x86: Optimize strlen-evex.S

No bug. This commit optimizes strlen-evex.S. The
optimizations are mostly small things but they add up to roughly
10-30% performance improvement for strlen. The results for strnlen are
bit more ambiguous. test-strlen, test-strnlen, test-wcslen, and
test-wcsnlen are all passing.

Signed-off-by: Noah Goldstein <goldstein.w.n@gmail.com>
(cherry picked from commit 4ba6558684)
This commit is contained in:
Noah Goldstein 2021-04-19 19:36:06 -04:00 committed by H.J. Lu
parent 709eb51aff
commit 6864c340a1

View File

@ -29,11 +29,13 @@
# ifdef USE_AS_WCSLEN
# define VPCMP vpcmpd
# define VPMINU vpminud
# define SHIFT_REG r9d
# define SHIFT_REG ecx
# define CHAR_SIZE 4
# else
# define VPCMP vpcmpb
# define VPMINU vpminub
# define SHIFT_REG ecx
# define SHIFT_REG edx
# define CHAR_SIZE 1
# endif
# define XMMZERO xmm16
@ -46,132 +48,165 @@
# define YMM6 ymm22
# define VEC_SIZE 32
# define PAGE_SIZE 4096
# define CHAR_PER_VEC (VEC_SIZE / CHAR_SIZE)
.section .text.evex,"ax",@progbits
ENTRY (STRLEN)
# ifdef USE_AS_STRNLEN
/* Check for zero length. */
/* Check zero length. */
test %RSI_LP, %RSI_LP
jz L(zero)
# ifdef USE_AS_WCSLEN
shl $2, %RSI_LP
# elif defined __ILP32__
# ifdef __ILP32__
/* Clear the upper 32 bits. */
movl %esi, %esi
# endif
mov %RSI_LP, %R8_LP
# endif
movl %edi, %ecx
movq %rdi, %rdx
movl %edi, %eax
vpxorq %XMMZERO, %XMMZERO, %XMMZERO
/* Clear high bits from edi. Only keeping bits relevant to page
cross check. */
andl $(PAGE_SIZE - 1), %eax
/* Check if we may cross page boundary with one vector load. */
andl $(2 * VEC_SIZE - 1), %ecx
cmpl $VEC_SIZE, %ecx
ja L(cros_page_boundary)
cmpl $(PAGE_SIZE - VEC_SIZE), %eax
ja L(cross_page_boundary)
/* Check the first VEC_SIZE bytes. Each bit in K0 represents a
null byte. */
VPCMP $0, (%rdi), %YMMZERO, %k0
kmovd %k0, %eax
testl %eax, %eax
# ifdef USE_AS_STRNLEN
jnz L(first_vec_x0_check)
/* Adjust length and check the end of data. */
subq $VEC_SIZE, %rsi
jbe L(max)
# else
jnz L(first_vec_x0)
/* If length < CHAR_PER_VEC handle special. */
cmpq $CHAR_PER_VEC, %rsi
jbe L(first_vec_x0)
# endif
/* Align data for aligned loads in the loop. */
addq $VEC_SIZE, %rdi
andl $(VEC_SIZE - 1), %ecx
andq $-VEC_SIZE, %rdi
# ifdef USE_AS_STRNLEN
/* Adjust length. */
addq %rcx, %rsi
subq $(VEC_SIZE * 4), %rsi
jbe L(last_4x_vec_or_less)
# endif
jmp L(more_4x_vec)
.p2align 4
L(cros_page_boundary):
andl $(VEC_SIZE - 1), %ecx
andq $-VEC_SIZE, %rdi
# ifdef USE_AS_WCSLEN
/* NB: Divide shift count by 4 since each bit in K0 represent 4
bytes. */
movl %ecx, %SHIFT_REG
sarl $2, %SHIFT_REG
# endif
VPCMP $0, (%rdi), %YMMZERO, %k0
kmovd %k0, %eax
/* Remove the leading bytes. */
sarxl %SHIFT_REG, %eax, %eax
testl %eax, %eax
jz L(aligned_more)
tzcntl %eax, %eax
# ifdef USE_AS_WCSLEN
/* NB: Multiply wchar_t count by 4 to get the number of bytes. */
sall $2, %eax
# endif
ret
# ifdef USE_AS_STRNLEN
/* Check the end of data. */
cmpq %rax, %rsi
jbe L(max)
L(zero):
xorl %eax, %eax
ret
.p2align 4
L(first_vec_x0):
/* Set bit for max len so that tzcnt will return min of max len
and position of first match. */
btsq %rsi, %rax
tzcntl %eax, %eax
ret
# endif
addq %rdi, %rax
addq %rcx, %rax
subq %rdx, %rax
# ifdef USE_AS_WCSLEN
shrq $2, %rax
.p2align 4
L(first_vec_x1):
tzcntl %eax, %eax
/* Safe to use 32 bit instructions as these are only called for
size = [1, 159]. */
# ifdef USE_AS_STRNLEN
/* Use ecx which was computed earlier to compute correct value.
