_INEXACT); \
FP_SET_EXCEPTION (FP_EX_OVERFLOW); \
} \
while (0)
/* Check for a semi-raw value being a signaling NaN and raise the
invalid exception if so. */
#define _FP_CHECK_SIGNAN_SEMIRAW(fs, wc, X) \
do \
{ \
if (X##_e == _FP_EXPMAX_##fs \
&& !_FP_FRAC_ZEROP_##wc (X) \
&& _FP_FRAC_SNANP_SEMIRAW (fs, X)) \
FP_SET_EXCEPTION (FP_EX_INVALID); \
} \
while (0)
/* Choose a NaN result from an operation on two semi-raw NaN
values. */
#define _FP_CHOOSENAN_SEMIRAW(fs, wc, R, X, Y, OP) \
do \
{ \
/* _FP_CHOOSENAN expects raw values, so shift as required. */ \
_FP_FRAC_SRL_##wc (X, _FP_WORKBITS); \
_FP_FRAC_SRL_##wc (Y, _FP_WORKBITS); \
_FP_CHOOSENAN (fs, wc, R, X, Y, OP); \
_FP_FRAC_SLL_##wc (R, _FP_WORKBITS); \
} \
while (0)
/* Make the fractional part a quiet NaN, preserving the payload
if possible, otherwise make it the canonical quiet NaN and set
the sign bit accordingly. */
#define _FP_SETQNAN(fs, wc, X) \
do \
{ \
if (_FP_QNANNEGATEDP) \
{ \
_FP_FRAC_HIGH_RAW_##fs (X) &= _FP_QNANBIT_##fs - 1; \
if (_FP_FRAC_ZEROP_##wc (X)) \
{ \
X##_s = _FP_NANSIGN_##fs; \
_FP_FRAC_SET_##wc (X, _FP_NANFRAC_##fs); \
} \
} \
else \
_FP_FRAC_HIGH_RAW_##fs (X) |= _FP_QNANBIT_##fs; \
} \
while (0)
#define _FP_SETQNAN_SEMIRAW(fs, wc, X) \
do \
{ \
if (_FP_QNANNEGATEDP) \
{ \
_FP_FRAC_HIGH_##fs (X) &= _FP_QNANBIT_SH_##fs - 1; \
if (_FP_FRAC_ZEROP_##wc (X)) \
{ \
X##_s = _FP_NANSIGN_##fs; \
_FP_FRAC_SET_##wc (X, _FP_NANFRAC_##fs); \
_FP_FRAC_SLL_##wc (X, _FP_WORKBITS); \
} \
} \
else \
_FP_FRAC_HIGH_##fs (X) |= _FP_QNANBIT_SH_##fs; \
} \
while (0)
/* Test whether a biased exponent is normal (not zero or maximum). */
#define _FP_EXP_NORMAL(fs, wc, X) (((X##_e + 1) & _FP_EXPMAX_##fs) > 1)
/* Prepare to pack an fp value in semi-raw mode: the mantissa is
rounded and shifted right, with the rounding possibly increasing
the exponent (including changing a finite value to infinity). */
#define _FP_PACK_SEMIRAW(fs, wc, X) \
do \
{ \
int _FP_PACK_SEMIRAW_is_tiny \
= X##_e == 0 && !_FP_FRAC_ZEROP_##wc (X); \
if (_FP_TININESS_AFTER_ROUNDING \
&& _FP_PACK_SEMIRAW_is_tiny) \
{ \
FP_DECL_##fs (_FP_PACK_SEMIRAW_T); \
_FP_FRAC_COPY_##wc (_FP_PACK_SEMIRAW_T, X); \
_FP_PACK_SEMIRAW_T##_s = X##_s; \
_FP_PACK_SEMIRAW_T##_e = X##_e; \
_FP_FRAC_SLL_##wc (_FP_PACK_SEMIRAW_T, 1); \
_FP_ROUND (wc, _FP_PACK_SEMIRAW_T); \
if (_FP_FRAC_OVERP_##wc (fs, _FP_PACK_SEMIRAW_T)) \
_FP_PACK_SEMIRAW_is_tiny = 0; \
} \
_FP_ROUND (wc, X); \
if (_FP_PACK_SEMIRAW_is_tiny) \
{ \
if ((FP_CUR_EXCEPTIONS & FP_EX_INEXACT) \
|| (FP_TRAPPING_EXCEPTIONS & FP_EX_UNDERFLOW)) \
FP_SET_EXCEPTION (FP_EX_UNDERFLOW); \
} \
if (_FP_FRAC_HIGH_##fs (X) \
& (_FP_OVERFLOW_##fs >> 1)) \
{ \
_FP_FRAC_HIGH_##fs (X) &= ~(_FP_OVERFLOW_##fs >> 1); \
X##_e++; \
if (X##_e == _FP_EXPMAX_##fs) \
_FP_OVERFLOW_SEMIRAW (fs, wc, X); \
} \
_FP_FRAC_SRL_##wc (X, _FP_WORKBITS); \
if (X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (X)) \
{ \
if (!_FP_KEEPNANFRACP) \
{ \
_FP_FRAC_SET_##wc (X, _FP_NANFRAC_##fs); \
X##_s = _FP_NANSIGN_##fs; \
} \
else \
_FP_SETQNAN (fs, wc, X); \
} \
} \
while (0)
/* Before packing the bits back into the native fp result, take care
of such mundane things as rounding and overflow. Also, for some
kinds of fp values, the original parts may not have been fully
extracted -- but that is ok, we can regenerate them now. */
#define _FP_PACK_CANONICAL(fs, wc, X) \
do \
{ \
switch (X##_c) \
{ \
case FP_CLS_NORMAL: \
X##_e += _FP_EXPBIAS_##fs; \
if (X##_e > 0) \
{ \
_FP_ROUND (wc, X); \
if (_FP_FRAC_OVERP_##wc (fs, X)) \
{ \
_FP_FRAC_CLEAR_OVERP_##wc (fs, X); \
X##_e++; \
} \
_FP_FRAC_SRL_##wc (X, _FP_WORKBITS); \
if (X##_e >= _FP_EXPMAX_##fs) \
{ \
/* Overflow. */ \
switch (FP_ROUNDMODE) \
{ \
case FP_RND_NEAREST: \
X##_c = FP_CLS_INF; \
break; \
case FP_RND_PINF: \
if (!X##_s) \
X##_c = FP_CLS_INF; \
break; \
case FP_RND_MINF: \
if (X##_s) \
X##_c = FP_CLS_INF; \
break; \
} \
if (X##_c == FP_CLS_INF) \
{ \
/* Overflow to infinity. */ \
X##_e = _FP_EXPMAX_##fs; \
_FP_FRAC_SET_##wc (X, _FP_ZEROFRAC_##wc); \
} \
else \
{ \
/* Overflow to maximum normal. */ \
X##_e = _FP_EXPMAX_##fs - 1; \
_FP_FRAC_SET_##wc (X, _FP_MAXFRAC_##wc); \
} \
FP_SET_EXCEPTION (FP_EX_OVERFLOW); \
FP_SET_EXCEPTION (FP_EX_INEXACT); \
} \
} \
else \
{ \
/* We've got a denormalized number. */ \
int _FP_PACK_CANONICAL_is_tiny = 1; \
if (_FP_TININESS_AFTER_ROUNDING && X##_e == 0) \
{ \
FP_DECL_##fs (_FP_PACK_CANONICAL_T); \
_FP_FRAC_COPY_##wc (_FP_PACK_CANONICAL_T, X); \
_FP_PACK_CANONICAL_T##_s = X##_s; \
_FP_PACK_CANONICAL_T##_e = X##_e; \
_FP_ROUND (wc, _FP_PACK_CANONICAL_T); \
if (_FP_FRAC_OVERP_##wc (fs, _FP_PACK_CANONICAL_T)) \
_FP_PACK_CANONICAL_is_tiny = 0; \
} \
X##_e = -X##_e + 1; \
if (X##_e <= _FP_WFRACBITS_##fs) \
{ \
_FP_FRAC_SRS_##wc (X, X##_e, _FP_WFRACBITS_##fs); \
_FP_ROUND (wc, X); \
if (_FP_FRAC_HIGH_##fs (X) \
& (_FP_OVERFLOW_##fs >> 1)) \
{ \
X##_e = 1; \
_FP_FRAC_SET_##wc (X, _FP_ZEROFRAC_##wc); \
FP_SET_EXCEPTION (FP_EX_INEXACT); \
} \
else \
{ \
X##_e = 0; \
