mirror of
https://github.com/git/git.git
synced 2024-11-27 12:03:55 +08:00
3997614c24
More memory leaks have been plugged. * ps/leakfixes-more: (29 commits) builtin/blame: fix leaking ignore revs files builtin/blame: fix leaking prefixed paths blame: fix leaking data for blame scoreboards line-range: plug leaking find functions merge: fix leaking merge bases builtin/merge: fix leaking `struct cmdnames` in `get_strategy()` sequencer: fix memory leaks in `make_script_with_merges()` builtin/clone: plug leaking HEAD ref in `wanted_peer_refs()` apply: fix leaking string in `match_fragment()` sequencer: fix leaking string buffer in `commit_staged_changes()` commit: fix leaking parents when calling `commit_tree_extended()` config: fix leaking "core.notesref" variable rerere: fix various trivial leaks builtin/stash: fix leak in `show_stash()` revision: free diff options builtin/log: fix leaking commit list in git-cherry(1) merge-recursive: fix memory leak when finalizing merge builtin/merge-recursive: fix leaking object ID bases builtin/difftool: plug memory leaks in `run_dir_diff()` object-name: free leaking object contexts ...
2952 lines
84 KiB
C
2952 lines
84 KiB
C
#define USE_THE_REPOSITORY_VARIABLE
|
|
|
|
#include "git-compat-util.h"
|
|
#include "refs.h"
|
|
#include "object-store-ll.h"
|
|
#include "cache-tree.h"
|
|
#include "mergesort.h"
|
|
#include "commit.h"
|
|
#include "convert.h"
|
|
#include "diff.h"
|
|
#include "diffcore.h"
|
|
#include "gettext.h"
|
|
#include "hex.h"
|
|
#include "path.h"
|
|
#include "read-cache.h"
|
|
#include "revision.h"
|
|
#include "setup.h"
|
|
#include "tag.h"
|
|
#include "trace2.h"
|
|
#include "blame.h"
|
|
#include "alloc.h"
|
|
#include "commit-slab.h"
|
|
#include "bloom.h"
|
|
#include "commit-graph.h"
|
|
|
|
define_commit_slab(blame_suspects, struct blame_origin *);
|
|
static struct blame_suspects blame_suspects;
|
|
|
|
struct blame_origin *get_blame_suspects(struct commit *commit)
|
|
{
|
|
struct blame_origin **result;
|
|
|
|
result = blame_suspects_peek(&blame_suspects, commit);
|
|
|
|
return result ? *result : NULL;
|
|
}
|
|
|
|
static void set_blame_suspects(struct commit *commit, struct blame_origin *origin)
|
|
{
|
|
*blame_suspects_at(&blame_suspects, commit) = origin;
|
|
}
|
|
|
|
void blame_origin_decref(struct blame_origin *o)
|
|
{
|
|
if (o && --o->refcnt <= 0) {
|
|
struct blame_origin *p, *l = NULL;
|
|
if (o->previous)
|
|
blame_origin_decref(o->previous);
|
|
free(o->file.ptr);
|
|
/* Should be present exactly once in commit chain */
|
|
for (p = get_blame_suspects(o->commit); p; l = p, p = p->next) {
|
|
if (p == o) {
|
|
if (l)
|
|
l->next = p->next;
|
|
else
|
|
set_blame_suspects(o->commit, p->next);
|
|
free(o);
|
|
return;
|
|
}
|
|
}
|
|
die("internal error in blame_origin_decref");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Given a commit and a path in it, create a new origin structure.
|
|
* The callers that add blame to the scoreboard should use
|
|
* get_origin() to obtain shared, refcounted copy instead of calling
|
|
* this function directly.
|
|
*/
|
|
static struct blame_origin *make_origin(struct commit *commit, const char *path)
|
|
{
|
|
struct blame_origin *o;
|
|
FLEX_ALLOC_STR(o, path, path);
|
|
o->commit = commit;
|
|
o->refcnt = 1;
|
|
o->next = get_blame_suspects(commit);
|
|
set_blame_suspects(commit, o);
|
|
return o;
|
|
}
|
|
|
|
/*
|
|
* Locate an existing origin or create a new one.
|
|
* This moves the origin to front position in the commit util list.
|
|
*/
|
|
static struct blame_origin *get_origin(struct commit *commit, const char *path)
|
|
{
|
|
struct blame_origin *o, *l;
|
|
|
|
for (o = get_blame_suspects(commit), l = NULL; o; l = o, o = o->next) {
|
|
if (!strcmp(o->path, path)) {
|
|
/* bump to front */
|
|
if (l) {
|
|
l->next = o->next;
|
|
o->next = get_blame_suspects(commit);
|
|
set_blame_suspects(commit, o);
|
|
}
|
|
return blame_origin_incref(o);
|
|
}
|
|
}
|
|
return make_origin(commit, path);
|
|
}
|
|
|
|
|
|
|
|
static void verify_working_tree_path(struct repository *r,
|
|
struct commit *work_tree, const char *path)
|
|
{
|
|
struct commit_list *parents;
|
|
int pos;
|
|
|
|
for (parents = work_tree->parents; parents; parents = parents->next) {
|
|
const struct object_id *commit_oid = &parents->item->object.oid;
|
|
struct object_id blob_oid;
|
|
unsigned short mode;
|
|
|
|
if (!get_tree_entry(r, commit_oid, path, &blob_oid, &mode) &&
|
|
oid_object_info(r, &blob_oid, NULL) == OBJ_BLOB)
|
|
return;
|
|
}
|
|
|
|
pos = index_name_pos(r->index, path, strlen(path));
|
|
if (pos >= 0)
|
|
; /* path is in the index */
|
|
else if (-1 - pos < r->index->cache_nr &&
|
|
!strcmp(r->index->cache[-1 - pos]->name, path))
|
|
; /* path is in the index, unmerged */
|
|
else
|
|
die("no such path '%s' in HEAD", path);
|
|
}
|
|
|
|
static struct commit_list **append_parent(struct repository *r,
|
|
struct commit_list **tail,
|
|
const struct object_id *oid)
|
|
{
|
|
struct commit *parent;
|
|
|
|
parent = lookup_commit_reference(r, oid);
|
|
if (!parent)
|
|
die("no such commit %s", oid_to_hex(oid));
|
|
return &commit_list_insert(parent, tail)->next;
|
|
}
|
|
|
|
static void append_merge_parents(struct repository *r,
|
|
struct commit_list **tail)
|
|
{
|
|
int merge_head;
|
|
struct strbuf line = STRBUF_INIT;
|
|
|
|
merge_head = open(git_path_merge_head(r), O_RDONLY);
|
|
if (merge_head < 0) {
|
|
if (errno == ENOENT)
|
|
return;
|
|
die("cannot open '%s' for reading",
|
|
git_path_merge_head(r));
|
|
}
|
|
|
|
while (!strbuf_getwholeline_fd(&line, merge_head, '\n')) {
|
|
struct object_id oid;
|
|
if (get_oid_hex(line.buf, &oid))
|
|
die("unknown line in '%s': %s",
|
|
git_path_merge_head(r), line.buf);
|
|
tail = append_parent(r, tail, &oid);
|
|
}
|
|
close(merge_head);
|
|
strbuf_release(&line);
|
|
}
|
|
|
|
/*
|
|
* This isn't as simple as passing sb->buf and sb->len, because we
|
|
* want to transfer ownership of the buffer to the commit (so we
|
|
* must use detach).
|
|
*/
|
|
static void set_commit_buffer_from_strbuf(struct repository *r,
|
|
struct commit *c,
|
|
struct strbuf *sb)
|
|
{
|
|
size_t len;
|
|
void *buf = strbuf_detach(sb, &len);
|
|
set_commit_buffer(r, c, buf, len);
|
|
}
|
|
|
|
/*
|
|
* Prepare a dummy commit that represents the work tree (or staged) item.
|
|
* Note that annotating work tree item never works in the reverse.