*/
leal -(CHAR_PER_VEC * 4 + 1)(%rcx, %rax), %eax
# else
subl %edx, %edi
# ifdef USE_AS_WCSLEN
/* NB: Divide bytes by 4 to get the wchar_t count. */
sarl $2, %edi
# endif
leal CHAR_PER_VEC(%rdi, %rax), %eax
# endif
ret
.p2align 4
L(first_vec_x2):
tzcntl %eax, %eax
/* Safe to use 32 bit instructions as these are only called for
size = [1, 159]. */
# ifdef USE_AS_STRNLEN
/* Use ecx which was computed earlier to compute correct value.
*/
leal -(CHAR_PER_VEC * 3 + 1)(%rcx, %rax), %eax
# else
subl %edx, %edi
# ifdef USE_AS_WCSLEN
/* NB: Divide bytes by 4 to get the wchar_t count. */
sarl $2, %edi
# endif
leal (CHAR_PER_VEC * 2)(%rdi, %rax), %eax
# endif
ret
.p2align 4
L(first_vec_x3):
tzcntl %eax, %eax
/* Safe to use 32 bit instructions as these are only called for
size = [1, 159]. */
# ifdef USE_AS_STRNLEN
/* Use ecx which was computed earlier to compute correct value.
*/
leal -(CHAR_PER_VEC * 2 + 1)(%rcx, %rax), %eax
# else
subl %edx, %edi
# ifdef USE_AS_WCSLEN
/* NB: Divide bytes by 4 to get the wchar_t count. */
sarl $2, %edi
# endif
leal (CHAR_PER_VEC * 3)(%rdi, %rax), %eax
# endif
ret
.p2align 4
L(first_vec_x4):
tzcntl %eax, %eax
/* Safe to use 32 bit instructions as these are only called for
size = [1, 159]. */
# ifdef USE_AS_STRNLEN
/* Use ecx which was computed earlier to compute correct value.
*/
leal -(CHAR_PER_VEC + 1)(%rcx, %rax), %eax
# else
subl %edx, %edi
# ifdef USE_AS_WCSLEN
/* NB: Divide bytes by 4 to get the wchar_t count. */
sarl $2, %edi
# endif
leal (CHAR_PER_VEC * 4)(%rdi, %rax), %eax
# endif
ret
.p2align 5
L(aligned_more):
# ifdef USE_AS_STRNLEN
/* "rcx" is less than VEC_SIZE. Calculate "rdx + rcx - VEC_SIZE"
with "rdx - (VEC_SIZE - rcx)" instead of "(rdx + rcx) - VEC_SIZE"
to void possible addition overflow. */
negq %rcx
addq $VEC_SIZE, %rcx
/* Check the end of data. */
subq %rcx, %rsi
jbe L(max)
# endif
addq $VEC_SIZE, %rdi
# ifdef USE_AS_STRNLEN
subq $(VEC_SIZE * 4), %rsi
jbe L(last_4x_vec_or_less)
# endif
L(more_4x_vec):
movq %rdi, %rdx
/* Align data to VEC_SIZE. */
andq $-(VEC_SIZE), %rdi
L(cross_page_continue):
/* Check the first 4 * VEC_SIZE. Only one VEC_SIZE at a time
since data is only aligned to VEC_SIZE. */