_FP_FRAC_SRL_##wc (X, _FP_WORKBITS); \
} \
if (_FP_PACK_CANONICAL_is_tiny \
&& ((FP_CUR_EXCEPTIONS & FP_EX_INEXACT) \
|| (FP_TRAPPING_EXCEPTIONS \
& FP_EX_UNDERFLOW))) \
FP_SET_EXCEPTION (FP_EX_UNDERFLOW); \
} \
else \
{ \
/* Underflow to zero. */ \
X##_e = 0; \
if (!_FP_FRAC_ZEROP_##wc (X)) \
{ \
_FP_FRAC_SET_##wc (X, _FP_MINFRAC_##wc); \
_FP_ROUND (wc, X); \
_FP_FRAC_LOW_##wc (X) >>= (_FP_WORKBITS); \
} \
FP_SET_EXCEPTION (FP_EX_UNDERFLOW); \
} \
} \
break; \
\
case FP_CLS_ZERO: \
X##_e = 0; \
_FP_FRAC_SET_##wc (X, _FP_ZEROFRAC_##wc); \
break; \
\
case FP_CLS_INF: \
X##_e = _FP_EXPMAX_##fs; \
_FP_FRAC_SET_##wc (X, _FP_ZEROFRAC_##wc); \
break; \
\
case FP_CLS_NAN: \
X##_e = _FP_EXPMAX_##fs; \
if (!_FP_KEEPNANFRACP) \
{ \
_FP_FRAC_SET_##wc (X, _FP_NANFRAC_##fs); \
X##_s = _FP_NANSIGN_##fs; \
} \
else \
_FP_SETQNAN (fs, wc, X); \
break; \
} \
} \
while (0)
/* This one accepts raw argument and not cooked, returns
1 if X is a signaling NaN. */
#define _FP_ISSIGNAN(fs, wc, X) \
({ \
int _FP_ISSIGNAN_ret = 0; \
if (X##_e == _FP_EXPMAX_##fs) \
{ \
if (!_FP_FRAC_ZEROP_##wc (X) \
&& _FP_FRAC_SNANP (fs, X)) \
_FP_ISSIGNAN_ret = 1; \
} \
_FP_ISSIGNAN_ret; \
})
/* Addition on semi-raw values. */
#define _FP_ADD_INTERNAL(fs, wc, R, X, Y, OP) \
do \
{ \
if (X##_s == Y##_s) \
{ \
/* Addition. */ \
R##_s = X##_s; \
int _FP_ADD_INTERNAL_ediff = X##_e - Y##_e; \
if (_FP_ADD_INTERNAL_ediff > 0) \
{ \
R##_e = X##_e; \
if (Y##_e == 0) \
{ \
/* Y is zero or denormalized. */ \
if (_FP_FRAC_ZEROP_##wc (Y)) \
{ \
_FP_CHECK_SIGNAN_SEMIRAW (fs, wc, X); \
_FP_FRAC_COPY_##wc (R, X); \
goto add_done; \
} \
else \
{ \
FP_SET_EXCEPTION (FP_EX_DENORM); \
_FP_ADD_INTERNAL_ediff--; \
if (_FP_ADD_INTERNAL_ediff == 0) \
{ \
_FP_FRAC_ADD_##wc (R, X, Y); \
goto add3; \
} \
if (X##_e == _FP_EXPMAX_##fs) \
{ \
_FP_CHECK_SIGNAN_SEMIRAW (fs, wc, X); \
_FP_FRAC_COPY_##wc (R, X); \
goto add_done; \
} \
goto add1; \
} \
} \
else if (X##_e == _FP_EXPMAX_##fs) \
{ \
/* X is NaN or Inf, Y is normal. */ \
_FP_CHECK_SIGNAN_SEMIRAW (fs, wc, X); \
_FP_FRAC_COPY_##wc (R, X); \
goto add_done; \
} \
\
/* Insert implicit MSB of Y. */ \
_FP_FRAC_HIGH_##fs (Y) |= _FP_IMPLBIT_SH_##fs; \
\
add1: \
/* Shift the mantissa of Y to the right \
_FP_ADD_INTERNAL_EDIFF steps; remember to account \
later for the implicit MSB of X. */ \
if (_FP_ADD_INTERNAL_ediff <= _FP_WFRACBITS_##fs) \
_FP_FRAC_SRS_##wc (Y, _FP_ADD_INTERNAL_ediff, \
_FP_WFRACBITS_##fs); \
else if (!_FP_FRAC_ZEROP_##wc (Y)) \
_FP_FRAC_SET_##wc (Y, _FP_MINFRAC_##wc); \
_FP_FRAC_ADD_##wc (R, X, Y); \
} \
else if (_FP_ADD_INTERNAL_ediff < 0) \
{ \
_FP_ADD_INTERNAL_ediff = -_FP_ADD_INTERNAL_ediff; \
R##_e = Y##_e; \
if (X##_e == 0) \
{ \
/* X is zero or denormalized. */ \
if (_FP_FRAC_ZEROP_##wc (X)) \
{ \
_FP_CHECK_SIGNAN_SEMIRAW (fs, wc, Y); \
_FP_FRAC_COPY_##wc (R, Y); \
goto add_done; \
} \
else \
{ \
FP_SET_EXCEPTION (FP_EX_DENORM); \
_FP_ADD_INTERNAL_ediff--; \
if (_FP_ADD_INTERNAL_ediff == 0) \
{ \
_FP_FRAC_ADD_##wc (R, Y, X); \
goto add3; \
} \
if (Y##_e == _FP_EXPMAX_##fs) \
{ \
_FP_CHECK_SIGNAN_SEMIRAW (fs, wc, Y); \
_FP_FRAC_COPY_##wc (R, Y); \
goto add_done; \
} \
goto add2; \
} \
} \
else if (Y##_e == _FP_EXPMAX_##fs) \
{ \
/* Y is NaN or Inf, X is normal. */ \
_FP_CHECK_SIGNAN_SEMIRAW (fs, wc, Y); \
_FP_FRAC_COPY_##wc (R, Y); \
goto add_done; \
} \
\
/* Insert implicit MSB of X. */ \
_FP_FRAC_HIGH_##fs (X) |= _FP_IMPLBIT_SH_##fs; \
\
add2: \
/* Shift the mantissa of X to the right \
_FP_ADD_INTERNAL_EDIFF steps; remember to account \
later for the implicit MSB of Y. */ \
if (_FP_ADD_INTERNAL_ediff <= _FP_WFRACBITS_##fs) \
_FP_FRAC_SRS_##wc (X, _FP_ADD_INTERNAL_ediff, \
_FP_WFRACBITS_##fs); \
else if (!_FP_FRAC_ZEROP_##wc (X)) \
_FP_FRAC_SET_##wc (X, _FP_MINFRAC_##wc); \
_FP_FRAC_ADD_##wc (R, Y, X); \
} \
else \
{ \
/* _FP_ADD_INTERNAL_ediff == 0. */ \
if (!_FP_EXP_NORMAL (fs, wc, X)) \
{ \
if (X##_e == 0) \
{ \
/* X and Y are zero or denormalized. */ \
R##_e = 0; \
if (_FP_FRAC_ZEROP_##wc (X)) \
{ \
if (!_FP_FRAC_ZEROP_##wc (Y)) \
FP_SET_EXCEPTION (FP_EX_DENORM); \
_FP_FRAC_COPY_##wc (R, Y); \
goto add_done; \
} \
else if (_FP_FRAC_ZEROP_##wc (Y)) \
{ \
FP_SET_EXCEPTION (FP_EX_DENORM); \
_FP_FRAC_COPY_##wc (R, X); \
goto add_done; \
} \
else \
{ \
FP_SET_EXCEPTION (FP_EX_DENORM); \
_FP_FRAC_ADD_##wc (R, X, Y); \
if (_FP_FRAC_HIGH_##fs (R) & _FP_IMPLBIT_SH_##fs) \
{ \
/* Normalized result. */ \
_FP_FRAC_HIGH_##fs (R) \
&= ~(_FP_W_TYPE) _FP_IMPLBIT_SH_##fs; \
R##_e = 1; \
} \
goto add_done; \
} \
} \
else \
{ \
/* X and Y are NaN or Inf. */ \
_FP_CHECK_SIGNAN_SEMIRAW (fs, wc, X); \
_FP_CHECK_SIGNAN_SEMIRAW (fs, wc, Y); \
R##_e = _FP_EXPMAX_##fs; \
if (_FP_FRAC_ZEROP_##wc (X)) \
_FP_FRAC_COPY_##wc (R, Y); \
else if (_FP_FRAC_ZEROP_##wc (Y)) \
_FP_FRAC_COPY_##wc (R, X); \
else \
_FP_CHOOSENAN_SEMIRAW (fs, wc, R, X, Y, OP); \
goto add_done; \
} \
} \
/* The exponents of X and Y, both normal, are equal. The \
implicit MSBs will always add to increase the \
exponent. */ \