|
|
*/
|
|
static struct commit *fake_working_tree_commit(struct repository *r,
|
|
struct diff_options *opt,
|
|
const char *path,
|
|
const char *contents_from,
|
|
struct object_id *oid)
|
|
{
|
|
struct commit *commit;
|
|
struct blame_origin *origin;
|
|
struct commit_list **parent_tail, *parent;
|
|
struct strbuf buf = STRBUF_INIT;
|
|
const char *ident;
|
|
time_t now;
|
|
int len;
|
|
struct cache_entry *ce;
|
|
unsigned mode;
|
|
struct strbuf msg = STRBUF_INIT;
|
|
|
|
repo_read_index(r);
|
|
time(&now);
|
|
commit = alloc_commit_node(r);
|
|
commit->object.parsed = 1;
|
|
commit->date = now;
|
|
parent_tail = &commit->parents;
|
|
|
|
parent_tail = append_parent(r, parent_tail, oid);
|
|
append_merge_parents(r, parent_tail);
|
|
verify_working_tree_path(r, commit, path);
|
|
|
|
origin = make_origin(commit, path);
|
|
|
|
if (contents_from)
|
|
ident = fmt_ident("External file (--contents)", "external.file",
|
|
WANT_BLANK_IDENT, NULL, 0);
|
|
else
|
|
ident = fmt_ident("Not Committed Yet", "not.committed.yet",
|
|
WANT_BLANK_IDENT, NULL, 0);
|
|
strbuf_addstr(&msg, "tree 0000000000000000000000000000000000000000\n");
|
|
for (parent = commit->parents; parent; parent = parent->next)
|
|
strbuf_addf(&msg, "parent %s\n",
|
|
oid_to_hex(&parent->item->object.oid));
|
|
strbuf_addf(&msg,
|
|
"author %s\n"
|
|
"committer %s\n\n"
|
|
"Version of %s from %s\n",
|
|
ident, ident, path,
|
|
(!contents_from ? path :
|
|
(!strcmp(contents_from, "-") ? "standard input" : contents_from)));
|
|
set_commit_buffer_from_strbuf(r, commit, &msg);
|
|
|
|
if (!contents_from || strcmp("-", contents_from)) {
|
|
struct stat st;
|
|
const char *read_from;
|
|
char *buf_ptr;
|
|
unsigned long buf_len;
|
|
|
|
if (contents_from) {
|
|
if (stat(contents_from, &st) < 0)
|
|
die_errno("Cannot stat '%s'", contents_from);
|
|
read_from = contents_from;
|
|
}
|
|
else {
|
|
if (lstat(path, &st) < 0)
|
|
die_errno("Cannot lstat '%s'", path);
|
|
read_from = path;
|
|
}
|
|
mode = canon_mode(st.st_mode);
|
|
|
|
switch (st.st_mode & S_IFMT) {
|
|
case S_IFREG:
|
|
if (opt->flags.allow_textconv &&
|
|
textconv_object(r, read_from, mode, null_oid(), 0, &buf_ptr, &buf_len))
|
|
strbuf_attach(&buf, buf_ptr, buf_len, buf_len + 1);
|
|
else if (strbuf_read_file(&buf, read_from, st.st_size) != st.st_size)
|
|
die_errno("cannot open or read '%s'", read_from);
|
|
break;
|
|
case S_IFLNK:
|
|
if (strbuf_readlink(&buf, read_from, st.st_size) < 0)
|
|
die_errno("cannot readlink '%s'", read_from);
|
|
break;
|
|
default:
|
|
die("unsupported file type %s", read_from);
|
|
}
|
|
}
|
|
else {
|
|
/* Reading from stdin */
|
|
mode = 0;
|
|
if (strbuf_read(&buf, 0, 0) < 0)
|
|
die_errno("failed to read from stdin");
|
|
}
|
|
convert_to_git(r->index, path, buf.buf, buf.len, &buf, 0);
|
|
origin->file.ptr = buf.buf;
|
|
origin->file.size = buf.len;
|
|
pretend_object_file(buf.buf, buf.len, OBJ_BLOB, &origin->blob_oid);
|
|
|
|
/*
|
|
* Read the current index, replace the path entry with
|
|
* origin->blob_sha1 without mucking with its mode or type
|
|
* bits; we are not going to write this index out -- we just
|
|
* want to run "diff-index --cached".
|
|
*/
|
|
discard_index(r->index);
|
|
repo_read_index(r);
|
|
|
|
len = strlen(path);
|
|
if (!mode) {
|
|
int pos = index_name_pos(r->index, path, len);
|
|
if (0 <= pos)
|
|
mode = r->index->cache[pos]->ce_mode;
|
|
else
|
|
/* Let's not bother reading from HEAD tree */
|
|
mode = S_IFREG | 0644;
|
|
}
|
|
ce = make_empty_cache_entry(r->index, len);
|
|
oidcpy(&ce->oid, &origin->blob_oid);
|
|
memcpy(ce->name, path, len);
|
|
ce->ce_flags = create_ce_flags(0);
|
|
ce->ce_namelen = len;
|
|
ce->ce_mode = create_ce_mode(mode);
|
|
add_index_entry(r->index, ce,
|
|
ADD_CACHE_OK_TO_ADD | ADD_CACHE_OK_TO_REPLACE);
|
|
|
|
cache_tree_invalidate_path(r->index, path);
|
|
|
|
return commit;
|
|
}
|
|
|
|
|
|
|
|
static int diff_hunks(mmfile_t *file_a, mmfile_t *file_b,
|
|
xdl_emit_hunk_consume_func_t hunk_func, void *cb_data, int xdl_opts)
|
|
{
|
|
xpparam_t xpp = {0};
|
|
xdemitconf_t xecfg = {0};
|
|
xdemitcb_t ecb = {NULL};
|
|
|
|
xpp.flags = xdl_opts;
|
|
xecfg.hunk_func = hunk_func;
|
|
ecb.priv = cb_data;
|
|
return xdi_diff(file_a, file_b, &xpp, &xecfg, &ecb);
|
|
}
|
|
|
|
static const char *get_next_line(const char *start, const char *end)
|
|
{
|
|
const char *nl = memchr(start, '\n', end - start);
|
|
|
|
return nl ? nl + 1 : end;
|
|
}
|
|
|
|
static int find_line_starts(int **line_starts, const char *buf,
|
|
unsigned long len)
|
|
{
|
|
const char *end = buf + len;
|
|
const char *p;
|
|
int *lineno;
|
|
int num = 0;
|
|
|
|
for (p = buf; p < end; p = get_next_line(p, end))
|
|
num++;
|
|
|
|
ALLOC_ARRAY(*line_starts, num + 1);
|
|
lineno = *line_starts;
|
|
|
|
for (p = buf; p < end; p = get_next_line(p, end))
|
|
*lineno++ = p - buf;
|
|
|
|
*lineno = len;
|
|
|
|
return num;
|
|
}
|
|
|
|
struct fingerprint_entry;
|
|
|
|
/* A fingerprint is intended to loosely represent a string, such that two
|
|
* fingerprints can be quickly compared to give an indication of the similarity
|
|
* of the strings that they represent.
|
|
*
|
|
* A fingerprint is represented as a multiset of the lower-cased byte pairs in
|
|
* the string that it represents. Whitespace is added at each end of the
|
|
* string. Whitespace pairs are ignored. Whitespace is converted to '\0'.
|
|
* For example, the string "Darth Radar" will be converted to the following
|
|
* fingerprint:
|
|
* {"\0d", "da", "da", "ar", "ar", "rt", "th", "h\0", "\0r", "ra", "ad", "r\0"}
|
|
*
|
|
* The similarity between two fingerprints is the size of the intersection of
|
|
* their multisets, including repeated elements. See fingerprint_similarity for
|
|
* examples.
|
|
*
|
|
* For ease of implementation, the fingerprint is implemented as a map
|
|
* of byte pairs to the count of that byte pair in the string, instead of
|
|
* allowing repeated elements in a set.
|
|
*/
|
|
struct fingerprint {
|
|
struct hashmap map;
|
|
/* As we know the maximum number of entries in advance, it's
|
|
* convenient to store the entries in a single array instead of having
|
|
* the hashmap manage the memory.
|
|
*/
|
|
struct fingerprint_entry *entries;
|
|
};
|
|
|
|
/* A byte pair in a fingerprint. Stores the number of times the byte pair
|
|
* occurs in the string that the fingerprint represents.
|
|
*/
|
|
struct fingerprint_entry {
|
|
/* The hashmap entry - the hash represents the byte pair in its
|
|
* entirety so we don't need to store the byte pair separately.
|
|
*/
|
|
struct hashmap_entry entry;
|
|
/* The number of times the byte pair occurs in the string that the
|
|
* fingerprint represents.
|
|
*/
|
|
int count;
|
|
};
|
|
|
|
/* See `struct fingerprint` for an explanation of what a fingerprint is.
|
|
* \param result the fingerprint of the string is stored here. This must be
|
|
* freed later using free_fingerprint.
|
|
* \param line_begin the start of the string
|
|
* \param line_end the end of the string
|
|
*/
|
|
static void get_fingerprint(struct fingerprint *result,
|
|
const char *line_begin,
|
|
const char *line_end)
|
|
{
|
|
unsigned int hash, c0 = 0, c1;
|
|
const char *p;
|
|
int max_map_entry_count = 1 + line_end - line_begin;
|
|
struct fingerprint_entry *entry = xcalloc(max_map_entry_count,
|
|
sizeof(struct fingerprint_entry));
|
|
struct fingerprint_entry *found_entry;
|
|
|
|
hashmap_init(&result->map, NULL, NULL, max_map_entry_count);
|
|
result->entries = entry;
|
|
for (p = line_begin; p <= line_end; ++p, c0 = c1) {
|
|
/* Always terminate the string with whitespace.
|
|
* Normalise whitespace to 0, and normalise letters to
|
|
* lower case. This won't work for multibyte characters but at
|
|
* worst will match some unrelated characters.