VPCMP $0, (%rdi), %YMMZERO, %k0
kmovd %k0, %eax
testl %eax, %eax
jnz L(first_vec_x0)
# ifdef USE_AS_STRNLEN
/* + CHAR_SIZE because it simplies the logic in
last_4x_vec_or_less. */
leaq (VEC_SIZE * 5 + CHAR_SIZE)(%rdi), %rcx
subq %rdx, %rcx
# ifdef USE_AS_WCSLEN
/* NB: Divide bytes by 4 to get the wchar_t count. */
sarl $2, %ecx
# endif
# endif
/* Load first VEC regardless. */
VPCMP $0, VEC_SIZE(%rdi), %YMMZERO, %k0
# ifdef USE_AS_STRNLEN
/* Adjust length. If near end handle specially. */
subq %rcx, %rsi
jb L(last_4x_vec_or_less)
# endif
kmovd %k0, %eax
testl %eax, %eax
jnz L(first_vec_x1)
VPCMP $0, (VEC_SIZE * 2)(%rdi), %YMMZERO, %k0
kmovd %k0, %eax
testl %eax, %eax
test %eax, %eax
jnz L(first_vec_x2)
VPCMP $0, (VEC_SIZE * 3)(%rdi), %YMMZERO, %k0
@ -179,258 +214,276 @@ L(more_4x_vec):
testl %eax, %eax
jnz L(first_vec_x3)
addq $(VEC_SIZE * 4), %rdi
VPCMP $0, (VEC_SIZE * 4)(%rdi), %YMMZERO, %k0
kmovd %k0, %eax
testl %eax, %eax
jnz L(first_vec_x4)
addq $VEC_SIZE, %rdi
# ifdef USE_AS_STRNLEN
subq $(VEC_SIZE * 4), %rsi
jbe L(last_4x_vec_or_less)
# endif
/* Align data to 4 * VEC_SIZE. */
movq %rdi, %rcx
andl $(4 * VEC_SIZE - 1), %ecx
andq $-(4 * VEC_SIZE), %rdi
# ifdef USE_AS_STRNLEN
/* Adjust length. */
/* Check if at last VEC_SIZE * 4 length. */
cmpq $(CHAR_PER_VEC * 4 - 1), %rsi
jbe L(last_4x_vec_or_less_load)
movl %edi, %ecx
andl $(VEC_SIZE * 4 - 1), %ecx
# ifdef USE_AS_WCSLEN
/* NB: Divide bytes by 4 to get the wchar_t count. */
sarl $2, %ecx
# endif
/* Readjust length. */
addq %rcx, %rsi
# endif
/* Align data to VEC_SIZE * 4. */
andq $-(VEC_SIZE * 4), %rdi
/* Compare 4 * VEC at a time forward. */
.p2align 4
L(loop_4x_vec):
/* Compare 4 * VEC at a time forward. */
VMOVA (%rdi), %YMM1
VMOVA VEC_SIZE(%rdi), %YMM2
VMOVA (VEC_SIZE * 2)(%rdi), %YMM3
VMOVA (VEC_SIZE * 3)(%rdi), %YMM4
/* Load first VEC regardless. */
VMOVA (VEC_SIZE * 4)(%rdi), %YMM1
# ifdef USE_AS_STRNLEN
/* Break if at end of length. */
subq $(CHAR_PER_VEC * 4), %rsi
jb L(last_4x_vec_or_less_cmpeq)
# endif
/* Save some code size by microfusing VPMINU with the load. Since
the matches in ymm2/ymm4 can only be returned if there where no
matches in ymm1/ymm3 respectively there is no issue with overlap.
