The commit "arm: Split BE/LE abilist"
(1673ba87fe) changed the soft-fp order for
ARM selection when __SOFTFP__ is defined by the compiler.
On 2.30 the sysdeps order is:
2.30
sysdeps/unix/sysv/linux/arm
sysdeps/arm/nptl
sysdeps/unix/sysv/linux
sysdeps/nptl
sysdeps/pthread
sysdeps/gnu
sysdeps/unix/inet
sysdeps/unix/sysv
sysdeps/unix/arm
sysdeps/unix
sysdeps/posix
sysdeps/arm/nofpu
sysdeps/ieee754/soft-fp
sysdeps/arm
sysdeps/wordsize-32
sysdeps/ieee754/flt-32
sysdeps/ieee754/dbl-64
sysdeps/ieee754
sysdeps/generic
While on master is:
sysdeps/unix/sysv/linux/arm/le
sysdeps/unix/sysv/linux/arm
sysdeps/arm/nptl
sysdeps/unix/sysv/linux
sysdeps/nptl
sysdeps/pthread
sysdeps/gnu
sysdeps/unix/inet
sysdeps/unix/sysv
sysdeps/unix/arm
sysdeps/unix
sysdeps/posix
sysdeps/arm/le
sysdeps/arm
sysdeps/wordsize-32
sysdeps/ieee754/flt-32
sysdeps/ieee754/dbl-64
sysdeps/arm/nofpu
sysdeps/ieee754/soft-fp
sysdeps/ieee754
sysdeps/generic
It make the build select some routines (fadd, fdiv, fmul, fsub, and fma)
on ieee754/flt-32 and ieee754/dbl-64 that requires fenv support to be
correctly rounded which in turns lead to math failures since the
__SOFTFP__ does not have fenv support.
With this patch the order is now:
sysdeps/unix/sysv/linux/arm/le
sysdeps/unix/sysv/linux/arm
sysdeps/arm/nptl
sysdeps/unix/sysv/linux
sysdeps/nptlsysdeps/pthread
sysdeps/gnu
sysdeps/unix/inet
sysdeps/unix/sysv
sysdeps/unix/arm
sysdeps/unix
sysdeps/posix
sysdeps/arm/le/nofpu
sysdeps/arm/nofpu
sysdeps/ieee754/soft-fp
sysdeps/arm/le
sysdeps/arm
sysdeps/wordsize-32
sysdeps/ieee754/flt-32
sysdeps/ieee754/dbl-64
sysdeps/ieee754
sysdeps/generic
Checked on arm-linux-gnuaebi.
GNU ld's RISCV port does not support IFUNC. ld -no-pie produces no
relocation and the test passed incorrectly. Be more rigid by testing
IRELATIVE explicitly.
Tested-by: Aurelien Jarno <aurelien@aurel32.net>
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The kernel might not clear the padding value for the ipc_perm mode
fields in compat mode (32 bit running on a 64 bit kernel). It was
fixed on v4.14 when the ipc compat code was refactored to move
(commits 553f770ef71b, 469391684626, c0ebccb6fa1e).
Although it is most likely a kernel issue, it was shown only due
BZ#18231 fix which made all the SysVIPC mode_t 32-bit regardless of
the kABI.
This patch fixes it by explicitly zeroing the upper bits for such
cases. The __ASSUME_SYSVIPC_BROKEN_MODE_T case already handles
it with the shift.
(The aarch64 ipc_priv.h is superflous since
__ASSUME_SYSVIPC_DEFAULT_IPC_64 is now defined as default).
Checked on i686-linux-gnu on 3.10 and on 4.15 kernel.
fstatat64 depends on inlining to produce the desired __fxstatat64
call, which does not happen with -Os, leading to a link failure
with an undefined reference to fstatat64. __fxstatat64 has a macro
definition in include/sys/stat.h and thus avoids the problem.
After recent discussions:
- "[PATCH] s390: Remove backchain-based fallback from backtrace"
https://www.sourceware.org/ml/libc-alpha/2020-02/msg00287.html
- "Re: [PATCH 07/11] s390: Implement backtrace on top of <unwind-link.h>"
https://www.sourceware.org/ml/libc-alpha/2020-02/msg00637.html
We've checked and decided to remove the backchain:
We don't know of any environments without libgcc. Thus the backchain
unwinder is not used. If somebody builds with -mbackchain and without
fasynchronous-unwind-tables and has libgcc installed, then the
libgcc unwinder is called but not the backchain-based fallback.
This step allows to get rid of the s390x specific backtrace.c files at all.
Furthermore the now used debug/backtrace.c version has some more
advantages:
- Free all resources if necessary. (libc_freeres_fn)
- Remove NULL address above _start.
- Check whether we make any progress while getting addresses.
Change all of the #! lines in Python scripts that are called from
Makefiles to reference /usr/bin/python3.
All of the scripts called from Makefiles are already run with Python 3,
so let's make sure they are explicitly using Python 3 if called
manually.
The combination of GCC 10 and binutils 2.35 (both unreleased) is no
longer able to link the dynamic linker, due to a GP16 relocation
overflow error:
glibc/alpha-linux-gnu/elf/librtld.os: in function `calloc': glibc/elf/../include/rtld-malloc.h:44:(.text+0xd98): relocation truncated to fit: GPREL16 against symbol `__rtld_calloc' defined in .data.rel.ro section in glibc/alpha-linux-gnu/elf/librtld.os
glibc/alpha-linux-gnu/elf/librtld.os: in function `malloc': glibc/elf/../include/rtld-malloc.h:56:(.text+0x2978): relocation truncated to fit: GPREL16 against symbol `__rtld_malloc' defined in .data.rel.ro section in glibc/alpha-linux-gnu/elf/librtld.os
This is arguably a linker bug; the object files and their section size
requirements look reasonable enough.