_FP_FRAC_ADD_##wc (R, X, Y); \
R##_e = X##_e + 1; \
_FP_FRAC_SRS_##wc (R, 1, _FP_WFRACBITS_##fs); \
if (R##_e == _FP_EXPMAX_##fs) \
/* Overflow to infinity (depending on rounding mode). */ \
_FP_OVERFLOW_SEMIRAW (fs, wc, R); \
goto add_done; \
} \
add3: \
if (_FP_FRAC_HIGH_##fs (R) & _FP_IMPLBIT_SH_##fs) \
{ \
/* Overflow. */ \
_FP_FRAC_HIGH_##fs (R) &= ~(_FP_W_TYPE) _FP_IMPLBIT_SH_##fs; \
R##_e++; \
_FP_FRAC_SRS_##wc (R, 1, _FP_WFRACBITS_##fs); \
if (R##_e == _FP_EXPMAX_##fs) \
/* Overflow to infinity (depending on rounding mode). */ \
_FP_OVERFLOW_SEMIRAW (fs, wc, R); \
} \
add_done: ; \
} \
else \
{ \
/* Subtraction. */ \
int _FP_ADD_INTERNAL_ediff = X##_e - Y##_e; \
if (_FP_ADD_INTERNAL_ediff > 0) \
{ \
R##_e = X##_e; \
R##_s = X##_s; \
if (Y##_e == 0) \
{ \
/* Y is zero or denormalized. */ \
if (_FP_FRAC_ZEROP_##wc (Y)) \
{ \
_FP_CHECK_SIGNAN_SEMIRAW (fs, wc, X); \
_FP_FRAC_COPY_##wc (R, X); \
goto sub_done; \
} \
else \
{ \
FP_SET_EXCEPTION (FP_EX_DENORM); \
_FP_ADD_INTERNAL_ediff--; \
if (_FP_ADD_INTERNAL_ediff == 0) \
{ \
_FP_FRAC_SUB_##wc (R, X, Y); \
goto sub3; \
} \
if (X##_e == _FP_EXPMAX_##fs) \
{ \
_FP_CHECK_SIGNAN_SEMIRAW (fs, wc, X); \
_FP_FRAC_COPY_##wc (R, X); \
goto sub_done; \
} \
goto sub1; \
} \
} \
else if (X##_e == _FP_EXPMAX_##fs) \
{ \
/* X is NaN or Inf, Y is normal. */ \
_FP_CHECK_SIGNAN_SEMIRAW (fs, wc, X); \
_FP_FRAC_COPY_##wc (R, X); \
goto sub_done; \
} \
\
/* Insert implicit MSB of Y. */ \
_FP_FRAC_HIGH_##fs (Y) |= _FP_IMPLBIT_SH_##fs; \
\
sub1: \
/* Shift the mantissa of Y to the right \
_FP_ADD_INTERNAL_EDIFF steps; remember to account \
later for the implicit MSB of X. */ \
if (_FP_ADD_INTERNAL_ediff <= _FP_WFRACBITS_##fs) \
_FP_FRAC_SRS_##wc (Y, _FP_ADD_INTERNAL_ediff, \
_FP_WFRACBITS_##fs); \
else if (!_FP_FRAC_ZEROP_##wc (Y)) \
_FP_FRAC_SET_##wc (Y, _FP_MINFRAC_##wc); \
_FP_FRAC_SUB_##wc (R, X, Y); \
} \
else if (_FP_ADD_INTERNAL_ediff < 0) \
{ \
_FP_ADD_INTERNAL_ediff = -_FP_ADD_INTERNAL_ediff; \
R##_e = Y##_e; \
R##_s = Y##_s; \
if (X##_e == 0) \
{ \
/* X is zero or denormalized. */ \
if (_FP_FRAC_ZEROP_##wc (X)) \
{ \
_FP_CHECK_SIGNAN_SEMIRAW (fs, wc, Y); \
_FP_FRAC_COPY_##wc (R, Y); \
goto sub_done; \
} \
else \
{ \
FP_SET_EXCEPTION (FP_EX_DENORM); \
_FP_ADD_INTERNAL_ediff--; \
if (_FP_ADD_INTERNAL_ediff == 0) \
{ \
_FP_FRAC_SUB_##wc (R, Y, X); \
goto sub3; \
} \
if (Y##_e == _FP_EXPMAX_##fs) \
{ \
_FP_CHECK_SIGNAN_SEMIRAW (fs, wc, Y); \
_FP_FRAC_COPY_##wc (R, Y); \
goto sub_done; \
} \
goto sub2; \
} \
} \
else if (Y##_e == _FP_EXPMAX_##fs) \
{ \
/* Y is NaN or Inf, X is normal. */ \
_FP_CHECK_SIGNAN_SEMIRAW (fs, wc, Y); \
_FP_FRAC_COPY_##wc (R, Y); \
goto sub_done; \
} \
\
/* Insert implicit MSB of X. */ \
_FP_FRAC_HIGH_##fs (X) |= _FP_IMPLBIT_SH_##fs; \
\
sub2: \
/* Shift the mantissa of X to the right \
_FP_ADD_INTERNAL_EDIFF steps; remember to account \
later for the implicit MSB of Y. */ \
if (_FP_ADD_INTERNAL_ediff <= _FP_WFRACBITS_##fs) \
_FP_FRAC_SRS_##wc (X, _FP_ADD_INTERNAL_ediff, \
_FP_WFRACBITS_##fs); \
else if (!_FP_FRAC_ZEROP_##wc (X)) \
_FP_FRAC_SET_##wc (X, _FP_MINFRAC_##wc); \
_FP_FRAC_SUB_##wc (R, Y, X); \
} \
else \
{ \
/* ediff == 0. */ \
if (!_FP_EXP_NORMAL (fs, wc, X)) \
{ \
if (X##_e == 0) \
{ \
/* X and Y are zero or denormalized. */ \
R##_e = 0; \
if (_FP_FRAC_ZEROP_##wc (X)) \
{ \
_FP_FRAC_COPY_##wc (R, Y); \
if (_FP_FRAC_ZEROP_##wc (Y)) \
R##_s = (FP_ROUNDMODE == FP_RND_MINF); \
else \
{ \
FP_SET_EXCEPTION (FP_EX_DENORM); \
R##_s = Y##_s; \
} \
goto sub_done; \
} \
else if (_FP_FRAC_ZEROP_##wc (Y)) \
{ \
FP_SET_EXCEPTION (FP_EX_DENORM); \
_FP_FRAC_COPY_##wc (R, X); \
R##_s = X##_s; \
goto sub_done; \
} \
else \
{ \
FP_SET_EXCEPTION (FP_EX_DENORM); \
_FP_FRAC_SUB_##wc (R, X, Y); \
R##_s = X##_s; \
if (_FP_FRAC_HIGH_##fs (R) & _FP_IMPLBIT_SH_##fs) \
{ \
/* |X| < |Y|, negate result. */ \
_FP_FRAC_SUB_##wc (R, Y, X); \
R##_s = Y##_s; \
} \
else if (_FP_FRAC_ZEROP_##wc (R)) \
R##_s = (FP_ROUNDMODE == FP_RND_MINF); \
goto sub_done; \
} \
} \
else \
{ \
/* X and Y are NaN or Inf, of opposite signs. */ \
_FP_CHECK_SIGNAN_SEMIRAW (fs, wc, X); \
_FP_CHECK_SIGNAN_SEMIRAW (fs, wc, Y); \
R##_e = _FP_EXPMAX_##fs; \
if (_FP_FRAC_ZEROP_##wc (X)) \
{ \
if (_FP_FRAC_ZEROP_##wc (Y)) \
{ \
/* Inf - Inf. */ \
R##_s = _FP_NANSIGN_##fs; \
_FP_FRAC_SET_##wc (R, _FP_NANFRAC_##fs); \
_FP_FRAC_SLL_##wc (R, _FP_WORKBITS); \
FP_SET_EXCEPTION (FP_EX_INVALID); \
} \
else \
{ \
/* Inf - NaN. */ \
R##_s = Y##_s; \
_FP_FRAC_COPY_##wc (R, Y); \
} \
} \
else \
{ \
if (_FP_FRAC_ZEROP_##wc (Y)) \
{ \
/* NaN - Inf. */ \
R##_s = X##_s; \
_FP_FRAC_COPY_##wc (R, X); \
} \
else \
{ \
/* NaN - NaN. */ \
_FP_CHOOSENAN_SEMIRAW (fs, wc, R, X, Y, OP); \
} \
} \
goto sub_done; \
} \
} \
/* The exponents of X and Y, both normal, are equal. The \
implicit MSBs cancel. */ \
R##_e = X##_e; \
_FP_FRAC_SUB_##wc (R, X, Y); \
R##_s = X##_s; \
if (_FP_FRAC_HIGH_##fs (R) & _FP_IMPLBIT_SH_##fs) \
{ \
/* |X| < |Y|, negate result. */ \
_FP_FRAC_SUB_##wc (R, Y, X); \
