Consolidate sin and cos code for 105414350 <|x|< 281474976710656

The sin and cos computation for this range of input is identical
except for a difference in quadrants by 1.  Exploit that fact and the
common argument reduction to reduce computations for sincos.
This commit is contained in:
Siddhesh Poyarekar 2015-12-21 10:41:46 +05:30
parent a045832deb
commit f7953c44d5
3 changed files with 124 additions and 146 deletions

View File

@ -1,5 +1,10 @@
2015-12-21 Siddhesh Poyarekar <siddhesh.poyarekar@linaro.org>
* sysdeps/ieee754/dbl-64/s_sin.c (__sin, __cos): Move common
code to new functions.
(reduce_sincos_2, do_sincos_2): New functions.
* sysdeps/ieee754/dbl-64/s_sincos.c (__sincos): Use them.
* sysdeps/ieee754/dbl-64/s_sin.c (__sin) [!IN_SINCOS]: Skip
common code for sincos.
(__cos) [!IN_SINCOS]: Likewise.

View File

@ -276,6 +276,104 @@ reduce_and_compute (double x, unsigned int k)
return retval;
}
static inline int4
__always_inline
reduce_sincos_2 (double x, double *a, double *da)
{
mynumber v;
double t = (x * hpinv + toint);
double xn = t - toint;
v.x = t;
double xn1 = (xn + 8.0e22) - 8.0e22;
double xn2 = xn - xn1;
double y = ((((x - xn1 * mp1) - xn1 * mp2) - xn2 * mp1) - xn2 * mp2);
int4 n = v.i[LOW_HALF] & 3;
double db = xn1 * pp3;
t = y - db;
db = (y - t) - db;
db = (db - xn2 * pp3) - xn * pp4;
double b = t + db;
db = (t - b) + db;
*a = b;
*da = db;
return n;
}
/* Compute sin (A + DA). cos can be computed by shifting the quadrant N
clockwise. */
static double
__always_inline
do_sincos_2 (double a, double da, double x, int4 n, int4 k)
{
double res, retval, cor, xx;
mynumber u;
double eps = 1.0e-24;
k = (n + k) & 3;
switch (k)
{
case 2:
a = -a;
da = -da;
/* Fall through. */
case 0:
xx = a * a;
if (xx < 0.01588)
{
/* Taylor series. */
res = TAYLOR_SIN (xx, a, da, cor);
cor = (cor > 0) ? 1.02 * cor + eps : 1.02 * cor - eps;
retval = (res == res + cor) ? res : bsloww (a, da, x, n);
}
else
{
double t, db, y;
int m;
if (a > 0)
{
m = 1;
t = a;
db = da;
}
else
{
m = 0;
t = -a;
db = -da;
}
u.x = big + t;
y = t - (u.x - big);
res = do_sin (u, y, db, &cor);
cor = (cor > 0) ? 1.035 * cor + eps : 1.035 * cor - eps;
retval = ((res == res + cor) ? ((m) ? res : -res)
: bsloww1 (a, da, x, n));
}
break;
case 1:
case 3:
if (a < 0)
{
a = -a;
da = -da;
}
u.x = big + a;
double y = a - (u.x - big) + da;
res = do_cos (u, y, &cor);
cor = (cor > 0) ? 1.025 * cor + eps : 1.025 * cor - eps;
retval = ((res == res + cor) ? ((n & 2) ? -res : res)
: bsloww2 (a, da, x, n));
break;
}
return retval;
}
/*******************************************************************/
/* An ultimate sin routine. Given an IEEE double machine number x */
/* it computes the correctly rounded (to nearest) value of sin(x) */
@ -288,8 +386,7 @@ SECTION
#endif
__sin (double x)
{
double xx, res, t, cor, y, s, c, sn, ssn, cs, ccs, xn, a, da, db, eps, xn1,
xn2;
double xx, res, t, cor, y, s, c, sn, ssn, cs, ccs, xn, a, da, eps;
mynumber u, v;
int4 k, m, n;
double retval = 0;
@ -421,83 +518,16 @@ __sin (double x)
}
} /* else if (k < 0x419921FB ) */
#ifndef IN_SINCOS
/*---------------------105414350 <|x|< 281474976710656 --------------------*/
else if (k < 0x42F00000)
{
t = (x * hpinv + toint);
xn = t - toint;
v.x = t;
xn1 = (xn + 8.0e22) - 8.0e22;
xn2 = xn - xn1;
y = ((((x - xn1 * mp1) - xn1 * mp2) - xn2 * mp1) - xn2 * mp2);