Using -fPIC (the default) works around this issue.
This patch replaces auto generated wrapper (as described in
sysdeps/unix/sysv/linux/syscalls.list) for utime with one which adds extra
support for setting file's access and modification 64 bit time on machines
with __TIMESIZE != 64.
Internally, the __utimensat_time64 helper function is used. This patch is
necessary for having architectures with __WORDSIZE == 32 && __TIMESIZE != 64
Y2038 safe.
Moreover, a 32 bit version - __utime has been refactored to internally use
__utime64.
The __utime is now supposed to be used on systems still supporting 32
bit time (__TIMESIZE != 64) - hence the necessary conversion between struct
utimbuf and struct __utimbuf64.
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Run-time tests:
- Run specific tests on ARM/x86 32bit systems (qemu):
https://github.com/lmajewski/meta-y2038 and run tests:
https://github.com/lmajewski/y2038-tests/commits/master
Above tests were performed with Y2038 redirection applied as well as
without to test proper usage of both __utime64 and __utime.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This patch provides new __utimes64 explicit 64 bit function for setting file's
64 bit attributes for access and modification time.
Internally, the __utimensat64_helper function is used. This patch is necessary
for having architectures with __WORDSIZE == 32 Y2038 safe.
Moreover, a 32 bit version - __utimes has been refactored to internally use
__utimes64.
The __utimes is now supposed to be used on systems still supporting 32
bit time (__TIMESIZE != 64) - hence the necessary conversion of struct
timeval to 64 bit struct __timeval64.
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Run-time tests:
- Run specific tests on ARM/x86 32bit systems (qemu):
https://github.com/lmajewski/meta-y2038 and run tests:
https://github.com/lmajewski/y2038-tests/commits/master
Above tests were performed with Y2038 redirection applied as well as without
to test proper usage of both __utimes64 and __utimes.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
This type is a glibc's "internal" type to store file's access and modification
times in __time64_t rather than __time_t, which makes it Y2038-proof.
Build tests:
./src/scripts/build-many-glibcs.py glibcs
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Reviewed-by: Alistair Francis <alistair.francis@wdc.com>
Due to the built-in tables, __NR_vfork is always defined, so the
fork-based fallback code is never used.
(It appears that the vfork system call was wired up when the port was
contributed to the kernel.)
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Due to the built-in tables, __NR_set_robust_list is always defined
(although it may not be available at run time).
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Due to the built-in tables, __NR_getdents64 is always defined,
although it may not be supported at run time.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
With the built-in tables __NR_preadv2 and __NR_pwritev2 are always
defined.
The kernel has never defined __NR_preadv64v2 and __NR_pwritev64v2
and is unlikely to do so, given that the preadv2 and pwritev2 system
calls themselves are 64-bit.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Due to the built-in tables, __NR_rt_sigqueueinfo is always defined.
sysdeps/pthread/time_routines.c is not updated because it is shared with
Hurd.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The names __NR_preadv64, __NR_pwritev64 appear to be a glibc invention.
With the built-in tables, __NR_preadv and __NR_pwritev are always defined.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Linux removed the last definitions of __NR_pread and __NR_pwrite
in commit 4ba66a9760722ccbb691b8f7116cad2f791cca7b, the removal
of the blackfin port. All architectures now define __NR_pread64 and
__NR_pwrite64 only.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
Due to the built-in tables, __NR_mq_getsetattr, __NR_mq_notify,
__NR_mq_open, __NR_mq_timedreceive, __NR_mq_timedsend, __NR_mq_unlink
are always defined.
Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org>
The history is not used by build-many-glibcs.py itself.
--replace-sources deletes an existing source tree before switching
the version. But some users prefer to have the full history
available, therefore make shallow clones optional with the --shallow
option.
Writable, executable segments defeat security hardening. The
existing check for DT_TEXTREL does not catch this.
hppa and SPARC currently keep the PLT in an RWX load segment.
GCC has moved from using .gnu.linkonce for i386 setup pic register with
minimum current version (as for binutils minimum binutils that support
comdat).
Trying to pinpoint when binutils has added comdat support for i686, it
seems it was around 2004 [1]. I also checking with some ancient
binutils older than 2.16 I see:
test.o: In function `__x86.get_pc_thunk.bx':
test.o(.text.__x86.get_pc_thunk.bx+0x0): multiple definition of `__x86.get_pc_thunk.bx'
/usr/lib/gcc/x86_64-linux-gnu/5/../../../i386-linux-gnu/crti.o(.gnu.linkonce.t.__x86.get_pc_thunk.bx+0x0): first defined here
Which seems that such version can not handle either comdat at all or
a mix of linkonce and comdat. For binutils 2.16.1 I am getting a
different issue trying to link a binary with and more recent
ctri.o (unrecognized relocation (0x2b) in section `.init', which is
R_386_GOT32X and old binutils won't generate it anyway).
So I think that either unlikely someone will use an older binutils than
the one used to glibc and even this scenario may fail with some issue
as the R_386_GOT32X. Also, 2.16.1 is quite old and not really supported
(glibc itself required 2.25).
Checked on i686-linux-gnu.
[1] https://gcc.gnu.org/ml/gcc/2004-05/msg00030.html
For lack of a more comprehensive solution, tack on the ibm128 ABI
compiler options for the totalorder{,mag}l compat tests which exist
prior to enabling this feature.