|
|
*/
|
|
if ((p == line_end) || isspace(*p))
|
|
c1 = 0;
|
|
else
|
|
c1 = tolower(*p);
|
|
hash = c0 | (c1 << 8);
|
|
/* Ignore whitespace pairs */
|
|
if (hash == 0)
|
|
continue;
|
|
hashmap_entry_init(&entry->entry, hash);
|
|
|
|
found_entry = hashmap_get_entry(&result->map, entry,
|
|
/* member name */ entry, NULL);
|
|
if (found_entry) {
|
|
found_entry->count += 1;
|
|
} else {
|
|
entry->count = 1;
|
|
hashmap_add(&result->map, &entry->entry);
|
|
++entry;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void free_fingerprint(struct fingerprint *f)
|
|
{
|
|
hashmap_clear(&f->map);
|
|
free(f->entries);
|
|
}
|
|
|
|
/* Calculates the similarity between two fingerprints as the size of the
|
|
* intersection of their multisets, including repeated elements. See
|
|
* `struct fingerprint` for an explanation of the fingerprint representation.
|
|
* The similarity between "cat mat" and "father rather" is 2 because "at" is
|
|
* present twice in both strings while the similarity between "tim" and "mit"
|
|
* is 0.
|
|
*/
|
|
static int fingerprint_similarity(struct fingerprint *a, struct fingerprint *b)
|
|
{
|
|
int intersection = 0;
|
|
struct hashmap_iter iter;
|
|
const struct fingerprint_entry *entry_a, *entry_b;
|
|
|
|
hashmap_for_each_entry(&b->map, &iter, entry_b,
|
|
entry /* member name */) {
|
|
entry_a = hashmap_get_entry(&a->map, entry_b, entry, NULL);
|
|
if (entry_a) {
|
|
intersection += entry_a->count < entry_b->count ?
|
|
entry_a->count : entry_b->count;
|
|
}
|
|
}
|
|
return intersection;
|
|
}
|
|
|
|
/* Subtracts byte-pair elements in B from A, modifying A in place.
|
|
*/
|
|
static void fingerprint_subtract(struct fingerprint *a, struct fingerprint *b)
|
|
{
|
|
struct hashmap_iter iter;
|
|
struct fingerprint_entry *entry_a;
|
|
const struct fingerprint_entry *entry_b;
|
|
|
|
hashmap_iter_init(&b->map, &iter);
|
|
|
|
hashmap_for_each_entry(&b->map, &iter, entry_b,
|
|
entry /* member name */) {
|
|
entry_a = hashmap_get_entry(&a->map, entry_b, entry, NULL);
|
|
if (entry_a) {
|
|
if (entry_a->count <= entry_b->count)
|
|
hashmap_remove(&a->map, &entry_b->entry, NULL);
|
|
else
|
|
entry_a->count -= entry_b->count;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Calculate fingerprints for a series of lines.
|
|
* Puts the fingerprints in the fingerprints array, which must have been
|
|
* preallocated to allow storing line_count elements.
|
|
*/
|
|
static void get_line_fingerprints(struct fingerprint *fingerprints,
|
|
const char *content, const int *line_starts,
|
|
long first_line, long line_count)
|
|
{
|
|
int i;
|
|
const char *linestart, *lineend;
|
|
|
|
line_starts += first_line;
|
|
for (i = 0; i < line_count; ++i) {
|
|
linestart = content + line_starts[i];
|
|
lineend = content + line_starts[i + 1];
|
|
get_fingerprint(fingerprints + i, linestart, lineend);
|
|
}
|
|
}
|
|
|
|
static void free_line_fingerprints(struct fingerprint *fingerprints,
|
|
int nr_fingerprints)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < nr_fingerprints; i++)
|
|
free_fingerprint(&fingerprints[i]);
|
|
}
|
|
|
|
/* This contains the data necessary to linearly map a line number in one half
|
|
* of a diff chunk to the line in the other half of the diff chunk that is
|
|
* closest in terms of its position as a fraction of the length of the chunk.
|
|
*/
|
|
struct line_number_mapping {
|
|
int destination_start, destination_length,
|
|
source_start, source_length;
|
|
};
|
|
|
|
/* Given a line number in one range, offset and scale it to map it onto the
|
|
* other range.
|
|
* Essentially this mapping is a simple linear equation but the calculation is
|
|
* more complicated to allow performing it with integer operations.
|
|
* Another complication is that if a line could map onto many lines in the
|
|
* destination range then we want to choose the line at the center of those
|
|
* possibilities.
|
|
* Example: if the chunk is 2 lines long in A and 10 lines long in B then the
|
|
* first 5 lines in B will map onto the first line in the A chunk, while the
|
|
* last 5 lines will all map onto the second line in the A chunk.
|
|
* Example: if the chunk is 10 lines long in A and 2 lines long in B then line
|
|
* 0 in B will map onto line 2 in A, and line 1 in B will map onto line 7 in A.
|
|
*/
|
|
static int map_line_number(int line_number,
|
|
const struct line_number_mapping *mapping)
|
|
{
|
|
return ((line_number - mapping->source_start) * 2 + 1) *
|
|
mapping->destination_length /
|
|
(mapping->source_length * 2) +
|
|
mapping->destination_start;
|
|
}
|
|
|
|
/* Get a pointer to the element storing the similarity between a line in A
|
|
* and a line in B.
|
|
*
|
|
* The similarities are stored in a 2-dimensional array. Each "row" in the
|
|
* array contains the similarities for a line in B. The similarities stored in
|
|
* a row are the similarities between the line in B and the nearby lines in A.
|
|
* To keep the length of each row the same, it is padded out with values of -1
|
|
* where the search range extends beyond the lines in A.
|
|
* For example, if max_search_distance_a is 2 and the two sides of a diff chunk
|
|
* look like this:
|
|
* a | m
|
|
* b | n
|
|
* c | o
|
|
* d | p
|
|
* e | q
|
|
* Then the similarity array will contain:
|
|
* [-1, -1, am, bm, cm,
|
|
* -1, an, bn, cn, dn,
|
|
* ao, bo, co, do, eo,
|
|
* bp, cp, dp, ep, -1,
|
|
* cq, dq, eq, -1, -1]
|
|
* Where similarities are denoted either by -1 for invalid, or the
|
|
* concatenation of the two lines in the diff being compared.
|
|
*
|
|
* \param similarities array of similarities between lines in A and B
|
|
* \param line_a the index of the line in A, in the same frame of reference as
|
|
* closest_line_a.
|
|
* \param local_line_b the index of the line in B, relative to the first line
|
|
* in B that similarities represents.
|
|
* \param closest_line_a the index of the line in A that is deemed to be
|
|
* closest to local_line_b. This must be in the same
|
|
* frame of reference as line_a. This value defines
|
|
* where similarities is centered for the line in B.
|
|
* \param max_search_distance_a maximum distance in lines from the closest line
|
|
* in A for other lines in A for which
|
|
* similarities may be calculated.
|
|
*/
|
|
static int *get_similarity(int *similarities,
|
|
int line_a, int local_line_b,
|
|
int closest_line_a, int max_search_distance_a)
|
|
{
|
|
assert(abs(line_a - closest_line_a) <=
|
|
max_search_distance_a);
|
|
return similarities + line_a - closest_line_a +
|
|
max_search_distance_a +
|
|
local_line_b * (max_search_distance_a * 2 + 1);
|
|
}
|
|
|
|
#define CERTAIN_NOTHING_MATCHES -2
|
|
#define CERTAINTY_NOT_CALCULATED -1
|
|
|
|
/* Given a line in B, first calculate its similarities with nearby lines in A
|
|
* if not already calculated, then identify the most similar and second most
|
|
* similar lines. The "certainty" is calculated based on those two
|
|
* similarities.
|
|
*
|
|
* \param start_a the index of the first line of the chunk in A
|
|
* \param length_a the length in lines of the chunk in A
|
|
* \param local_line_b the index of the line in B, relative to the first line
|
|
* in the chunk.
|
|
* \param fingerprints_a array of fingerprints for the chunk in A
|
|
* \param fingerprints_b array of fingerprints for the chunk in B
|
|
* \param similarities 2-dimensional array of similarities between lines in A
|
|
* and B. See get_similarity() for more details.
|
|
* \param certainties array of values indicating how strongly a line in B is
|
|
* matched with some line in A.
|
|
* \param second_best_result array of absolute indices in A for the second
|
|
* closest match of a line in B.
|
|
* \param result array of absolute indices in A for the closest match of a line
|
|
* in B.
|
|
* \param max_search_distance_a maximum distance in lines from the closest line
|
|
* in A for other lines in A for which
|
|
* similarities may be calculated.
|
|
* \param map_line_number_in_b_to_a parameter to map_line_number().