*/
VPMINU (VEC_SIZE * 5)(%rdi), %YMM1, %YMM2
VMOVA (VEC_SIZE * 6)(%rdi), %YMM3
VPMINU (VEC_SIZE * 7)(%rdi), %YMM3, %YMM4
VPMINU %YMM1, %YMM2, %YMM5
VPMINU %YMM3, %YMM4, %YMM6
VPCMP $0, %YMM2, %YMMZERO, %k0
VPCMP $0, %YMM4, %YMMZERO, %k1
subq $-(VEC_SIZE * 4), %rdi
kortestd %k0, %k1
jz L(loop_4x_vec)
VPMINU %YMM5, %YMM6, %YMM5
VPCMP $0, %YMM5, %YMMZERO, %k0
ktestd %k0, %k0
jnz L(4x_vec_end)
/* Check if end was in first half. */
kmovd %k0, %eax
subq %rdx, %rdi
# ifdef USE_AS_WCSLEN
shrq $2, %rdi
# endif
testl %eax, %eax
jz L(second_vec_return)
addq $(VEC_SIZE * 4), %rdi
# ifndef USE_AS_STRNLEN
jmp L(loop_4x_vec)
VPCMP $0, %YMM1, %YMMZERO, %k2
kmovd %k2, %edx
/* Combine VEC1 matches (edx) with VEC2 matches (eax). */
# ifdef USE_AS_WCSLEN
sall $CHAR_PER_VEC, %eax
orl %edx, %eax
tzcntl %eax, %eax
# else
subq $(VEC_SIZE * 4), %rsi
ja L(loop_4x_vec)
salq $CHAR_PER_VEC, %rax
orq %rdx, %rax
tzcntq %rax, %rax
# endif
addq %rdi, %rax
ret
# ifdef USE_AS_STRNLEN
L(last_4x_vec_or_less_load):
/* Depending on entry adjust rdi / prepare first VEC in YMM1. */
VMOVA (VEC_SIZE * 4)(%rdi), %YMM1
L(last_4x_vec_or_less_cmpeq):
VPCMP $0, %YMM1, %YMMZERO, %k0
addq $(VEC_SIZE * 3), %rdi
L(last_4x_vec_or_less):
/* Less than 4 * VEC and aligned to VEC_SIZE. */
addl $(VEC_SIZE * 2), %esi
jle L(last_2x_vec)
VPCMP $0, (%rdi), %YMMZERO, %k0
kmovd %k0, %eax
testl %eax, %eax
jnz L(first_vec_x0)
/* If remaining length > VEC_SIZE * 2. This works if esi is off by
VEC_SIZE * 4. */
testl $(CHAR_PER_VEC * 2), %esi
jnz L(last_4x_vec)
VPCMP $0, VEC_SIZE(%rdi), %YMMZERO, %k0
kmovd %k0, %eax
/* length may have been negative or positive by an offset of
CHAR_PER_VEC * 4 depending on where this was called from. This
fixes that. */
andl $(CHAR_PER_VEC * 4 - 1), %esi
testl %eax, %eax
jnz L(first_vec_x1)
jnz L(last_vec_x1_check)
/* Check the end of data. */
subl $CHAR_PER_VEC, %esi
jb L(max)
VPCMP $0, (VEC_SIZE * 2)(%rdi), %YMMZERO, %k0
kmovd %k0, %eax
tzcntl %eax, %eax
/* Check the end of data. */
cmpl %eax, %esi
jb L(max)
subq %rdx, %rdi
# ifdef USE_AS_WCSLEN
/* NB: Divide bytes by 4 to get the wchar_t count. */
sarq $2, %rdi
# endif
leaq (CHAR_PER_VEC * 2)(%rdi, %rax), %rax
ret
L(max):
movq %r8, %rax
ret
# endif
/* Placed here in strnlen so that the jcc L(last_4x_vec_or_less)
in the 4x VEC loop can use 2 byte encoding. */
.p2align 4
L(second_vec_return):
VPCMP $0, %YMM3, %YMMZERO, %k0
/* Combine YMM3 matches (k0) with YMM4 matches (k1). */
# ifdef USE_AS_WCSLEN
kunpckbw %k0, %k1, %k0
kmovd %k0, %eax
tzcntl %eax, %eax
# else
kunpckdq %k0, %k1, %k0
kmovq %k0, %rax
tzcntq %rax, %rax
# endif
leaq (CHAR_PER_VEC * 2)(%rdi, %rax), %rax
ret
# ifdef USE_AS_STRNLEN
L(last_vec_x1_check):
tzcntl %eax, %eax
/* Check the end of data. */
cmpl %eax, %esi
jb L(max)
subq %rdx, %rdi
