mirror of
https://sourceware.org/git/glibc.git
synced 2024-11-23 09:43:32 +08:00
Benchmark strstr hard needles
Benchmark needles which exhibit worst-case performance. This shows that basic_strstr is quadratic and thus unsuitable for large needles. On the other hand the Two-way and new strstr implementations are linear with increasing needle sizes. The slowest cases of the two implementations are within a factor of 2 on several different microarchitectures. Two-way is slowest on inputs which cause a branch mispredict on almost every character. The new strstr is slowest on inputs which almost match and result in many calls to memcmp. Thanks to Szabolcs for providing various hard needles. Reviewed-by: Adhemerval Zanella <adhemerval.zanella@linaro.org> * benchtests/bench-strstr.c (test_hard_needle): New function.
This commit is contained in:
parent
e6e2424390
commit
80b2bfb535
@ -1,3 +1,7 @@
|
||||
2019-06-11 Wilco Dijkstra <wdijkstr@arm.com>
|
||||
|
||||
* benchtests/bench-strstr.c (test_hard_needle): New function.
|
||||
|
||||
2019-06-10 Joseph Myers <joseph@codesourcery.com>
|
||||
|
||||
* malloc/tst-calloc.c: Include <libc-diag.h>.
|
||||
|
@ -203,6 +203,81 @@ do_test (size_t align1, size_t align2, size_t len1, size_t len2,
|
||||
putchar ('\n');
|
||||
}
|
||||
|
||||
/* Test needles which exhibit worst-case performance. This shows that
|
||||
basic_strstr is quadratic and thus unsuitable for large needles.
|
||||
On the other hand Two-way and skip table implementations are linear with
|
||||
increasing needle sizes. The slowest cases of the two implementations are
|
||||
within a factor of 2 on several different microarchitectures. */
|
||||
|
||||
static void
|
||||
test_hard_needle (size_t ne_len, size_t hs_len)
|
||||
{
|
||||
char *ne = (char *) buf1;
|
||||
char *hs = (char *) buf2;
|
||||
|
||||
/* Hard needle for strstr algorithm using skip table. This results in many
|
||||
memcmp calls comparing most of the needle. */
|
||||
{
|
||||
memset (ne, 'a', ne_len);
|
||||
ne[ne_len] = '\0';
|
||||
ne[ne_len - 14] = 'b';
|
||||
|
||||
memset (hs, 'a', hs_len);
|
||||
for (size_t i = ne_len; i <= hs_len; i += ne_len)
|
||||
{
|
||||
hs[i-5] = 'b';
|
||||
hs[i-62] = 'b';
|
||||
}
|
||||
|
||||
printf ("Length %4zd/%3zd, complex needle 1:", hs_len, ne_len);
|
||||
|
||||
FOR_EACH_IMPL (impl, 0)
|
||||
do_one_test (impl, hs, ne, NULL);
|
||||
putchar ('\n');
|
||||
}
|
||||
|
||||
/* 2nd hard needle for strstr algorithm using skip table. This results in
|
||||
many memcmp calls comparing most of the needle. */
|
||||
{
|
||||
memset (ne, 'a', ne_len);
|
||||
ne[ne_len] = '\0';
|
||||
ne[ne_len - 6] = 'b';
|
||||
|
||||
memset (hs, 'a', hs_len);
|
||||
for (size_t i = ne_len; i <= hs_len; i += ne_len)
|
||||
{
|
||||
hs[i-5] = 'b';
|
||||
hs[i-6] = 'b';
|
||||
}
|
||||
|
||||
printf ("Length %4zd/%3zd, complex needle 2:", hs_len, ne_len);
|
||||
|
||||
FOR_EACH_IMPL (impl, 0)
|
||||
do_one_test (impl, hs, ne, NULL);
|
||||
putchar ('\n');
|
||||
}
|
||||
|
||||
/* Hard needle for Two-way algorithm - the random input causes a large number
|
||||
of branch mispredictions which significantly reduces performance on modern
|
||||
micro architectures. */
|
||||
{
|
||||
for (int i = 0; i < hs_len; i++)
|
||||
hs[i] = (rand () & 255) > 155 ? 'a' : 'b';
|
||||
hs[hs_len] = 0;
|
||||
|
||||
memset (ne, 'a', ne_len);
|
||||
ne[ne_len-2] = 'b';
|
||||
ne[0] = 'b';
|
||||
ne[ne_len] = 0;
|
||||
|
||||
printf ("Length %4zd/%3zd, complex needle 3:", hs_len, ne_len);
|
||||
|
||||
FOR_EACH_IMPL (impl, 0)
|
||||
do_one_test (impl, hs, ne, NULL);
|
||||
putchar ('\n');
|
||||
}
|
||||
}
|
||||
|
||||
static int
|
||||
test_main (void)
|
||||
{
|
||||
@ -227,6 +302,10 @@ test_main (void)
|
||||
do_test (14, 5, hlen, klen, 1);
|
||||
}
|
||||
|
||||
test_hard_needle (64, 65536);
|
||||
test_hard_needle (256, 65536);
|
||||
test_hard_needle (1024, 65536);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user