|
|
*/
|
|
static void find_best_line_matches(
|
|
int start_a,
|
|
int length_a,
|
|
int start_b,
|
|
int local_line_b,
|
|
struct fingerprint *fingerprints_a,
|
|
struct fingerprint *fingerprints_b,
|
|
int *similarities,
|
|
int *certainties,
|
|
int *second_best_result,
|
|
int *result,
|
|
const int max_search_distance_a,
|
|
const struct line_number_mapping *map_line_number_in_b_to_a)
|
|
{
|
|
|
|
int i, search_start, search_end, closest_local_line_a, *similarity,
|
|
best_similarity = 0, second_best_similarity = 0,
|
|
best_similarity_index = 0, second_best_similarity_index = 0;
|
|
|
|
/* certainty has already been calculated so no need to redo the work */
|
|
if (certainties[local_line_b] != CERTAINTY_NOT_CALCULATED)
|
|
return;
|
|
|
|
closest_local_line_a = map_line_number(
|
|
local_line_b + start_b, map_line_number_in_b_to_a) - start_a;
|
|
|
|
search_start = closest_local_line_a - max_search_distance_a;
|
|
if (search_start < 0)
|
|
search_start = 0;
|
|
|
|
search_end = closest_local_line_a + max_search_distance_a + 1;
|
|
if (search_end > length_a)
|
|
search_end = length_a;
|
|
|
|
for (i = search_start; i < search_end; ++i) {
|
|
similarity = get_similarity(similarities,
|
|
i, local_line_b,
|
|
closest_local_line_a,
|
|
max_search_distance_a);
|
|
if (*similarity == -1) {
|
|
/* This value will never exceed 10 but assert just in
|
|
* case
|
|
*/
|
|
assert(abs(i - closest_local_line_a) < 1000);
|
|
/* scale the similarity by (1000 - distance from
|
|
* closest line) to act as a tie break between lines
|
|
* that otherwise are equally similar.
|
|
*/
|
|
*similarity = fingerprint_similarity(
|
|
fingerprints_b + local_line_b,
|
|
fingerprints_a + i) *
|
|
(1000 - abs(i - closest_local_line_a));
|
|
}
|
|
if (*similarity > best_similarity) {
|
|
second_best_similarity = best_similarity;
|
|
second_best_similarity_index = best_similarity_index;
|
|
best_similarity = *similarity;
|
|
best_similarity_index = i;
|
|
} else if (*similarity > second_best_similarity) {
|
|
second_best_similarity = *similarity;
|
|
second_best_similarity_index = i;
|
|
}
|
|
}
|
|
|
|
if (best_similarity == 0) {
|
|
/* this line definitely doesn't match with anything. Mark it
|
|
* with this special value so it doesn't get invalidated and
|
|
* won't be recalculated.
|
|
*/
|
|
certainties[local_line_b] = CERTAIN_NOTHING_MATCHES;
|
|
result[local_line_b] = -1;
|
|
} else {
|
|
/* Calculate the certainty with which this line matches.
|
|
* If the line matches well with two lines then that reduces
|
|
* the certainty. However we still want to prioritise matching
|
|
* a line that matches very well with two lines over matching a
|
|
* line that matches poorly with one line, hence doubling
|
|
* best_similarity.
|
|
* This means that if we have
|
|
* line X that matches only one line with a score of 3,
|
|
* line Y that matches two lines equally with a score of 5,
|
|
* and line Z that matches only one line with a score or 2,
|
|
* then the lines in order of certainty are X, Y, Z.
|
|
*/
|
|
certainties[local_line_b] = best_similarity * 2 -
|
|
second_best_similarity;
|
|
|
|
/* We keep both the best and second best results to allow us to
|
|
* check at a later stage of the matching process whether the
|
|
* result needs to be invalidated.
|
|
*/
|
|
result[local_line_b] = start_a + best_similarity_index;
|
|
second_best_result[local_line_b] =
|
|
start_a + second_best_similarity_index;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This finds the line that we can match with the most confidence, and
|
|
* uses it as a partition. It then calls itself on the lines on either side of
|
|
* that partition. In this way we avoid lines appearing out of order, and
|
|
* retain a sensible line ordering.
|
|
* \param start_a index of the first line in A with which lines in B may be
|
|
* compared.
|
|
* \param start_b index of the first line in B for which matching should be
|
|
* done.
|
|
* \param length_a number of lines in A with which lines in B may be compared.
|
|
* \param length_b number of lines in B for which matching should be done.
|
|
* \param fingerprints_a mutable array of fingerprints in A. The first element
|
|
* corresponds to the line at start_a.
|
|
* \param fingerprints_b array of fingerprints in B. The first element
|
|
* corresponds to the line at start_b.
|
|
* \param similarities 2-dimensional array of similarities between lines in A
|
|
* and B. See get_similarity() for more details.
|
|
* \param certainties array of values indicating how strongly a line in B is
|
|
* matched with some line in A.
|
|
* \param second_best_result array of absolute indices in A for the second
|
|
* closest match of a line in B.
|
|
* \param result array of absolute indices in A for the closest match of a line
|
|
* in B.
|
|
* \param max_search_distance_a maximum distance in lines from the closest line
|
|
* in A for other lines in A for which
|
|
* similarities may be calculated.
|
|
* \param max_search_distance_b an upper bound on the greatest possible
|
|
* distance between lines in B such that they will
|
|
* both be compared with the same line in A
|
|
* according to max_search_distance_a.
|
|
* \param map_line_number_in_b_to_a parameter to map_line_number().
|
|
*/
|
|
static void fuzzy_find_matching_lines_recurse(
|
|
int start_a, int start_b,
|
|
int length_a, int length_b,
|
|
struct fingerprint *fingerprints_a,
|
|
struct fingerprint *fingerprints_b,
|
|
int *similarities,
|
|
int *certainties,
|
|
int *second_best_result,
|
|
int *result,
|
|
int max_search_distance_a,
|
|
int max_search_distance_b,
|
|
const struct line_number_mapping *map_line_number_in_b_to_a)
|
|
{
|
|
int i, invalidate_min, invalidate_max, offset_b,
|
|
second_half_start_a, second_half_start_b,
|
|
second_half_length_a, second_half_length_b,
|
|
most_certain_line_a, most_certain_local_line_b = -1,
|
|
most_certain_line_certainty = -1,
|
|
closest_local_line_a;
|
|
|
|
for (i = 0; i < length_b; ++i) {
|
|
find_best_line_matches(start_a,
|
|
length_a,
|
|
start_b,
|
|
i,
|
|
fingerprints_a,
|
|
fingerprints_b,
|
|
similarities,
|
|
certainties,
|
|
second_best_result,
|
|
result,
|
|
max_search_distance_a,
|
|
map_line_number_in_b_to_a);
|
|
|
|
if (certainties[i] > most_certain_line_certainty) {
|
|
most_certain_line_certainty = certainties[i];
|
|
most_certain_local_line_b = i;
|
|
}
|
|
}
|
|
|
|
/* No matches. */
|
|
if (most_certain_local_line_b == -1)
|
|
return;
|
|
|
|
most_certain_line_a = result[most_certain_local_line_b];
|
|
|
|
/*
|
|
* Subtract the most certain line's fingerprint in B from the matched
|
|
* fingerprint in A. This means that other lines in B can't also match
|
|
* the same parts of the line in A.
|
|
*/
|
|
fingerprint_subtract(fingerprints_a + most_certain_line_a - start_a,
|
|
fingerprints_b + most_certain_local_line_b);
|
|
|
|
/* Invalidate results that may be affected by the choice of most
|
|
* certain line.
|
|
*/
|
|
invalidate_min = most_certain_local_line_b - max_search_distance_b;
|
|
invalidate_max = most_certain_local_line_b + max_search_distance_b + 1;
|
|
if (invalidate_min < 0)
|
|
invalidate_min = 0;
|
|
if (invalidate_max > length_b)
|
|
invalidate_max = length_b;
|
|
|
|
/* As the fingerprint in A has changed, discard previously calculated
|
|
* similarity values with that fingerprint.
|
|
*/
|
|
for (i = invalidate_min; i < invalidate_max; ++i) {
|
|
closest_local_line_a = map_line_number(
|
|
i + start_b, map_line_number_in_b_to_a) - start_a;
|
|
|
|
/* Check that the lines in A and B are close enough that there
|
|
* is a similarity value for them.
|
|
*/
|
|
if (abs(most_certain_line_a - start_a - closest_local_line_a) >
|
|
max_search_distance_a) {
|
|
continue;
|
|
}
|
|
|
|
*get_similarity(similarities, most_certain_line_a - start_a,
|
|
i, closest_local_line_a,
|
|
max_search_distance_a) = -1;
|
|
}
|
|
|
|
/* More invalidating of results that may be affected by the choice of
|
|
* most certain line.
|
|
* Discard the matches for lines in B that are currently matched with a
|
|
* line in A such that their ordering contradicts the ordering imposed
|
|
* by the choice of most certain line.
|
|
*/
|
|
for (i = most_certain_local_line_b - 1; i >= invalidate_min; --i) {
|
|
/* In this loop we discard results for lines in B that are
|
|
* before most-certain-line-B but are matched with a line in A
|
|
* that is after most-certain-line-A.
|
|
*/
|
|
if (certainties[i] >= 0 &&
|
|
(result[i] >= most_certain_line_a ||
|
|
second_best_result[i] >= most_certain_line_a)) {
|
|
certainties[i] = CERTAINTY_NOT_CALCULATED;
|
|
}
|
|
}
|
|
for (i = most_certain_local_line_b + 1; i < invalidate_max; ++i) {
|
|
/* In this loop we discard results for lines in B that are
|
|
* after most-certain-line-B but are matched with a line in A
|
|
* that is before most-certain-line-A.