R##_s = Y##_s; \
} \
else if (_FP_FRAC_ZEROP_##wc (R)) \
{ \
R##_e = 0; \
R##_s = (FP_ROUNDMODE == FP_RND_MINF); \
goto sub_done; \
} \
goto norm; \
} \
sub3: \
if (_FP_FRAC_HIGH_##fs (R) & _FP_IMPLBIT_SH_##fs) \
{ \
int _FP_ADD_INTERNAL_diff; \
/* Carry into most significant bit of larger one of X and Y, \
canceling it; renormalize. */ \
_FP_FRAC_HIGH_##fs (R) &= _FP_IMPLBIT_SH_##fs - 1; \
norm: \
_FP_FRAC_CLZ_##wc (_FP_ADD_INTERNAL_diff, R); \
_FP_ADD_INTERNAL_diff -= _FP_WFRACXBITS_##fs; \
_FP_FRAC_SLL_##wc (R, _FP_ADD_INTERNAL_diff); \
if (R##_e <= _FP_ADD_INTERNAL_diff) \
{ \
/* R is denormalized. */ \
_FP_ADD_INTERNAL_diff \
= _FP_ADD_INTERNAL_diff - R##_e + 1; \
_FP_FRAC_SRS_##wc (R, _FP_ADD_INTERNAL_diff, \
_FP_WFRACBITS_##fs); \
R##_e = 0; \
} \
else \
{ \
R##_e -= _FP_ADD_INTERNAL_diff; \
_FP_FRAC_HIGH_##fs (R) &= ~(_FP_W_TYPE) _FP_IMPLBIT_SH_##fs; \
} \
} \
sub_done: ; \
} \
} \
while (0)
#define _FP_ADD(fs, wc, R, X, Y) _FP_ADD_INTERNAL (fs, wc, R, X, Y, '+')
#define _FP_SUB(fs, wc, R, X, Y) \
do \
{ \
if (!(Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (Y))) \
Y##_s ^= 1; \
_FP_ADD_INTERNAL (fs, wc, R, X, Y, '-'); \
} \
while (0)
/* Main negation routine. The input value is raw. */
#define _FP_NEG(fs, wc, R, X) \
do \
{ \
_FP_FRAC_COPY_##wc (R, X); \
R##_e = X##_e; \
R##_s = 1 ^ X##_s; \
} \
while (0)
/* Main multiplication routine. The input values should be cooked. */
#define _FP_MUL(fs, wc, R, X, Y) \
do \
{ \
R##_s = X##_s ^ Y##_s; \
R##_e = X##_e + Y##_e + 1; \
switch (_FP_CLS_COMBINE (X##_c, Y##_c)) \
{ \
case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_NORMAL): \
R##_c = FP_CLS_NORMAL; \
\
_FP_MUL_MEAT_##fs (R, X, Y); \
\
if (_FP_FRAC_OVERP_##wc (fs, R)) \
_FP_FRAC_SRS_##wc (R, 1, _FP_WFRACBITS_##fs); \
else \
R##_e--; \
break; \
\
case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_NAN): \
_FP_CHOOSENAN (fs, wc, R, X, Y, '*'); \
break; \
\
case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_NORMAL): \
case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_INF): \
case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_ZERO): \
R##_s = X##_s; \
\
case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_INF): \
case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_NORMAL): \
case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_NORMAL): \
case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_ZERO): \
_FP_FRAC_COPY_##wc (R, X); \
R##_c = X##_c; \
break; \
\
case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_NAN): \
case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_NAN): \
case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_NAN): \
R##_s = Y##_s; \
\
case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_INF): \
case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_ZERO): \
_FP_FRAC_COPY_##wc (R, Y); \
R##_c = Y##_c; \
break; \
\
case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_ZERO): \
case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_INF): \
R##_s = _FP_NANSIGN_##fs; \
R##_c = FP_CLS_NAN; \
_FP_FRAC_SET_##wc (R, _FP_NANFRAC_##fs); \
FP_SET_EXCEPTION (FP_EX_INVALID); \
break; \
\
default: \
abort (); \
} \
} \
while (0)
/* Fused multiply-add. The input values should be cooked. */
#define _FP_FMA(fs, wc, dwc, R, X, Y, Z) \
do \
{ \
FP_DECL_##fs (_FP_FMA_T); \
_FP_FMA_T##_s = X##_s ^ Y##_s; \
_FP_FMA_T##_e = X##_e + Y##_e + 1; \
switch (_FP_CLS_COMBINE (X##_c, Y##_c)) \
{ \
case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_NORMAL): \
switch (Z##_c) \
{ \
case FP_CLS_INF: \
case FP_CLS_NAN: \
R##_s = Z##_s; \
_FP_FRAC_COPY_##wc (R, Z); \
R##_c = Z##_c; \
break; \
\
case FP_CLS_ZERO: \
R##_c = FP_CLS_NORMAL; \
R##_s = _FP_FMA_T##_s; \
R##_e = _FP_FMA_T##_e; \
\
_FP_MUL_MEAT_##fs (R, X, Y); \
\
if (_FP_FRAC_OVERP_##wc (fs, R)) \
_FP_FRAC_SRS_##wc (R, 1, _FP_WFRACBITS_##fs); \
else \
R##_e--; \
break; \
\
case FP_CLS_NORMAL:; \
_FP_FRAC_DECL_##dwc (_FP_FMA_TD); \
_FP_FRAC_DECL_##dwc (_FP_FMA_ZD); \
_FP_FRAC_DECL_##dwc (_FP_FMA_RD); \
_FP_MUL_MEAT_DW_##fs (_FP_FMA_TD, X, Y); \
R##_e = _FP_FMA_T##_e; \
int _FP_FMA_tsh \
= _FP_FRAC_HIGHBIT_DW_##dwc (fs, _FP_FMA_TD) == 0; \
_FP_FMA_T##_e -= _FP_FMA_tsh; \
int _FP_FMA_ediff = _FP_FMA_T##_e - Z##_e; \
if (_FP_FMA_ediff >= 0) \
{ \
int _FP_FMA_shift \
= _FP_WFRACBITS_##fs - _FP_FMA_tsh - _FP_FMA_ediff; \
if (_FP_FMA_shift <= -_FP_WFRACBITS_##fs) \
_FP_FRAC_SET_##dwc (_FP_FMA_ZD, _FP_MINFRAC_##dwc); \
else \
{ \
_FP_FRAC_COPY_##dwc##_##wc (_FP_FMA_ZD, Z); \
if (_FP_FMA_shift < 0) \
_FP_FRAC_SRS_##dwc (_FP_FMA_ZD, -_FP_FMA_shift, \
_FP_WFRACBITS_DW_##fs); \
else if (_FP_FMA_shift > 0) \
_FP_FRAC_SLL_##dwc (_FP_FMA_ZD, _FP_FMA_shift); \
} \
R##_s = _FP_FMA_T##_s; \
if (_FP_FMA_T##_s == Z##_s) \
_FP_FRAC_ADD_##dwc (_FP_FMA_RD, _FP_FMA_TD, \
_FP_FMA_ZD); \
else \
{ \
_FP_FRAC_SUB_##dwc (_FP_FMA_RD, _FP_FMA_TD, \
_FP_FMA_ZD); \
if (_FP_FRAC_NEGP_##dwc (_FP_FMA_RD)) \
{ \
R##_s = Z##_s; \
_FP_FRAC_SUB_##dwc (_FP_FMA_RD, _FP_FMA_ZD, \
