mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-24 10:22:41 +08:00
[BZ #4131]
2007-05-06 Ulrich Drepper <drepper@redhat.com> [BZ #4131] * elf/dl-addr.c (_dl_addr): Compare address with actual segment boundaries to work around systems with overlapping binary loading. Based on a patch by Suzuki <suzuki@in.ibm.com>.
This commit is contained in:
parent
30b323ab4e
commit
ffecd39b9c
@ -1,3 +1,10 @@
|
||||
2007-05-06 Ulrich Drepper <drepper@redhat.com>
|
||||
|
||||
[BZ #4131]
|
||||
* elf/dl-addr.c (_dl_addr): Compare address with actual segment
|
||||
boundaries to work around systems with overlapping binary loading.
|
||||
Based on a patch by Suzuki <suzuki@in.ibm.com>.
|
||||
|
||||
2007-05-04 Ulrich Drepper <drepper@redhat.com>
|
||||
|
||||
* stdio-common/vfprintf.c (process_string_arg): Adjust call to
|
||||
|
230
elf/dl-addr.c
230
elf/dl-addr.c
@ -1,5 +1,5 @@
|
||||
/* Locate the shared object symbol nearest a given address.
|
||||
Copyright (C) 1996-2004, 2005, 2006 Free Software Foundation, Inc.
|
||||
Copyright (C) 1996-2004, 2005, 2006, 2007 Free Software Foundation, Inc.
|
||||
This file is part of the GNU C Library.
|
||||
|
||||
The GNU C Library is free software; you can redistribute it and/or
|
||||
@ -22,137 +22,137 @@
|
||||
#include <ldsodefs.h>
|
||||
|
||||
|
||||
static void
|
||||
__attribute ((always_inline))
|
||||
determine_info (const ElfW(Addr) addr, struct link_map *match, Dl_info *info,
|
||||
struct link_map **mapp, const ElfW(Sym) **symbolp)
|
||||
{
|
||||
/* Now we know what object the address lies in. */
|
||||
info->dli_fname = match->l_name;
|
||||
info->dli_fbase = (void *) match->l_map_start;
|
||||
|
||||
/* If this is the main program the information is incomplete. */
|
||||
if (__builtin_expect (match->l_name[0], 'a') == '\0'
|
||||
&& match->l_type == lt_executable)
|
||||
info->dli_fname = _dl_argv[0];
|
||||
|
||||
const ElfW(Sym) *symtab
|
||||
= (const ElfW(Sym) *) D_PTR (match, l_info[DT_SYMTAB]);
|
||||
const char *strtab = (const char *) D_PTR (match, l_info[DT_STRTAB]);
|
||||
|
||||
ElfW(Word) strtabsize = match->l_info[DT_STRSZ]->d_un.d_val;
|
||||
|
||||
const ElfW(Sym) *matchsym = NULL;
|
||||
if (match->l_info[DT_ADDRTAGIDX (DT_GNU_HASH) + DT_NUM + DT_THISPROCNUM
|
||||
+ DT_VERSIONTAGNUM + DT_EXTRANUM + DT_VALNUM] != NULL)
|
||||
{
|
||||
/* We look at all symbol table entries referenced by the hash
|
||||
table. */
|
||||
for (Elf_Symndx bucket = 0; bucket < match->l_nbuckets; ++bucket)
|
||||
{
|
||||
Elf32_Word symndx = match->l_gnu_buckets[bucket];
|
||||
if (symndx != 0)
|
||||
{
|
||||
const Elf32_Word *hasharr = &match->l_gnu_chain_zero[symndx];
|
||||
|
||||
do
|
||||
{
|
||||
/* The hash table never references local symbols so
|
||||
we can omit that test here. */
|
||||
if ((symtab[symndx].st_shndx != SHN_UNDEF
|
||||
|| symtab[symndx].st_value != 0)
|
||||
&& ELFW(ST_TYPE) (symtab[symndx].st_info) != STT_TLS
|
||||
&& DL_ADDR_SYM_MATCH (match, &symtab[symndx],
|
||||
matchsym, addr)
|
||||
&& symtab[symndx].st_name < strtabsize)
|
||||
matchsym = (ElfW(Sym) *) &symtab[symndx];
|
||||
|
||||
++symndx;
|
||||
}
|
||||
while ((*hasharr++ & 1u) == 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
const ElfW(Sym) *symtabend;
|
||||
if (match->l_info[DT_HASH] != NULL)