|
|
*/
|
|
if (certainties[i] >= 0 &&
|
|
(result[i] <= most_certain_line_a ||
|
|
second_best_result[i] <= most_certain_line_a)) {
|
|
certainties[i] = CERTAINTY_NOT_CALCULATED;
|
|
}
|
|
}
|
|
|
|
/* Repeat the matching process for lines before the most certain line.
|
|
*/
|
|
if (most_certain_local_line_b > 0) {
|
|
fuzzy_find_matching_lines_recurse(
|
|
start_a, start_b,
|
|
most_certain_line_a + 1 - start_a,
|
|
most_certain_local_line_b,
|
|
fingerprints_a, fingerprints_b, similarities,
|
|
certainties, second_best_result, result,
|
|
max_search_distance_a,
|
|
max_search_distance_b,
|
|
map_line_number_in_b_to_a);
|
|
}
|
|
/* Repeat the matching process for lines after the most certain line.
|
|
*/
|
|
if (most_certain_local_line_b + 1 < length_b) {
|
|
second_half_start_a = most_certain_line_a;
|
|
offset_b = most_certain_local_line_b + 1;
|
|
second_half_start_b = start_b + offset_b;
|
|
second_half_length_a =
|
|
length_a + start_a - second_half_start_a;
|
|
second_half_length_b =
|
|
length_b + start_b - second_half_start_b;
|
|
fuzzy_find_matching_lines_recurse(
|
|
second_half_start_a, second_half_start_b,
|
|
second_half_length_a, second_half_length_b,
|
|
fingerprints_a + second_half_start_a - start_a,
|
|
fingerprints_b + offset_b,
|
|
similarities +
|
|
offset_b * (max_search_distance_a * 2 + 1),
|
|
certainties + offset_b,
|
|
second_best_result + offset_b, result + offset_b,
|
|
max_search_distance_a,
|
|
max_search_distance_b,
|
|
map_line_number_in_b_to_a);
|
|
}
|
|
}
|
|
|
|
/* Find the lines in the parent line range that most closely match the lines in
|
|
* the target line range. This is accomplished by matching fingerprints in each
|
|
* blame_origin, and choosing the best matches that preserve the line ordering.
|
|
* See struct fingerprint for details of fingerprint matching, and
|
|
* fuzzy_find_matching_lines_recurse for details of preserving line ordering.
|
|
*
|
|
* The performance is believed to be O(n log n) in the typical case and O(n^2)
|
|
* in a pathological case, where n is the number of lines in the target range.
|
|
*/
|
|
static int *fuzzy_find_matching_lines(struct blame_origin *parent,
|
|
struct blame_origin *target,
|
|
int tlno, int parent_slno, int same,
|
|
int parent_len)
|
|
{
|
|
/* We use the terminology "A" for the left hand side of the diff AKA
|
|
* parent, and "B" for the right hand side of the diff AKA target. */
|
|
int start_a = parent_slno;
|
|
int length_a = parent_len;
|
|
int start_b = tlno;
|
|
int length_b = same - tlno;
|
|
|
|
struct line_number_mapping map_line_number_in_b_to_a = {
|
|
start_a, length_a, start_b, length_b
|
|
};
|
|
|
|
struct fingerprint *fingerprints_a = parent->fingerprints;
|
|
struct fingerprint *fingerprints_b = target->fingerprints;
|
|
|
|
int i, *result, *second_best_result,
|
|
*certainties, *similarities, similarity_count;
|
|
|
|
/*
|
|
* max_search_distance_a means that given a line in B, compare it to
|
|
* the line in A that is closest to its position, and the lines in A
|
|
* that are no greater than max_search_distance_a lines away from the
|
|
* closest line in A.
|
|
*
|
|
* max_search_distance_b is an upper bound on the greatest possible
|
|
* distance between lines in B such that they will both be compared
|
|
* with the same line in A according to max_search_distance_a.
|
|
*/
|
|
int max_search_distance_a = 10, max_search_distance_b;
|
|
|
|
if (length_a <= 0)
|
|
return NULL;
|
|
|
|
if (max_search_distance_a >= length_a)
|
|
max_search_distance_a = length_a ? length_a - 1 : 0;
|
|
|
|
max_search_distance_b = ((2 * max_search_distance_a + 1) * length_b
|
|
- 1) / length_a;
|
|
|
|
CALLOC_ARRAY(result, length_b);
|
|
CALLOC_ARRAY(second_best_result, length_b);
|
|
CALLOC_ARRAY(certainties, length_b);
|
|
|
|
/* See get_similarity() for details of similarities. */
|
|
similarity_count = length_b * (max_search_distance_a * 2 + 1);
|
|
CALLOC_ARRAY(similarities, similarity_count);
|
|
|
|
for (i = 0; i < length_b; ++i) {
|
|
result[i] = -1;
|
|
second_best_result[i] = -1;
|
|
certainties[i] = CERTAINTY_NOT_CALCULATED;
|
|
}
|
|
|
|
for (i = 0; i < similarity_count; ++i)
|
|
similarities[i] = -1;
|
|
|
|
fuzzy_find_matching_lines_recurse(start_a, start_b,
|
|
length_a, length_b,
|
|
fingerprints_a + start_a,
|
|
fingerprints_b + start_b,
|
|
similarities,
|
|
certainties,
|
|
second_best_result,
|
|
result,
|
|
max_search_distance_a,
|
|
max_search_distance_b,
|
|
&map_line_number_in_b_to_a);
|
|
|
|
free(similarities);
|
|
free(certainties);
|
|
free(second_best_result);
|
|
|
|
return result;
|
|
}
|
|
|
|
static void fill_origin_fingerprints(struct blame_origin *o)
|
|
{
|
|
int *line_starts;
|
|
|
|
if (o->fingerprints)
|
|
return;
|
|
o->num_lines = find_line_starts(&line_starts, o->file.ptr,
|
|
o->file.size);
|
|
CALLOC_ARRAY(o->fingerprints, o->num_lines);
|
|
get_line_fingerprints(o->fingerprints, o->file.ptr, line_starts,
|
|
0, o->num_lines);
|
|
free(line_starts);
|
|
}
|
|
|
|
static void drop_origin_fingerprints(struct blame_origin *o)
|
|
{
|
|
if (o->fingerprints) {
|
|
free_line_fingerprints(o->fingerprints, o->num_lines);
|
|
o->num_lines = 0;
|
|
FREE_AND_NULL(o->fingerprints);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Given an origin, prepare mmfile_t structure to be used by the
|
|
* diff machinery
|
|
*/
|
|
static void fill_origin_blob(struct diff_options *opt,
|
|
struct blame_origin *o, mmfile_t *file,
|
|
int *num_read_blob, int fill_fingerprints)
|
|
{
|
|
if (!o->file.ptr) {
|
|
enum object_type type;
|
|
unsigned long file_size;
|
|
|
|
(*num_read_blob)++;
|
|
if (opt->flags.allow_textconv &&
|
|
textconv_object(opt->repo, o->path, o->mode,
|
|
&o->blob_oid, 1, &file->ptr, &file_size))
|
|
;
|
|
else
|
|
file->ptr = repo_read_object_file(the_repository,
|
|
&o->blob_oid, &type,
|
|
&file_size);
|
|
file->size = file_size;
|
|
|
|
if (!file->ptr)
|
|
die("Cannot read blob %s for path %s",
|
|
oid_to_hex(&o->blob_oid),
|
|
o->path);
|
|
o->file = *file;
|
|
}
|
|
else
|
|
*file = o->file;
|
|
if (fill_fingerprints)
|
|
fill_origin_fingerprints(o);
|
|
}
|
|
|
|
static void drop_origin_blob(struct blame_origin *o)
|
|
{
|
|
FREE_AND_NULL(o->file.ptr);
|
|
drop_origin_fingerprints(o);
|
|
}
|
|
|
|
/*
|
|
* Any merge of blames happens on lists of blames that arrived via
|
|
* different parents in a single suspect. In this case, we want to
|
|
* sort according to the suspect line numbers as opposed to the final
|
|
* image line numbers. The function body is somewhat longish because
|
|
* it avoids unnecessary writes.
|
|
*/
|
|
|
|
static struct blame_entry *blame_merge(struct blame_entry *list1,
|
|
struct blame_entry *list2)
|
|
{
|
|
struct blame_entry *p1 = list1, *p2 = list2,
|
|
**tail = &list1;
|
|
|
|
if (!p1)
|
|
return p2;
|
|
if (!p2)
|
|
return p1;
|
|
|
|
if (p1->s_lno <= p2->s_lno) {
|
|
do {
|
|
tail = &p1->next;
|
|
if (!(p1 = *tail)) {
|
|
*tail = p2;
|
|
return list1;
|
|
}
|
|
} while (p1->s_lno <= p2->s_lno);
|
|
}
|
|
for (;;) {
|
|
*tail = p2;
|
|
do {
|
|
tail = &p2->next;
|
|
if (!(p2 = *tail)) {
|
|
*tail = p1;
|
|
return list1;
|
|
}
|
|
} while (p1->s_lno > p2->s_lno);
|
|
*tail = p1;
|
|
do {
|
|
tail = &p1->next;
|
|
if (!(p1 = *tail)) {
|
|
*tail = p2;
|
|
return list1;
|
|
}
|
|
} while (p1->s_lno <= p2->s_lno);
|
|
}
|
|
}
|
|
|
|
DEFINE_LIST_SORT(static, sort_blame_entries, struct blame_entry, next);
|
|
|
|
/*
|
|
* Final image line numbers are all different, so we don't need a
|
|
* three-way comparison here.