_FP_FMA_TD); \
} \
} \
} \
else \
{ \
R##_e = Z##_e; \
R##_s = Z##_s; \
_FP_FRAC_COPY_##dwc##_##wc (_FP_FMA_ZD, Z); \
_FP_FRAC_SLL_##dwc (_FP_FMA_ZD, _FP_WFRACBITS_##fs); \
int _FP_FMA_shift = -_FP_FMA_ediff - _FP_FMA_tsh; \
if (_FP_FMA_shift >= _FP_WFRACBITS_DW_##fs) \
_FP_FRAC_SET_##dwc (_FP_FMA_TD, _FP_MINFRAC_##dwc); \
else if (_FP_FMA_shift > 0) \
_FP_FRAC_SRS_##dwc (_FP_FMA_TD, _FP_FMA_shift, \
_FP_WFRACBITS_DW_##fs); \
if (Z##_s == _FP_FMA_T##_s) \
_FP_FRAC_ADD_##dwc (_FP_FMA_RD, _FP_FMA_ZD, \
_FP_FMA_TD); \
else \
_FP_FRAC_SUB_##dwc (_FP_FMA_RD, _FP_FMA_ZD, \
_FP_FMA_TD); \
} \
if (_FP_FRAC_ZEROP_##dwc (_FP_FMA_RD)) \
{ \
if (_FP_FMA_T##_s == Z##_s) \
R##_s = Z##_s; \
else \
R##_s = (FP_ROUNDMODE == FP_RND_MINF); \
_FP_FRAC_SET_##wc (R, _FP_ZEROFRAC_##wc); \
R##_c = FP_CLS_ZERO; \
} \
else \
{ \
int _FP_FMA_rlz; \
_FP_FRAC_CLZ_##dwc (_FP_FMA_rlz, _FP_FMA_RD); \
_FP_FMA_rlz -= _FP_WFRACXBITS_DW_##fs; \
R##_e -= _FP_FMA_rlz; \
int _FP_FMA_shift = _FP_WFRACBITS_##fs - _FP_FMA_rlz; \
if (_FP_FMA_shift > 0) \
_FP_FRAC_SRS_##dwc (_FP_FMA_RD, _FP_FMA_shift, \
_FP_WFRACBITS_DW_##fs); \
else if (_FP_FMA_shift < 0) \
_FP_FRAC_SLL_##dwc (_FP_FMA_RD, -_FP_FMA_shift); \
_FP_FRAC_COPY_##wc##_##dwc (R, _FP_FMA_RD); \
R##_c = FP_CLS_NORMAL; \
} \
break; \
} \
goto done_fma; \
\
case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_NAN): \
_FP_CHOOSENAN (fs, wc, _FP_FMA_T, X, Y, '*'); \
break; \
\
case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_NORMAL): \
case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_INF): \
case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_ZERO): \
_FP_FMA_T##_s = X##_s; \
\
case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_INF): \
case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_NORMAL): \
case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_NORMAL): \
case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_ZERO): \
_FP_FRAC_COPY_##wc (_FP_FMA_T, X); \
_FP_FMA_T##_c = X##_c; \
break; \
\
case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_NAN): \
case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_NAN): \
case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_NAN): \
_FP_FMA_T##_s = Y##_s; \
\
case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_INF): \
case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_ZERO): \
_FP_FRAC_COPY_##wc (_FP_FMA_T, Y); \
_FP_FMA_T##_c = Y##_c; \
break; \
\
case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_ZERO): \
case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_INF): \
_FP_FMA_T##_s = _FP_NANSIGN_##fs; \
_FP_FMA_T##_c = FP_CLS_NAN; \
_FP_FRAC_SET_##wc (_FP_FMA_T, _FP_NANFRAC_##fs); \
FP_SET_EXCEPTION (FP_EX_INVALID); \
break; \
\
default: \
abort (); \
} \
\
/* T = X * Y is zero, infinity or NaN. */ \
switch (_FP_CLS_COMBINE (_FP_FMA_T##_c, Z##_c)) \
{ \
case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_NAN): \
_FP_CHOOSENAN (fs, wc, R, _FP_FMA_T, Z, '+'); \
break; \
\
case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_NORMAL): \
case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_INF): \
case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_ZERO): \
case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_NORMAL): \
case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_ZERO): \
R##_s = _FP_FMA_T##_s; \
_FP_FRAC_COPY_##wc (R, _FP_FMA_T); \
R##_c = _FP_FMA_T##_c; \
break; \
\
case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_NAN): \
case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_NAN): \
case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_NORMAL): \
case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_INF): \
R##_s = Z##_s; \
_FP_FRAC_COPY_##wc (R, Z); \
R##_c = Z##_c; \
break; \
\
case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_INF): \
if (_FP_FMA_T##_s == Z##_s) \
{ \
R##_s = Z##_s; \
_FP_FRAC_COPY_##wc (R, Z); \
R##_c = Z##_c; \
} \
else \
{ \
R##_s = _FP_NANSIGN_##fs; \
R##_c = FP_CLS_NAN; \
_FP_FRAC_SET_##wc (R, _FP_NANFRAC_##fs); \
FP_SET_EXCEPTION (FP_EX_INVALID); \
} \
break; \
\
case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_ZERO): \
if (_FP_FMA_T##_s == Z##_s) \
R##_s = Z##_s; \
else \
R##_s = (FP_ROUNDMODE == FP_RND_MINF); \
_FP_FRAC_COPY_##wc (R, Z); \
R##_c = Z##_c; \
break; \
\
default: \
abort (); \
} \
done_fma: ; \
} \
while (0)
/* Main division routine. The input values should be cooked. */
#define _FP_DIV(fs, wc, R, X, Y) \
do \
{ \
R##_s = X##_s ^ Y##_s; \
R##_e = X##_e - Y##_e; \
switch (_FP_CLS_COMBINE (X##_c, Y##_c)) \
{ \
case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_NORMAL): \
R##_c = FP_CLS_NORMAL; \
\
_FP_DIV_MEAT_##fs (R, X, Y); \
break; \
\
case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_NAN): \
_FP_CHOOSENAN (fs, wc, R, X, Y, '/'); \
break; \
\
case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_NORMAL): \
case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_INF): \