# ifdef USE_AS_WCSLEN
/* NB: Divide bytes by 4 to get the wchar_t count. */
sarq $2, %rdi
# endif
leaq (CHAR_PER_VEC)(%rdi, %rax), %rax
ret
.p2align 4
L(last_4x_vec):
/* Test first 2x VEC normally. */
testl %eax, %eax
jnz L(last_vec_x1)
VPCMP $0, (VEC_SIZE * 2)(%rdi), %YMMZERO, %k0
kmovd %k0, %eax
testl %eax, %eax
jnz L(first_vec_x2_check)
subl $VEC_SIZE, %esi
jle L(max)
jnz L(last_vec_x2)
/* Normalize length. */
andl $(CHAR_PER_VEC * 4 - 1), %esi
VPCMP $0, (VEC_SIZE * 3)(%rdi), %YMMZERO, %k0
kmovd %k0, %eax
testl %eax, %eax
jnz L(first_vec_x3_check)
movq %r8, %rax
jnz L(last_vec_x3)
/* Check the end of data. */
subl $(CHAR_PER_VEC * 3), %esi
jb L(max)
VPCMP $0, (VEC_SIZE * 4)(%rdi), %YMMZERO, %k0
kmovd %k0, %eax
tzcntl %eax, %eax
/* Check the end of data. */
cmpl %eax, %esi
jb L(max_end)
subq %rdx, %rdi
# ifdef USE_AS_WCSLEN
shrq $2, %rax
/* NB: Divide bytes by 4 to get the wchar_t count. */
sarq $2, %rdi
# endif
leaq (CHAR_PER_VEC * 4)(%rdi, %rax), %rax
ret
.p2align 4
L(last_2x_vec):
addl $(VEC_SIZE * 2), %esi
L(last_vec_x1):
tzcntl %eax, %eax
subq %rdx, %rdi
# ifdef USE_AS_WCSLEN
/* NB: Divide bytes by 4 to get the wchar_t count. */
sarq $2, %rdi
# endif
leaq (CHAR_PER_VEC)(%rdi, %rax), %rax
ret
.p2align 4
L(last_vec_x2):
tzcntl %eax, %eax
subq %rdx, %rdi
# ifdef USE_AS_WCSLEN
/* NB: Divide bytes by 4 to get the wchar_t count. */
sarq $2, %rdi
# endif
leaq (CHAR_PER_VEC * 2)(%rdi, %rax), %rax
ret
.p2align 4
L(last_vec_x3):
tzcntl %eax, %eax
subl $(CHAR_PER_VEC * 2), %esi
/* Check the end of data. */
cmpl %eax, %esi
jb L(max_end)
subq %rdx, %rdi
# ifdef USE_AS_WCSLEN
/* NB: Divide bytes by 4 to get the wchar_t count. */
sarq $2, %rdi
# endif
leaq (CHAR_PER_VEC * 3)(%rdi, %rax), %rax
ret
L(max_end):
movq %r8, %rax
ret
# endif
/* Cold case for crossing page with first load. */
.p2align 4
L(cross_page_boundary):
movq %rdi, %rdx
/* Align data to VEC_SIZE. */
andq $-VEC_SIZE, %rdi
VPCMP $0, (%rdi), %YMMZERO, %k0
kmovd %k0, %eax
/* Remove the leading bytes. */
# ifdef USE_AS_WCSLEN
/* NB: Divide shift count by 4 since each bit in K0 represent 4
bytes. */
movl %edx, %ecx
shrl $2, %ecx
andl $(CHAR_PER_VEC - 1), %ecx
# endif
/* SHIFT_REG is ecx for USE_AS_WCSLEN and edx otherwise. */
sarxl %SHIFT_REG, %eax, %eax
testl %eax, %eax
jnz L(first_vec_x0_check)
subl $VEC_SIZE, %esi
jle L(max)
VPCMP $0, VEC_SIZE(%rdi), %YMMZERO, %k0
kmovd %k0, %eax
testl %eax, %eax
jnz L(first_vec_x1_check)
movq %r8, %rax
# ifdef USE_AS_WCSLEN
shrq $2, %rax
# endif
ret
.p2align 4
L(first_vec_x0_check):
# ifndef USE_AS_STRNLEN
jz L(cross_page_continue)
tzcntl %eax, %eax
# ifdef USE_AS_WCSLEN
/* NB: Multiply wchar_t count by 4 to get the number of bytes. */
sall $2, %eax
ret
# else
jnz L(cross_page_less_vec)
# ifndef USE_AS_WCSLEN
movl %edx, %ecx
andl $(CHAR_PER_VEC - 1), %ecx