|
|
*/
|
|
|
|
static int compare_blame_final(const struct blame_entry *e1,
|
|
const struct blame_entry *e2)
|
|
{
|
|
return e1->lno > e2->lno ? 1 : -1;
|
|
}
|
|
|
|
static int compare_blame_suspect(const struct blame_entry *s1,
|
|
const struct blame_entry *s2)
|
|
{
|
|
/*
|
|
* to allow for collating suspects, we sort according to the
|
|
* respective pointer value as the primary sorting criterion.
|
|
* The actual relation is pretty unimportant as long as it
|
|
* establishes a total order. Comparing as integers gives us
|
|
* that.
|
|
*/
|
|
if (s1->suspect != s2->suspect)
|
|
return (intptr_t)s1->suspect > (intptr_t)s2->suspect ? 1 : -1;
|
|
if (s1->s_lno == s2->s_lno)
|
|
return 0;
|
|
return s1->s_lno > s2->s_lno ? 1 : -1;
|
|
}
|
|
|
|
void blame_sort_final(struct blame_scoreboard *sb)
|
|
{
|
|
sort_blame_entries(&sb->ent, compare_blame_final);
|
|
}
|
|
|
|
static int compare_commits_by_reverse_commit_date(const void *a,
|
|
const void *b,
|
|
void *c)
|
|
{
|
|
return -compare_commits_by_commit_date(a, b, c);
|
|
}
|
|
|
|
/*
|
|
* For debugging -- origin is refcounted, and this asserts that
|
|
* we do not underflow.
|
|
*/
|
|
static void sanity_check_refcnt(struct blame_scoreboard *sb)
|
|
{
|
|
int baa = 0;
|
|
struct blame_entry *ent;
|
|
|
|
for (ent = sb->ent; ent; ent = ent->next) {
|
|
/* Nobody should have zero or negative refcnt */
|
|
if (ent->suspect->refcnt <= 0) {
|
|
fprintf(stderr, "%s in %s has negative refcnt %d\n",
|
|
ent->suspect->path,
|
|
oid_to_hex(&ent->suspect->commit->object.oid),
|
|
ent->suspect->refcnt);
|
|
baa = 1;
|
|
}
|
|
}
|
|
if (baa)
|
|
sb->on_sanity_fail(sb, baa);
|
|
}
|
|
|
|
/*
|
|
* If two blame entries that are next to each other came from
|
|
* contiguous lines in the same origin (i.e. <commit, path> pair),
|
|
* merge them together.
|
|
*/
|
|
void blame_coalesce(struct blame_scoreboard *sb)
|
|
{
|
|
struct blame_entry *ent, *next;
|
|
|
|
for (ent = sb->ent; ent && (next = ent->next); ent = next) {
|
|
if (ent->suspect == next->suspect &&
|
|
ent->s_lno + ent->num_lines == next->s_lno &&
|
|
ent->lno + ent->num_lines == next->lno &&
|
|
ent->ignored == next->ignored &&
|
|
ent->unblamable == next->unblamable) {
|
|
ent->num_lines += next->num_lines;
|
|
ent->next = next->next;
|
|
blame_origin_decref(next->suspect);
|
|
free(next);
|
|
ent->score = 0;
|
|
next = ent; /* again */
|
|
}
|
|
}
|
|
|
|
if (sb->debug) /* sanity */
|
|
sanity_check_refcnt(sb);
|
|
}
|
|
|
|
/*
|
|
* Merge the given sorted list of blames into a preexisting origin.
|
|
* If there were no previous blames to that commit, it is entered into
|
|
* the commit priority queue of the score board.
|
|
*/
|
|
|
|
static void queue_blames(struct blame_scoreboard *sb, struct blame_origin *porigin,
|
|
struct blame_entry *sorted)
|
|
{
|
|
if (porigin->suspects)
|
|
porigin->suspects = blame_merge(porigin->suspects, sorted);
|
|
else {
|
|
struct blame_origin *o;
|
|
for (o = get_blame_suspects(porigin->commit); o; o = o->next) {
|
|
if (o->suspects) {
|
|
porigin->suspects = sorted;
|
|
return;
|
|
}
|
|
}
|
|
porigin->suspects = sorted;
|
|
prio_queue_put(&sb->commits, porigin->commit);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Fill the blob_sha1 field of an origin if it hasn't, so that later
|
|
* call to fill_origin_blob() can use it to locate the data. blob_sha1
|
|
* for an origin is also used to pass the blame for the entire file to
|
|
* the parent to detect the case where a child's blob is identical to
|
|
* that of its parent's.
|
|
*
|
|
* This also fills origin->mode for corresponding tree path.
|
|
*/
|
|
static int fill_blob_sha1_and_mode(struct repository *r,
|
|
struct blame_origin *origin)
|
|
{
|
|
if (!is_null_oid(&origin->blob_oid))
|
|
return 0;
|
|
if (get_tree_entry(r, &origin->commit->object.oid, origin->path, &origin->blob_oid, &origin->mode))
|
|
goto error_out;
|
|
if (oid_object_info(r, &origin->blob_oid, NULL) != OBJ_BLOB)
|
|
goto error_out;
|
|
return 0;
|
|
error_out:
|
|
oidclr(&origin->blob_oid, the_repository->hash_algo);
|
|
origin->mode = S_IFINVALID;
|
|
return -1;
|
|
}
|
|
|
|
struct blame_bloom_data {
|
|
/*
|
|
* Changed-path Bloom filter keys. These can help prevent
|
|
* computing diffs against first parents, but we need to
|
|
* expand the list as code is moved or files are renamed.
|
|
*/
|
|
struct bloom_filter_settings *settings;
|
|
struct bloom_key **keys;
|
|
int nr;
|
|
int alloc;
|
|
};
|
|
|
|
static int bloom_count_queries = 0;
|
|
static int bloom_count_no = 0;
|
|
static int maybe_changed_path(struct repository *r,
|
|
struct blame_origin *origin,
|
|
struct blame_bloom_data *bd)
|
|
{
|
|
int i;
|
|
struct bloom_filter *filter;
|
|
|
|
if (!bd)
|
|
return 1;
|
|
|
|
if (commit_graph_generation(origin->commit) == GENERATION_NUMBER_INFINITY)
|
|
return 1;
|
|
|
|
filter = get_bloom_filter(r, origin->commit);
|
|
|
|
if (!filter)
|
|
return 1;
|
|
|
|
bloom_count_queries++;
|
|
for (i = 0; i < bd->nr; i++) {
|
|
if (bloom_filter_contains(filter,
|
|
bd->keys[i],
|
|
bd->settings))
|
|
return 1;
|
|
}
|
|
|
|
bloom_count_no++;
|
|
return 0;
|
|
}
|
|
|
|
static void add_bloom_key(struct blame_bloom_data *bd,
|
|
const char *path)
|
|
{
|
|
if (!bd)
|
|
return;
|
|
|
|
if (bd->nr >= bd->alloc) {
|
|
bd->alloc *= 2;
|
|
REALLOC_ARRAY(bd->keys, bd->alloc);
|
|
}
|
|
|
|
bd->keys[bd->nr] = xmalloc(sizeof(struct bloom_key));
|
|
fill_bloom_key(path, strlen(path), bd->keys[bd->nr], bd->settings);
|
|
bd->nr++;
|
|
}
|
|
|
|
/*
|
|
* We have an origin -- check if the same path exists in the
|
|
* parent and return an origin structure to represent it.
|
|
*/
|
|
static struct blame_origin *find_origin(struct repository *r,
|
|
struct commit *parent,
|
|
struct blame_origin *origin,
|
|
struct blame_bloom_data *bd)
|
|
{
|
|
struct blame_origin *porigin;
|
|
struct diff_options diff_opts;
|
|
const char *paths[2];
|
|
|
|
/* First check any existing origins */
|
|
for (porigin = get_blame_suspects(parent); porigin; porigin = porigin->next)
|
|
if (!strcmp(porigin->path, origin->path)) {
|
|
/*
|
|
* The same path between origin and its parent
|
|
* without renaming -- the most common case.
|
|
*/
|
|
return blame_origin_incref (porigin);
|
|
}
|
|
|
|
/* See if the origin->path is different between parent
|
|
* and origin first. Most of the time they are the
|
|
* same and diff-tree is fairly efficient about this.