|
||||
symtabend = (symtab
|
||||
+ ((Elf_Symndx *) D_PTR (match, l_info[DT_HASH]))[1]);
|
||||
else
|
||||
/* There is no direct way to determine the number of symbols in the
|
||||
dynamic symbol table and no hash table is present. The ELF
|
||||
binary is ill-formed but what shall we do? Use the beginning of
|
||||
the string table which generally follows the symbol table. */
|
||||
symtabend = (const ElfW(Sym) *) strtab;
|
||||
|
||||
for (; (void *) symtab < (void *) symtabend; ++symtab)
|
||||
if ((ELFW(ST_BIND) (symtab->st_info) == STB_GLOBAL
|
||||
|| ELFW(ST_BIND) (symtab->st_info) == STB_WEAK)
|
||||
&& ELFW(ST_TYPE) (symtab->st_info) != STT_TLS
|
||||
&& (symtab->st_shndx != SHN_UNDEF
|
||||
|| symtab->st_value != 0)
|
||||
&& DL_ADDR_SYM_MATCH (match, symtab, matchsym, addr)
|
||||
&& symtab->st_name < strtabsize)
|
||||
matchsym = (ElfW(Sym) *) symtab;
|
||||
}
|
||||
|
||||
if (mapp)
|
||||
*mapp = match;
|
||||
if (symbolp)
|
||||
*symbolp = matchsym;
|
||||
|
||||
if (matchsym)
|
||||
{
|
||||
/* We found a symbol close by. Fill in its name and exact
|
||||
address. */
|
||||
lookup_t matchl = LOOKUP_VALUE (match);
|
||||
|
||||
info->dli_sname = strtab + matchsym->st_name;
|
||||
info->dli_saddr = DL_SYMBOL_ADDRESS (matchl, matchsym);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* No symbol matches. We return only the containing object. */
|
||||
info->dli_sname = NULL;
|
||||
info->dli_saddr = NULL;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
int
|
||||
internal_function
|
||||
_dl_addr (const void *address, Dl_info *info,
|
||||
struct link_map **mapp, const ElfW(Sym) **symbolp)
|
||||
{
|
||||
const ElfW(Addr) addr = DL_LOOKUP_ADDRESS (address);
|
||||
int result = 0;
|
||||
|
||||
/* Protect against concurrent loads and unloads. */
|
||||
__rtld_lock_lock_recursive (GL(dl_load_lock));
|
||||
|
||||
/* Find the highest-addressed object that ADDRESS is not below. */
|
||||
struct link_map *match = NULL;
|
||||
for (Lmid_t ns = 0; ns < DL_NNS; ++ns)
|
||||
for (struct link_map *l = GL(dl_ns)[ns]._ns_loaded; l; l = l->l_next)
|
||||
if (addr >= l->l_map_start && addr < l->l_map_end)
|
||||
{
|
||||
/* We know ADDRESS lies within L if in any shared object.
|
||||
Make sure it isn't past the end of L's segments. */
|
||||
size_t n = l->l_phnum;
|
||||
if (n > 0)
|
||||
{
|
||||
do
|
||||
--n;
|
||||
while (l->l_phdr[n].p_type != PT_LOAD);
|
||||
if (addr >= (l->l_addr +
|
||||
l->l_phdr[n].p_vaddr + l->l_phdr[n].p_memsz))
|
||||
/* Off the end of the highest-addressed shared object. */
|
||||
continue;
|
||||
}
|
||||
|
||||
match = l;
|
||||
break;
|
||||
/* Make sure it lies within one of L's segments. */
|
||||
int n = l->l_phnum;
|
||||
const ElfW(Addr) reladdr = addr - l->l_addr;
|
||||
while (--n >= 0)
|
||||
if (l->l_phdr[n].p_type == PT_LOAD)
|
||||
{
|
||||
if (reladdr - l->l_phdr[n].p_vaddr >= 0
|
||||
&& reladdr - l->l_phdr[n].p_vaddr < l->l_phdr[n].p_memsz)
|
||||
{
|
||||
determine_info (addr, l, info, mapp, symbolp);
|
||||
result = 1;
|
||||
goto out;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
int result = 0;
|
||||
if (match != NULL)
|
||||
{
|
||||
/* Now we know what object the address lies in. */
|
||||
info->dli_fname = match->l_name;
|
||||
info->dli_fbase = (void *) match->l_map_start;