case _FP_CLS_COMBINE (FP_CLS_NAN, FP_CLS_ZERO): \
R##_s = X##_s; \
_FP_FRAC_COPY_##wc (R, X); \
R##_c = X##_c; \
break; \
\
case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_NAN): \
case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_NAN): \
case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_NAN): \
R##_s = Y##_s; \
_FP_FRAC_COPY_##wc (R, Y); \
R##_c = Y##_c; \
break; \
\
case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_INF): \
case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_INF): \
case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_NORMAL): \
R##_c = FP_CLS_ZERO; \
break; \
\
case _FP_CLS_COMBINE (FP_CLS_NORMAL, FP_CLS_ZERO): \
FP_SET_EXCEPTION (FP_EX_DIVZERO); \
case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_ZERO): \
case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_NORMAL): \
R##_c = FP_CLS_INF; \
break; \
\
case _FP_CLS_COMBINE (FP_CLS_INF, FP_CLS_INF): \
case _FP_CLS_COMBINE (FP_CLS_ZERO, FP_CLS_ZERO): \
R##_s = _FP_NANSIGN_##fs; \
R##_c = FP_CLS_NAN; \
_FP_FRAC_SET_##wc (R, _FP_NANFRAC_##fs); \
FP_SET_EXCEPTION (FP_EX_INVALID); \
break; \
\
default: \
abort (); \
} \
} \
while (0)
/* Helper for comparisons. EX is 0 not to raise exceptions, 1 to
raise exceptions for signaling NaN operands, 2 to raise exceptions
for all NaN operands. */
#define _FP_CMP_CHECK_NAN(fs, wc, X, Y, ex) \
do \
{ \
if (ex) \
{ \
if ((ex) == 2 \
|| _FP_ISSIGNAN (fs, wc, X) \
|| _FP_ISSIGNAN (fs, wc, Y)) \
FP_SET_EXCEPTION (FP_EX_INVALID); \
} \
} \
while (0)
/* Main differential comparison routine. The inputs should be raw not
cooked. The return is -1, 0, 1 for normal values, UN
otherwise. */
#define _FP_CMP(fs, wc, ret, X, Y, un, ex) \
do \
{ \
/* NANs are unordered. */ \
if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (X)) \
|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (Y))) \
{ \
ret = un; \
_FP_CMP_CHECK_NAN (fs, wc, X, Y, ex); \
} \
else \
{ \
int _FP_CMP_is_zero_x; \
int _FP_CMP_is_zero_y; \
\
_FP_CMP_is_zero_x \
= (!X##_e && _FP_FRAC_ZEROP_##wc (X)) ? 1 : 0; \
_FP_CMP_is_zero_y \
= (!Y##_e && _FP_FRAC_ZEROP_##wc (Y)) ? 1 : 0; \
\
if (_FP_CMP_is_zero_x && _FP_CMP_is_zero_y) \
ret = 0; \
else if (_FP_CMP_is_zero_x) \
ret = Y##_s ? 1 : -1; \
else if (_FP_CMP_is_zero_y) \
ret = X##_s ? -1 : 1; \
else if (X##_s != Y##_s) \
ret = X##_s ? -1 : 1; \
else if (X##_e > Y##_e) \
ret = X##_s ? -1 : 1; \
else if (X##_e < Y##_e) \
ret = X##_s ? 1 : -1; \
else if (_FP_FRAC_GT_##wc (X, Y)) \
ret = X##_s ? -1 : 1; \
else if (_FP_FRAC_GT_##wc (Y, X)) \
ret = X##_s ? 1 : -1; \
else \
ret = 0; \
} \
} \
while (0)
/* Simplification for strict equality. */
#define _FP_CMP_EQ(fs, wc, ret, X, Y, ex) \
do \
{ \
/* NANs are unordered. */ \
if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (X)) \
|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (Y))) \
{ \
ret = 1; \
_FP_CMP_CHECK_NAN (fs, wc, X, Y, ex); \
} \
else \
{ \
ret = !(X##_e == Y##_e \
&& _FP_FRAC_EQ_##wc (X, Y) \
&& (X##_s == Y##_s || (!X##_e && _FP_FRAC_ZEROP_##wc (X)))); \
} \
} \
while (0)
/* Version to test unordered. */
#define _FP_CMP_UNORD(fs, wc, ret, X, Y, ex) \
do \
{ \
ret = ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (X)) \
|| (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc (Y))); \
if (ret) \
_FP_CMP_CHECK_NAN (fs, wc, X, Y, ex); \
} \
while (0)
/* Main square root routine. The input value should be cooked. */
#define _FP_SQRT(fs, wc, R, X) \
do \
{ \
_FP_FRAC_DECL_##wc (_FP_SQRT_T); \
_FP_FRAC_DECL_##wc (_FP_SQRT_S); \
_FP_W_TYPE _FP_SQRT_q; \
switch (X##_c) \
{ \
case FP_CLS_NAN: \
_FP_FRAC_COPY_##wc (R, X); \
R##_s = X##_s; \
R##_c = FP_CLS_NAN; \
break; \
case FP_CLS_INF: \
if (X##_s) \
{ \
R##_s = _FP_NANSIGN_##fs; \
R##_c = FP_CLS_NAN; /* NAN */ \
_FP_FRAC_SET_##wc (R, _FP_NANFRAC_##fs); \
FP_SET_EXCEPTION (FP_EX_INVALID); \
} \
else \
{ \
R##_s = 0; \
R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */ \
} \
break; \
case FP_CLS_ZERO: \
R##_s = X##_s; \
R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */ \
break; \
case FP_CLS_NORMAL: \
R##_s = 0; \
if (X##_s) \
{ \
R##_c = FP_CLS_NAN; /* NAN */ \
R##_s = _FP_NANSIGN_##fs; \
_FP_FRAC_SET_##wc (R, _FP_NANFRAC_##fs); \
FP_SET_EXCEPTION (FP_EX_INVALID); \
break; \
} \
R##_c = FP_CLS_NORMAL; \
if (X##_e & 1) \
_FP_FRAC_SLL_##wc (X, 1); \
R##_e = X##_e >> 1; \
_FP_FRAC_SET_##wc (_FP_SQRT_S, _FP_ZEROFRAC_##wc); \
_FP_FRAC_SET_##wc (R, _FP_ZEROFRAC_##wc); \
_FP_SQRT_q = _FP_OVERFLOW_##fs >> 1; \
_FP_SQRT_MEAT_##wc (R, _FP_SQRT_S, _FP_SQRT_T, X, \
_FP_SQRT_q); \
} \
} \
while (0)
/* Convert from FP to integer. Input is raw. */
/* RSIGNED can have following values:
0: the number is required to be 0..(2^rsize)-1, if not, NV is set plus
the result is either 0 or (2^rsize)-1 depending on the sign in such
case.
1: the number is required to be -(2^(rsize-1))..(2^(rsize-1))-1, if not,
NV is set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1
depending on the sign in such case.