|
|
*/
|
|
repo_diff_setup(r, &diff_opts);
|
|
diff_opts.flags.recursive = 1;
|
|
diff_opts.detect_rename = 0;
|
|
diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
|
|
paths[0] = origin->path;
|
|
paths[1] = NULL;
|
|
|
|
parse_pathspec(&diff_opts.pathspec,
|
|
PATHSPEC_ALL_MAGIC & ~PATHSPEC_LITERAL,
|
|
PATHSPEC_LITERAL_PATH, "", paths);
|
|
diff_setup_done(&diff_opts);
|
|
|
|
if (is_null_oid(&origin->commit->object.oid))
|
|
do_diff_cache(get_commit_tree_oid(parent), &diff_opts);
|
|
else {
|
|
int compute_diff = 1;
|
|
if (origin->commit->parents &&
|
|
oideq(&parent->object.oid,
|
|
&origin->commit->parents->item->object.oid))
|
|
compute_diff = maybe_changed_path(r, origin, bd);
|
|
|
|
if (compute_diff)
|
|
diff_tree_oid(get_commit_tree_oid(parent),
|
|
get_commit_tree_oid(origin->commit),
|
|
"", &diff_opts);
|
|
}
|
|
diffcore_std(&diff_opts);
|
|
|
|
if (!diff_queued_diff.nr) {
|
|
/* The path is the same as parent */
|
|
porigin = get_origin(parent, origin->path);
|
|
oidcpy(&porigin->blob_oid, &origin->blob_oid);
|
|
porigin->mode = origin->mode;
|
|
} else {
|
|
/*
|
|
* Since origin->path is a pathspec, if the parent
|
|
* commit had it as a directory, we will see a whole
|
|
* bunch of deletion of files in the directory that we
|
|
* do not care about.
|
|
*/
|
|
int i;
|
|
struct diff_filepair *p = NULL;
|
|
for (i = 0; i < diff_queued_diff.nr; i++) {
|
|
const char *name;
|
|
p = diff_queued_diff.queue[i];
|
|
name = p->one->path ? p->one->path : p->two->path;
|
|
if (!strcmp(name, origin->path))
|
|
break;
|
|
}
|
|
if (!p)
|
|
die("internal error in blame::find_origin");
|
|
switch (p->status) {
|
|
default:
|
|
die("internal error in blame::find_origin (%c)",
|
|
p->status);
|
|
case 'M':
|
|
porigin = get_origin(parent, origin->path);
|
|
oidcpy(&porigin->blob_oid, &p->one->oid);
|
|
porigin->mode = p->one->mode;
|
|
break;
|
|
case 'A':
|
|
case 'T':
|
|
/* Did not exist in parent, or type changed */
|
|
break;
|
|
}
|
|
}
|
|
diff_flush(&diff_opts);
|
|
return porigin;
|
|
}
|
|
|
|
/*
|
|
* We have an origin -- find the path that corresponds to it in its
|
|
* parent and return an origin structure to represent it.
|
|
*/
|
|
static struct blame_origin *find_rename(struct repository *r,
|
|
struct commit *parent,
|
|
struct blame_origin *origin,
|
|
struct blame_bloom_data *bd)
|
|
{
|
|
struct blame_origin *porigin = NULL;
|
|
struct diff_options diff_opts;
|
|
int i;
|
|
|
|
repo_diff_setup(r, &diff_opts);
|
|
diff_opts.flags.recursive = 1;
|
|
diff_opts.detect_rename = DIFF_DETECT_RENAME;
|
|
diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
|
|
diff_opts.single_follow = origin->path;
|
|
diff_setup_done(&diff_opts);
|
|
|
|
if (is_null_oid(&origin->commit->object.oid))
|
|
do_diff_cache(get_commit_tree_oid(parent), &diff_opts);
|
|
else
|
|
diff_tree_oid(get_commit_tree_oid(parent),
|
|
get_commit_tree_oid(origin->commit),
|
|
"", &diff_opts);
|
|
diffcore_std(&diff_opts);
|
|
|
|
for (i = 0; i < diff_queued_diff.nr; i++) {
|
|
struct diff_filepair *p = diff_queued_diff.queue[i];
|
|
if ((p->status == 'R' || p->status == 'C') &&
|
|
!strcmp(p->two->path, origin->path)) {
|
|
add_bloom_key(bd, p->one->path);
|
|
porigin = get_origin(parent, p->one->path);
|
|
oidcpy(&porigin->blob_oid, &p->one->oid);
|
|
porigin->mode = p->one->mode;
|
|
break;
|
|
}
|
|
}
|
|
diff_flush(&diff_opts);
|
|
return porigin;
|
|
}
|
|
|
|
/*
|
|
* Append a new blame entry to a given output queue.
|
|
*/
|
|
static void add_blame_entry(struct blame_entry ***queue,
|
|
const struct blame_entry *src)
|
|
{
|
|
struct blame_entry *e = xmalloc(sizeof(*e));
|
|
memcpy(e, src, sizeof(*e));
|
|
blame_origin_incref(e->suspect);
|
|
|
|
e->next = **queue;
|
|
**queue = e;
|
|
*queue = &e->next;
|
|
}
|
|
|
|
/*
|
|
* src typically is on-stack; we want to copy the information in it to
|
|
* a malloced blame_entry that gets added to the given queue. The
|
|
* origin of dst loses a refcnt.
|
|
*/
|
|
static void dup_entry(struct blame_entry ***queue,
|
|
struct blame_entry *dst, struct blame_entry *src)
|
|
{
|
|
blame_origin_incref(src->suspect);
|
|
blame_origin_decref(dst->suspect);
|
|
memcpy(dst, src, sizeof(*src));
|
|
dst->next = **queue;
|
|
**queue = dst;
|
|
*queue = &dst->next;
|
|
}
|
|
|
|
const char *blame_nth_line(struct blame_scoreboard *sb, long lno)
|
|
{
|
|
return sb->final_buf + sb->lineno[lno];
|
|
}
|
|
|
|
/*
|
|
* It is known that lines between tlno to same came from parent, and e
|
|
* has an overlap with that range. it also is known that parent's
|
|
* line plno corresponds to e's line tlno.
|
|
*
|
|
* <---- e ----->
|
|
* <------>
|
|
* <------------>
|
|
* <------------>
|
|
* <------------------>
|
|
*
|
|
* Split e into potentially three parts; before this chunk, the chunk
|
|
* to be blamed for the parent, and after that portion.
|
|
*/
|
|
static void split_overlap(struct blame_entry *split,
|
|
struct blame_entry *e,
|
|
int tlno, int plno, int same,
|
|
struct blame_origin *parent)
|
|
{
|
|
int chunk_end_lno;
|
|
int i;
|
|
memset(split, 0, sizeof(struct blame_entry [3]));
|
|
|
|
for (i = 0; i < 3; i++) {
|
|
split[i].ignored = e->ignored;
|
|
split[i].unblamable = e->unblamable;
|
|
}
|
|
|
|
if (e->s_lno < tlno) {
|
|
/* there is a pre-chunk part not blamed on parent */
|
|
split[0].suspect = blame_origin_incref(e->suspect);
|
|
split[0].lno = e->lno;
|
|
split[0].s_lno = e->s_lno;
|
|
split[0].num_lines = tlno - e->s_lno;
|
|
split[1].lno = e->lno + tlno - e->s_lno;
|
|
split[1].s_lno = plno;
|
|
}
|
|
else {
|
|
split[1].lno = e->lno;
|
|
split[1].s_lno = plno + (e->s_lno - tlno);
|
|
}
|
|
|
|
if (same < e->s_lno + e->num_lines) {
|
|
/* there is a post-chunk part not blamed on parent */
|
|
split[2].suspect = blame_origin_incref(e->suspect);
|
|
split[2].lno = e->lno + (same - e->s_lno);
|
|
split[2].s_lno = e->s_lno + (same - e->s_lno);
|
|
split[2].num_lines = e->s_lno + e->num_lines - same;
|
|
chunk_end_lno = split[2].lno;
|
|
}
|
|
else
|
|
chunk_end_lno = e->lno + e->num_lines;
|
|
split[1].num_lines = chunk_end_lno - split[1].lno;
|
|
|
|
/*
|
|
* if it turns out there is nothing to blame the parent for,
|
|
* forget about the splitting. !split[1].suspect signals this.
|
|
*/
|
|
if (split[1].num_lines < 1)
|
|
return;
|
|
split[1].suspect = blame_origin_incref(parent);
|
|
}
|
|
|
|
/*
|
|
* split_overlap() divided an existing blame e into up to three parts
|
|
* in split. Any assigned blame is moved to queue to
|
|
* reflect the split.
|
|
*/
|
|
static void split_blame(struct blame_entry ***blamed,
|
|
struct blame_entry ***unblamed,
|
|
struct blame_entry *split,
|
|
struct blame_entry *e)
|
|
{
|
|
if (split[0].suspect && split[2].suspect) {
|
|
/* The first part (reuse storage for the existing entry e) */
|
|
dup_entry(unblamed, e, &split[0]);
|
|
|
|
/* The last part -- me */
|
|
add_blame_entry(unblamed, &split[2]);
|
|
|
|
/* ... and the middle part -- parent */
|
|
add_blame_entry(blamed, &split[1]);
|
|
}
|
|
else if (!split[0].suspect && !split[2].suspect)
|
|
/*
|
|
* The parent covers the entire area; reuse storage for
|
|
* e and replace it with the parent.