# endif
movl $CHAR_PER_VEC, %eax
subl %ecx, %eax
/* Check the end of data. */
cmpq %rax, %rsi
jbe L(max)
addq %rdi, %rax
subq %rdx, %rax
# ifdef USE_AS_WCSLEN
shrq $2, %rax
# endif
ja L(cross_page_continue)
movl %esi, %eax
ret
.p2align 4
L(first_vec_x1_check):
L(cross_page_less_vec):
tzcntl %eax, %eax
# ifdef USE_AS_WCSLEN
/* NB: Multiply wchar_t count by 4 to get the number of bytes. */
sall $2, %eax
# endif
/* Check the end of data. */
/* Select min of length and position of first null. */
cmpq %rax, %rsi
jbe L(max)
addq $VEC_SIZE, %rax
addq %rdi, %rax
subq %rdx, %rax
# ifdef USE_AS_WCSLEN
shrq $2, %rax
# endif
ret
.p2align 4
L(first_vec_x2_check):
tzcntl %eax, %eax
# ifdef USE_AS_WCSLEN
/* NB: Multiply wchar_t count by 4 to get the number of bytes. */
sall $2, %eax
# endif
/* Check the end of data. */
cmpq %rax, %rsi
jbe L(max)
addq $(VEC_SIZE * 2), %rax
addq %rdi, %rax
subq %rdx, %rax
# ifdef USE_AS_WCSLEN
shrq $2, %rax
# endif
ret
.p2align 4
L(first_vec_x3_check):
tzcntl %eax, %eax
# ifdef USE_AS_WCSLEN
/* NB: Multiply wchar_t count by 4 to get the number of bytes. */
sall $2, %eax
# endif
/* Check the end of data. */
cmpq %rax, %rsi
jbe L(max)
addq $(VEC_SIZE * 3), %rax
addq %rdi, %rax
subq %rdx, %rax
# ifdef USE_AS_WCSLEN
shrq $2, %rax
# endif
ret
.p2align 4
L(max):
movq %r8, %rax
# ifdef USE_AS_WCSLEN
shrq $2, %rax
# endif
ret
.p2align 4
L(zero):
xorl %eax, %eax
cmovb %esi, %eax
ret
# endif
.p2align 4
L(first_vec_x0):
tzcntl %eax, %eax
# ifdef USE_AS_WCSLEN
/* NB: Multiply wchar_t count by 4 to get the number of bytes. */
sall $2, %eax
# endif
addq %rdi, %rax
subq %rdx, %rax
# ifdef USE_AS_WCSLEN
shrq $2, %rax
# endif
ret
.p2align 4
L(first_vec_x1):
tzcntl %eax, %eax
# ifdef USE_AS_WCSLEN
/* NB: Multiply wchar_t count by 4 to get the number of bytes. */
sall $2, %eax
# endif
addq $VEC_SIZE, %rax
addq %rdi, %rax
subq %rdx, %rax
# ifdef USE_AS_WCSLEN
shrq $2, %rax
# endif
ret
.p2align 4
L(first_vec_x2):
tzcntl %eax, %eax
# ifdef USE_AS_WCSLEN
/* NB: Multiply wchar_t count by 4 to get the number of bytes. */
sall $2, %eax
# endif
addq $(VEC_SIZE * 2), %rax
addq %rdi, %rax
subq %rdx, %rax
# ifdef USE_AS_WCSLEN
shrq $2, %rax
# endif
ret
.p2align 4
L(4x_vec_end):
VPCMP $0, %YMM1, %YMMZERO, %k0
kmovd %k0, %eax
testl %eax, %eax
jnz L(first_vec_x0)
VPCMP $0, %YMM2, %YMMZERO, %k1
kmovd %k1, %eax
testl %eax, %eax
jnz L(first_vec_x1)
VPCMP $0, %YMM3, %YMMZERO, %k2
kmovd %k2, %eax
testl %eax, %eax
jnz L(first_vec_x2)
VPCMP $0, %YMM4, %YMMZERO, %k3
kmovd %k3, %eax
L(first_vec_x3):
tzcntl %eax, %eax
# ifdef USE_AS_WCSLEN
/* NB: Multiply wchar_t count by 4 to get the number of bytes. */
sall $2, %eax
# endif
addq $(VEC_SIZE * 3), %rax
addq %rdi, %rax
subq %rdx, %rax
# ifdef USE_AS_WCSLEN
shrq $2, %rax
# endif
ret
END (STRLEN)
#endif