|
||||
|
||||
/* If this is the main program the information is incomplete. */
|
||||
if (__builtin_expect (match->l_name[0], 'a') == '\0'
|
||||
&& match->l_type == lt_executable)
|
||||
info->dli_fname = _dl_argv[0];
|
||||
|
||||
const ElfW(Sym) *symtab
|
||||
= (const ElfW(Sym) *) D_PTR (match, l_info[DT_SYMTAB]);
|
||||
const char *strtab = (const char *) D_PTR (match, l_info[DT_STRTAB]);
|
||||
|
||||
ElfW(Word) strtabsize = match->l_info[DT_STRSZ]->d_un.d_val;
|
||||
|
||||
const ElfW(Sym) *matchsym = NULL;
|
||||
if (match->l_info[DT_ADDRTAGIDX (DT_GNU_HASH) + DT_NUM + DT_THISPROCNUM
|
||||
+ DT_VERSIONTAGNUM + DT_EXTRANUM + DT_VALNUM] != NULL)
|
||||
{
|
||||
/* We look at all symbol table entries referenced by the
|
||||
hash table. */
|
||||
for (Elf_Symndx bucket = 0; bucket < match->l_nbuckets; ++bucket)
|
||||
{
|
||||
Elf32_Word symndx = match->l_gnu_buckets[bucket];
|
||||
if (symndx != 0)
|
||||
{
|
||||
const Elf32_Word *hasharr = &match->l_gnu_chain_zero[symndx];
|
||||
|
||||
do
|
||||
{
|
||||
/* The hash table never references local symbols
|
||||
so we can omit that test here. */
|
||||
if ((symtab[symndx].st_shndx != SHN_UNDEF
|
||||
|| symtab[symndx].st_value != 0)
|
||||
&& ELFW(ST_TYPE) (symtab[symndx].st_info) != STT_TLS
|
||||
&& DL_ADDR_SYM_MATCH (match, &symtab[symndx],
|
||||
matchsym, addr)
|
||||
&& symtab[symndx].st_name < strtabsize)
|
||||
matchsym = (ElfW(Sym) *) &symtab[symndx];
|
||||
|
||||
++symndx;
|
||||
}
|
||||
while ((*hasharr++ & 1u) == 0);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
const ElfW(Sym) *symtabend;
|
||||
if (match->l_info[DT_HASH] != NULL)
|
||||
symtabend = (symtab
|
||||
+ ((Elf_Symndx *) D_PTR (match, l_info[DT_HASH]))[1]);
|
||||
else
|
||||
/* There is no direct way to determine the number of symbols in the
|
||||
dynamic symbol table and no hash table is present. The ELF
|
||||
binary is ill-formed but what shall we do? Use the beginning of
|
||||
the string table which generally follows the symbol table. */
|
||||
symtabend = (const ElfW(Sym) *) strtab;
|
||||
|
||||
for (; (void *) symtab < (void *) symtabend; ++symtab)
|
||||
if ((ELFW(ST_BIND) (symtab->st_info) == STB_GLOBAL
|
||||
|| ELFW(ST_BIND) (symtab->st_info) == STB_WEAK)
|
||||
&& ELFW(ST_TYPE) (symtab->st_info) != STT_TLS
|
||||
&& (symtab->st_shndx != SHN_UNDEF
|
||||
|| symtab->st_value != 0)
|
||||
&& DL_ADDR_SYM_MATCH (match, symtab, matchsym, addr)
|
||||
&& symtab->st_name < strtabsize)
|
||||
matchsym = (ElfW(Sym) *) symtab;
|
||||
}
|
||||
|
||||
if (mapp)
|
||||
*mapp = match;
|
||||
if (symbolp)
|
||||
*symbolp = matchsym;
|
||||
|
||||
if (matchsym)
|
||||
{
|
||||
/* We found a symbol close by. Fill in its name and exact
|
||||
address. */
|
||||
lookup_t matchl = LOOKUP_VALUE (match);
|
||||
|
||||
info->dli_sname = strtab + matchsym->st_name;
|
||||
info->dli_saddr = DL_SYMBOL_ADDRESS (matchl, matchsym);
|
||||
}
|
||||
else
|
||||
{
|
||||
/* No symbol matches. We return only the containing object. */
|
||||
info->dli_sname = NULL;
|
||||
info->dli_saddr = NULL;
|
||||
}
|
||||
|
||||
result = 1;
|
||||
}
|
||||
|
||||
out:
|
||||
__rtld_lock_unlock_recursive (GL(dl_load_lock));
|
||||
|
||||
return result;
|
||||
|
Loading…
Reference in New Issue
Block a user