-1: the number is required to be -(2^(rsize-1))..(2^rsize)-1, if not, NV is
set plus the result is either -(2^(rsize-1)) or (2^(rsize-1))-1
depending on the sign in such case. */
#define _FP_TO_INT(fs, wc, r, X, rsize, rsigned) \
do \
{ \
if (X##_e < _FP_EXPBIAS_##fs) \
{ \
r = 0; \
if (X##_e == 0) \
{ \
if (!_FP_FRAC_ZEROP_##wc (X)) \
{ \
FP_SET_EXCEPTION (FP_EX_INEXACT); \
FP_SET_EXCEPTION (FP_EX_DENORM); \
} \
} \
else \
FP_SET_EXCEPTION (FP_EX_INEXACT); \
} \
else if (X##_e >= (_FP_EXPMAX_##fs < _FP_EXPBIAS_##fs + rsize \
? _FP_EXPMAX_##fs \
: _FP_EXPBIAS_##fs + rsize - (rsigned > 0 || X##_s)) \
|| (!rsigned && X##_s)) \
{ \
/* Overflow or converting to the most negative integer. */ \
if (rsigned) \
{ \
r = 1; \
r <<= rsize - 1; \
r -= 1 - X##_s; \
} \
else \
{ \
r = 0; \
if (!X##_s) \
r = ~r; \
} \
\
if (_FP_EXPBIAS_##fs + rsize - 1 < _FP_EXPMAX_##fs \
&& rsigned \
&& X##_s \
&& X##_e == _FP_EXPBIAS_##fs + rsize - 1) \
{ \
/* Possibly converting to most negative integer; check the \
mantissa. */ \
int _FP_TO_INT_inexact = 0; \
(void) ((_FP_FRACBITS_##fs > rsize) \
? ({ \
_FP_FRAC_SRST_##wc (X, _FP_TO_INT_inexact, \
_FP_FRACBITS_##fs - rsize, \
_FP_FRACBITS_##fs); \
0; \
}) \
: 0); \
if (!_FP_FRAC_ZEROP_##wc (X)) \
FP_SET_EXCEPTION (FP_EX_INVALID); \
else if (_FP_TO_INT_inexact) \
FP_SET_EXCEPTION (FP_EX_INEXACT); \
} \
else \
FP_SET_EXCEPTION (FP_EX_INVALID); \
} \
else \
{ \
_FP_FRAC_HIGH_RAW_##fs (X) |= _FP_IMPLBIT_##fs; \
if (X##_e >= _FP_EXPBIAS_##fs + _FP_FRACBITS_##fs - 1) \
{ \
_FP_FRAC_ASSEMBLE_##wc (r, X, rsize); \
r <<= X##_e - _FP_EXPBIAS_##fs - _FP_FRACBITS_##fs + 1; \
} \
else \
{ \
int _FP_TO_INT_inexact; \
_FP_FRAC_SRST_##wc (X, _FP_TO_INT_inexact, \
(_FP_FRACBITS_##fs + _FP_EXPBIAS_##fs - 1 \
- X##_e), \
_FP_FRACBITS_##fs); \
if (_FP_TO_INT_inexact) \
FP_SET_EXCEPTION (FP_EX_INEXACT); \
_FP_FRAC_ASSEMBLE_##wc (r, X, rsize); \
} \
if (rsigned && X##_s) \
r = -r; \
} \
} \
while (0)
/* Convert integer to fp. Output is raw. RTYPE is unsigned even if
input is signed. */
#define _FP_FROM_INT(fs, wc, X, r, rsize, rtype) \
do \
{ \
if (r) \
{ \
rtype _FP_FROM_INT_ur; \
\
if ((X##_s = (r < 0))) \
r = -(rtype) r; \
\
_FP_FROM_INT_ur = (rtype) r; \
(void) ((rsize <= _FP_W_TYPE_SIZE) \
? ({ \
int _FP_FROM_INT_lz; \
__FP_CLZ (_FP_FROM_INT_lz, \
(_FP_W_TYPE) _FP_FROM_INT_ur); \
X##_e = (_FP_EXPBIAS_##fs + _FP_W_TYPE_SIZE - 1 \
- _FP_FROM_INT_lz); \
}) \
: ((rsize <= 2 * _FP_W_TYPE_SIZE) \
? ({ \
int _FP_FROM_INT_lz; \
__FP_CLZ_2 (_FP_FROM_INT_lz, \
(_FP_W_TYPE) (_FP_FROM_INT_ur \
>> _FP_W_TYPE_SIZE), \
(_FP_W_TYPE) _FP_FROM_INT_ur); \
X##_e = (_FP_EXPBIAS_##fs + 2 * _FP_W_TYPE_SIZE - 1 \
- _FP_FROM_INT_lz); \
}) \
: (abort (), 0))); \
\
if (rsize - 1 + _FP_EXPBIAS_##fs >= _FP_EXPMAX_##fs \
&& X##_e >= _FP_EXPMAX_##fs) \
{ \
/* Exponent too big; overflow to infinity. (May also \
happen after rounding below.) */ \
_FP_OVERFLOW_SEMIRAW (fs, wc, X); \
goto pack_semiraw; \
} \
\
if (rsize <= _FP_FRACBITS_##fs \
|| X##_e < _FP_EXPBIAS_##fs + _FP_FRACBITS_##fs) \
{ \
/* Exactly representable; shift left. */ \
_FP_FRAC_DISASSEMBLE_##wc (X, _FP_FROM_INT_ur, rsize); \
if (_FP_EXPBIAS_##fs + _FP_FRACBITS_##fs - 1 - X##_e > 0) \
_FP_FRAC_SLL_##wc (X, (_FP_EXPBIAS_##fs \
+ _FP_FRACBITS_##fs - 1 - X##_e)); \
} \
else \
{ \
/* More bits in integer than in floating type; need to \
round. */ \
if (_FP_EXPBIAS_##fs + _FP_WFRACBITS_##fs - 1 < X##_e) \
_FP_FROM_INT_ur \
= ((_FP_FROM_INT_ur >> (X##_e - _FP_EXPBIAS_##fs \
- _FP_WFRACBITS_##fs + 1)) \
| ((_FP_FROM_INT_ur \
<< (rsize - (X##_e - _FP_EXPBIAS_##fs \
- _FP_WFRACBITS_##fs + 1))) \
!= 0)); \
_FP_FRAC_DISASSEMBLE_##wc (X, _FP_FROM_INT_ur, rsize); \
if ((_FP_EXPBIAS_##fs + _FP_WFRACBITS_##fs - 1 - X##_e) > 0) \
_FP_FRAC_SLL_##wc (X, (_FP_EXPBIAS_##fs \
+ _FP_WFRACBITS_##fs - 1 - X##_e)); \
_FP_FRAC_HIGH_##fs (X) &= ~(_FP_W_TYPE) _FP_IMPLBIT_SH_##fs; \
pack_semiraw: \
_FP_PACK_SEMIRAW (fs, wc, X); \
} \
} \
else \
{ \
X##_s = 0; \
X##_e = 0; \
_FP_FRAC_SET_##wc (X, _FP_ZEROFRAC_##wc); \
} \
} \
while (0)
/* Extend from a narrower floating-point format to a wider one. Input
and output are raw. */
#define FP_EXTEND(dfs, sfs, dwc, swc, D, S) \
do \
{ \
if (_FP_FRACBITS_##dfs < _FP_FRACBITS_##sfs \
|| (_FP_EXPMAX_##dfs - _FP_EXPBIAS_##dfs \
< _FP_EXPMAX_##sfs - _FP_EXPBIAS_##sfs) \
|| (_FP_EXPBIAS_##dfs < _FP_EXPBIAS_##sfs + _FP_FRACBITS_##sfs - 1 \
&& _FP_EXPBIAS_##dfs != _FP_EXPBIAS_##sfs)) \
abort (); \
D##_s = S##_s; \
_FP_FRAC_COPY_##dwc##_##swc (D, S); \
if (_FP_EXP_NORMAL (sfs, swc, S)) \
{ \
D##_e = S##_e + _FP_EXPBIAS_##dfs - _FP_EXPBIAS_##sfs; \
_FP_FRAC_SLL_##dwc (D, (_FP_FRACBITS_##dfs - _FP_FRACBITS_##sfs)); \
} \
else \
{ \
if (S##_e == 0) \
{ \
if (_FP_FRAC_ZEROP_##swc (S)) \
D##_e = 0; \
else if (_FP_EXPBIAS_##dfs \
< _FP_EXPBIAS_##sfs + _FP_FRACBITS_##sfs - 1) \
{ \
FP_SET_EXCEPTION (FP_EX_DENORM); \
_FP_FRAC_SLL_##dwc (D, (_FP_FRACBITS_##dfs \
- _FP_FRACBITS_##sfs)); \
D##_e = 0; \
if (FP_TRAPPING_EXCEPTIONS & FP_EX_UNDERFLOW) \
FP_SET_EXCEPTION (FP_EX_UNDERFLOW); \
} \
else \
{ \
int FP_EXTEND_lz; \
FP_SET_EXCEPTION (FP_EX_DENORM); \
_FP_FRAC_CLZ_##swc (FP_EXTEND_lz, S); \
_FP_FRAC_SLL_##dwc (D, \
FP_EXTEND_lz + _FP_FRACBITS_##dfs \
- _FP_FRACTBITS_##sfs); \
D##_e = (_FP_EXPBIAS_##dfs - _FP_EXPBIAS_##sfs + 1 \
+ _FP_FRACXBITS_##sfs - FP_EXTEND_lz); \
} \
} \
else \
{ \
D##_e = _FP_EXPMAX_##dfs; \
if (!_FP_FRAC_ZEROP_##swc (S)) \
{ \
if (_FP_FRAC_SNANP (sfs, S)) \
FP_SET_EXCEPTION (FP_EX_INVALID); \
_FP_FRAC_SLL_##dwc (D, (_FP_FRACBITS_##dfs \
- _FP_FRACBITS_##sfs)); \
_FP_SETQNAN (dfs, dwc, D); \
} \
} \
} \
} \
while (0)
/* Truncate from a wider floating-point format to a narrower one.