n = v.i[LOW_HALF] & 3;
da = xn1 * pp3;
t = y - da;
da = (y - t) - da;
da = (da - xn2 * pp3) - xn * pp4;
a = t + da;
da = (t - a) + da;
eps = 1.0e-24;
double a, da;
switch (n)
{
case 0:
case 2:
xx = a * a;
if (n)
{
a = -a;
da = -da;
}
if (xx < 0.01588)
{
/* Taylor series. */
res = TAYLOR_SIN (xx, a, da, cor);
cor = (cor > 0) ? 1.02 * cor + eps : 1.02 * cor - eps;
retval = (res == res + cor) ? res : bsloww (a, da, x, n);
}
else
{
double t;
if (a > 0)
{
m = 1;
t = a;
db = da;
}
else
{
m = 0;
t = -a;
db = -da;
}
u.x = big + t;
y = t - (u.x - big);
res = do_sin (u, y, db, &cor);
cor = (cor > 0) ? 1.035 * cor + eps : 1.035 * cor - eps;
retval = ((res == res + cor) ? ((m) ? res : -res)
: bsloww1 (a, da, x, n));
}
break;
case 1:
case 3:
if (a < 0)
{
a = -a;
da = -da;
}
u.x = big + a;
y = a - (u.x - big) + da;
res = do_cos (u, y, &cor);
cor = (cor > 0) ? 1.025 * cor + eps : 1.025 * cor - eps;
retval = ((res == res + cor) ? ((n & 2) ? -res : res)
: bsloww2 (a, da, x, n));
break;
}
int4 n = reduce_sincos_2 (x, &a, &da);
retval = do_sincos_2 (a, da, x, n, 0);
} /* else if (k < 0x42F00000 ) */
#ifndef IN_SINCOS
/* -----------------281474976710656 <|x| <2^1024----------------------------*/
else if (k < 0x7ff00000)
retval = reduce_and_compute (x, 0);
@ -528,8 +558,7 @@ SECTION
#endif
__cos (double x)
{
double y, xx, res, t, cor, xn, a, da, db, eps, xn1,
xn2;
double y, xx, res, t, cor, xn, a, da, eps;
mynumber u, v;
int4 k, m, n;
@ -657,81 +686,15 @@ __cos (double x)
}
} /* else if (k < 0x419921FB ) */
#ifndef IN_SINCOS
else if (k < 0x42F00000)
{
t = (x * hpinv + toint);
xn = t - toint;
v.x = t;
xn1 = (xn + 8.0e22) - 8.0e22;
xn2 = xn - xn1;
y = ((((x - xn1 * mp1) - xn1 * mp2) - xn2 * mp1) - xn2 * mp2);
n = v.i[LOW_HALF] & 3;
da = xn1 * pp3;
t = y - da;
da = (y - t) - da;
da = (da - xn2 * pp3) - xn * pp4;
a = t + da;
da = (t - a) + da;
eps = 1.0e-24;
double a, da;
switch (n)
{
case 1:
case 3:
xx = a * a;
if (n == 1)
{
a = -a;
da = -da;
}
if (xx < 0.01588)
{
res = TAYLOR_SIN (xx, a, da, cor);
cor = (cor > 0) ? 1.02 * cor + eps : 1.02 * cor - eps;
retval = (res == res + cor) ? res : bsloww (a, da, x, n);
}
else
{
double t;
if (a > 0)
{
m = 1;
t = a;
db = da;
}
else
{
m = 0;
t = -a;
db = -da;
}
u.x = big + t;
y = t - (u.x - big);
res = do_sin (u, y, db, &cor);
cor = (cor > 0) ? 1.035 * cor + eps : 1.035 * cor - eps;
retval = ((res == res + cor) ? ((m) ? res : -res)
: bsloww1 (a, da, x, n));
}
break;
case 0:
case 2:
if (a < 0)
{
a = -a;
da = -da;
}
u.x = big + a;
y = a - (u.x - big) + da;
res = do_cos (u, y, &cor);
cor = (cor > 0) ? 1.025 * cor + eps : 1.025 * cor - eps;
retval = ((res == res + cor) ? ((n) ? -res : res)
: bsloww2 (a, da, x, n));
break;
}
int4 n = reduce_sincos_2 (x, &a, &da);
retval = do_sincos_2 (a, da, x, n, 1);
} /* else if (k < 0x42F00000 ) */
#ifndef IN_SINCOS
/* 281474976710656 <|x| <2^1024 */
else if (k < 0x7ff00000)
retval = reduce_and_compute (x, 1);

View File

@ -69,10 +69,20 @@ __sincos (double x, double *sinx, double *cosx)
u.x = x;
k = 0x7fffffff & u.i[HIGH_HALF];
if (k < 0x42F00000)
if (k < 0x419921FB)
{
*sinx = __sin_local (x);
*cosx = __cos_local (x);
return;
}
if (k < 0x42F00000)
{
double a, da;
int4 n = reduce_sincos_2 (x, &a, &da);
*sinx = do_sincos_2 (a, da, x, n, 0);
*cosx = do_sincos_2 (a, da, x, n, 1);
return;
}
if (k < 0x7ff00000)