Input and output are semi-raw. */
#define FP_TRUNC(dfs, sfs, dwc, swc, D, S) \
do \
{ \
if (_FP_FRACBITS_##sfs < _FP_FRACBITS_##dfs \
|| (_FP_EXPBIAS_##sfs < _FP_EXPBIAS_##dfs + _FP_FRACBITS_##dfs - 1 \
&& _FP_EXPBIAS_##sfs != _FP_EXPBIAS_##dfs)) \
abort (); \
D##_s = S##_s; \
if (_FP_EXP_NORMAL (sfs, swc, S)) \
{ \
D##_e = S##_e + _FP_EXPBIAS_##dfs - _FP_EXPBIAS_##sfs; \
if (D##_e >= _FP_EXPMAX_##dfs) \
_FP_OVERFLOW_SEMIRAW (dfs, dwc, D); \
else \
{ \
if (D##_e <= 0) \
{ \
if (D##_e < 1 - _FP_FRACBITS_##dfs) \
{ \
_FP_FRAC_SET_##swc (S, _FP_ZEROFRAC_##swc); \
_FP_FRAC_LOW_##swc (S) |= 1; \
} \
else \
{ \
_FP_FRAC_HIGH_##sfs (S) |= _FP_IMPLBIT_SH_##sfs; \
_FP_FRAC_SRS_##swc (S, (_FP_WFRACBITS_##sfs \
- _FP_WFRACBITS_##dfs \
+ 1 - D##_e), \
_FP_WFRACBITS_##sfs); \
} \
D##_e = 0; \
} \
else \
_FP_FRAC_SRS_##swc (S, (_FP_WFRACBITS_##sfs \
- _FP_WFRACBITS_##dfs), \
_FP_WFRACBITS_##sfs); \
_FP_FRAC_COPY_##dwc##_##swc (D, S); \
} \
} \
else \
{ \
if (S##_e == 0) \
{ \
D##_e = 0; \
if (_FP_FRAC_ZEROP_##swc (S)) \
_FP_FRAC_SET_##dwc (D, _FP_ZEROFRAC_##dwc); \
else \
{ \
FP_SET_EXCEPTION (FP_EX_DENORM); \
if (_FP_EXPBIAS_##sfs \
< _FP_EXPBIAS_##dfs + _FP_FRACBITS_##dfs - 1) \
{ \
_FP_FRAC_SRS_##swc (S, (_FP_WFRACBITS_##sfs \
- _FP_WFRACBITS_##dfs), \
_FP_WFRACBITS_##sfs); \
_FP_FRAC_COPY_##dwc##_##swc (D, S); \
} \
else \
{ \
_FP_FRAC_SET_##dwc (D, _FP_ZEROFRAC_##dwc); \
_FP_FRAC_LOW_##dwc (D) |= 1; \
} \
} \
} \
else \
{ \
D##_e = _FP_EXPMAX_##dfs; \
if (_FP_FRAC_ZEROP_##swc (S)) \
_FP_FRAC_SET_##dwc (D, _FP_ZEROFRAC_##dwc); \
else \
{ \
_FP_CHECK_SIGNAN_SEMIRAW (sfs, swc, S); \
_FP_FRAC_SRL_##swc (S, (_FP_WFRACBITS_##sfs \
- _FP_WFRACBITS_##dfs)); \
_FP_FRAC_COPY_##dwc##_##swc (D, S); \
/* Semi-raw NaN must have all workbits cleared. */ \
_FP_FRAC_LOW_##dwc (D) \
&= ~(_FP_W_TYPE) ((1 << _FP_WORKBITS) - 1); \
_FP_SETQNAN_SEMIRAW (dfs, dwc, D); \
} \
} \
} \
} \
while (0)
/* Helper primitives. */
/* Count leading zeros in a word. */
#ifndef __FP_CLZ
/* GCC 3.4 and later provide the builtins for us. */
# define __FP_CLZ(r, x) \
do \
{ \
if (sizeof (_FP_W_TYPE) == sizeof (unsigned int)) \
r = __builtin_clz (x); \
else if (sizeof (_FP_W_TYPE) == sizeof (unsigned long)) \
r = __builtin_clzl (x); \
else if (sizeof (_FP_W_TYPE) == sizeof (unsigned long long)) \
r = __builtin_clzll (x); \
else \
abort (); \
} \
while (0)
#endif /* ndef __FP_CLZ */
#define _FP_DIV_HELP_imm(q, r, n, d) \
do \
{ \
q = n / d, r = n % d; \
} \
while (0)
/* A restoring bit-by-bit division primitive. */
#define _FP_DIV_MEAT_N_loop(fs, wc, R, X, Y) \
do \
{ \
int _FP_DIV_MEAT_N_loop_count = _FP_WFRACBITS_##fs; \
_FP_FRAC_DECL_##wc (_FP_DIV_MEAT_N_loop_u); \
_FP_FRAC_DECL_##wc (_FP_DIV_MEAT_N_loop_v); \
_FP_FRAC_COPY_##wc (_FP_DIV_MEAT_N_loop_u, X); \
_FP_FRAC_COPY_##wc (_FP_DIV_MEAT_N_loop_v, Y); \
_FP_FRAC_SET_##wc (R, _FP_ZEROFRAC_##wc); \
/* Normalize _FP_DIV_MEAT_N_LOOP_U and _FP_DIV_MEAT_N_LOOP_V. */ \
_FP_FRAC_SLL_##wc (_FP_DIV_MEAT_N_loop_u, _FP_WFRACXBITS_##fs); \
_FP_FRAC_SLL_##wc (_FP_DIV_MEAT_N_loop_v, _FP_WFRACXBITS_##fs); \
/* First round. Since the operands are normalized, either the \
first or second bit will be set in the fraction. Produce a \
normalized result by checking which and adjusting the loop \
count and exponent accordingly. */ \
if (_FP_FRAC_GE_1 (_FP_DIV_MEAT_N_loop_u, _FP_DIV_MEAT_N_loop_v)) \
{ \
_FP_FRAC_SUB_##wc (_FP_DIV_MEAT_N_loop_u, \
_FP_DIV_MEAT_N_loop_u, \
_FP_DIV_MEAT_N_loop_v); \
_FP_FRAC_LOW_##wc (R) |= 1; \
_FP_DIV_MEAT_N_loop_count--; \
} \
else \
R##_e--; \
/* Subsequent rounds. */ \
do \
{ \
int _FP_DIV_MEAT_N_loop_msb \
= (_FP_WS_TYPE) _FP_FRAC_HIGH_##wc (_FP_DIV_MEAT_N_loop_u) < 0; \
_FP_FRAC_SLL_##wc (_FP_DIV_MEAT_N_loop_u, 1); \
_FP_FRAC_SLL_##wc (R, 1); \
if (_FP_DIV_MEAT_N_loop_msb \
|| _FP_FRAC_GE_1 (_FP_DIV_MEAT_N_loop_u, \
_FP_DIV_MEAT_N_loop_v)) \
{ \
_FP_FRAC_SUB_##wc (_FP_DIV_MEAT_N_loop_u, \
_FP_DIV_MEAT_N_loop_u, \
_FP_DIV_MEAT_N_loop_v); \
_FP_FRAC_LOW_##wc (R) |= 1; \
} \
} \
while (--_FP_DIV_MEAT_N_loop_count > 0); \
/* If there's anything left in _FP_DIV_MEAT_N_LOOP_U, the result \
is inexact. */ \
_FP_FRAC_LOW_##wc (R) \
|= !_FP_FRAC_ZEROP_##wc (_FP_DIV_MEAT_N_loop_u); \
} \
while (0)
#define _FP_DIV_MEAT_1_loop(fs, R, X, Y) _FP_DIV_MEAT_N_loop (fs, 1, R, X, Y)
#define _FP_DIV_MEAT_2_loop(fs, R, X, Y) _FP_DIV_MEAT_N_loop (fs, 2, R, X, Y)
#define _FP_DIV_MEAT_4_loop(fs, R, X, Y) _FP_DIV_MEAT_N_loop (fs, 4, R, X, Y)