|
|
*/
|
|
dup_entry(blamed, e, &split[1]);
|
|
else if (split[0].suspect) {
|
|
/* me and then parent */
|
|
dup_entry(unblamed, e, &split[0]);
|
|
add_blame_entry(blamed, &split[1]);
|
|
}
|
|
else {
|
|
/* parent and then me */
|
|
dup_entry(blamed, e, &split[1]);
|
|
add_blame_entry(unblamed, &split[2]);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* After splitting the blame, the origins used by the
|
|
* on-stack blame_entry should lose one refcnt each.
|
|
*/
|
|
static void decref_split(struct blame_entry *split)
|
|
{
|
|
int i;
|
|
|
|
for (i = 0; i < 3; i++)
|
|
blame_origin_decref(split[i].suspect);
|
|
}
|
|
|
|
/*
|
|
* reverse_blame reverses the list given in head, appending tail.
|
|
* That allows us to build lists in reverse order, then reverse them
|
|
* afterwards. This can be faster than building the list in proper
|
|
* order right away. The reason is that building in proper order
|
|
* requires writing a link in the _previous_ element, while building
|
|
* in reverse order just requires placing the list head into the
|
|
* _current_ element.
|
|
*/
|
|
|
|
static struct blame_entry *reverse_blame(struct blame_entry *head,
|
|
struct blame_entry *tail)
|
|
{
|
|
while (head) {
|
|
struct blame_entry *next = head->next;
|
|
head->next = tail;
|
|
tail = head;
|
|
head = next;
|
|
}
|
|
return tail;
|
|
}
|
|
|
|
/*
|
|
* Splits a blame entry into two entries at 'len' lines. The original 'e'
|
|
* consists of len lines, i.e. [e->lno, e->lno + len), and the second part,
|
|
* which is returned, consists of the remainder: [e->lno + len, e->lno +
|
|
* e->num_lines). The caller needs to sort out the reference counting for the
|
|
* new entry's suspect.
|
|
*/
|
|
static struct blame_entry *split_blame_at(struct blame_entry *e, int len,
|
|
struct blame_origin *new_suspect)
|
|
{
|
|
struct blame_entry *n = xcalloc(1, sizeof(struct blame_entry));
|
|
|
|
n->suspect = new_suspect;
|
|
n->ignored = e->ignored;
|
|
n->unblamable = e->unblamable;
|
|
n->lno = e->lno + len;
|
|
n->s_lno = e->s_lno + len;
|
|
n->num_lines = e->num_lines - len;
|
|
e->num_lines = len;
|
|
e->score = 0;
|
|
return n;
|
|
}
|
|
|
|
struct blame_line_tracker {
|
|
int is_parent;
|
|
int s_lno;
|
|
};
|
|
|
|
static int are_lines_adjacent(struct blame_line_tracker *first,
|
|
struct blame_line_tracker *second)
|
|
{
|
|
return first->is_parent == second->is_parent &&
|
|
first->s_lno + 1 == second->s_lno;
|
|
}
|
|
|
|
static int scan_parent_range(struct fingerprint *p_fps,
|
|
struct fingerprint *t_fps, int t_idx,
|
|
int from, int nr_lines)
|
|
{
|
|
int sim, p_idx;
|
|
#define FINGERPRINT_FILE_THRESHOLD 10
|
|
int best_sim_val = FINGERPRINT_FILE_THRESHOLD;
|
|
int best_sim_idx = -1;
|
|
|
|
for (p_idx = from; p_idx < from + nr_lines; p_idx++) {
|
|
sim = fingerprint_similarity(&t_fps[t_idx], &p_fps[p_idx]);
|
|
if (sim < best_sim_val)
|
|
continue;
|
|
/* Break ties with the closest-to-target line number */
|
|
if (sim == best_sim_val && best_sim_idx != -1 &&
|
|
abs(best_sim_idx - t_idx) < abs(p_idx - t_idx))
|
|
continue;
|
|
best_sim_val = sim;
|
|
best_sim_idx = p_idx;
|
|
}
|
|
return best_sim_idx;
|
|
}
|
|
|
|
/*
|
|
* The first pass checks the blame entry (from the target) against the parent's
|
|
* diff chunk. If that fails for a line, the second pass tries to match that
|
|
* line to any part of parent file. That catches cases where a change was
|
|
* broken into two chunks by 'context.'
|
|
*/
|
|
static void guess_line_blames(struct blame_origin *parent,
|
|
struct blame_origin *target,
|
|
int tlno, int offset, int same, int parent_len,
|
|
struct blame_line_tracker *line_blames)
|
|
{
|
|
int i, best_idx, target_idx;
|
|
int parent_slno = tlno + offset;
|
|
int *fuzzy_matches;
|
|
|
|
fuzzy_matches = fuzzy_find_matching_lines(parent, target,
|
|
tlno, parent_slno, same,
|
|
parent_len);
|
|
for (i = 0; i < same - tlno; i++) {
|
|
target_idx = tlno + i;
|
|
if (fuzzy_matches && fuzzy_matches[i] >= 0) {
|
|
best_idx = fuzzy_matches[i];
|
|
} else {
|
|
best_idx = scan_parent_range(parent->fingerprints,
|
|
target->fingerprints,
|
|
target_idx, 0,
|
|
parent->num_lines);
|
|
}
|
|
if (best_idx >= 0) {
|
|
line_blames[i].is_parent = 1;
|
|
line_blames[i].s_lno = best_idx;
|
|
} else {
|
|
line_blames[i].is_parent = 0;
|
|
line_blames[i].s_lno = target_idx;
|
|
}
|
|
}
|
|
free(fuzzy_matches);
|
|
}
|
|
|
|
/*
|
|
* This decides which parts of a blame entry go to the parent (added to the
|
|
* ignoredp list) and which stay with the target (added to the diffp list). The
|
|
* actual decision was made in a separate heuristic function, and those answers
|
|
* for the lines in 'e' are in line_blames. This consumes e, essentially
|
|
* putting it on a list.
|
|
*
|
|
* Note that the blame entries on the ignoredp list are not necessarily sorted
|
|
* with respect to the parent's line numbers yet.
|
|
*/
|
|
static void ignore_blame_entry(struct blame_entry *e,
|
|
struct blame_origin *parent,
|
|
struct blame_entry **diffp,
|
|
struct blame_entry **ignoredp,
|
|
struct blame_line_tracker *line_blames)
|
|
{
|
|
int entry_len, nr_lines, i;
|
|
|
|
/*
|
|
* We carve new entries off the front of e. Each entry comes from a
|
|
* contiguous chunk of lines: adjacent lines from the same origin
|
|
* (either the parent or the target).
|
|
*/
|
|
entry_len = 1;
|
|
nr_lines = e->num_lines; /* e changes in the loop */
|
|
for (i = 0; i < nr_lines; i++) {
|
|
struct blame_entry *next = NULL;
|
|
|
|
/*
|
|
* We are often adjacent to the next line - only split the blame
|
|
* entry when we have to.
|
|
*/
|
|
if (i + 1 < nr_lines) {
|
|
if (are_lines_adjacent(&line_blames[i],
|
|
&line_blames[i + 1])) {
|
|
entry_len++;
|
|
continue;
|
|
}
|
|
next = split_blame_at(e, entry_len,
|
|
blame_origin_incref(e->suspect));
|
|
}
|
|
if (line_blames[i].is_parent) {
|
|
e->ignored = 1;
|
|
blame_origin_decref(e->suspect);
|
|
e->suspect = blame_origin_incref(parent);
|
|
e->s_lno = line_blames[i - entry_len + 1].s_lno;
|
|
e->next = *ignoredp;
|
|
*ignoredp = e;
|
|
} else {
|
|
e->unblamable = 1;
|
|
/* e->s_lno is already in the target's address space. */
|
|
e->next = *diffp;
|
|
*diffp = e;
|
|
}
|
|
assert(e->num_lines == entry_len);
|
|
e = next;
|
|
entry_len = 1;
|
|
}
|
|
assert(!e);
|
|
}
|
|
|
|
/*
|
|
* Process one hunk from the patch between the current suspect for
|
|
* blame_entry e and its parent. This first blames any unfinished
|
|
* entries before the chunk (which is where target and parent start
|
|
* differing) on the parent, and then splits blame entries at the
|
|
* start and at the end of the difference region. Since use of -M and
|
|
* -C options may lead to overlapping/duplicate source line number
|
|
* ranges, all we can rely on from sorting/merging is the order of the
|
|
* first suspect line number.
|
|
*
|
|
* tlno: line number in the target where this chunk begins
|
|
* same: line number in the target where this chunk ends
|
|
* offset: add to tlno to get the chunk starting point in the parent
|
|
* parent_len: number of lines in the parent chunk
|
|
*/
|
|
static void blame_chunk(struct blame_entry ***dstq, struct blame_entry ***srcq,
|
|
int tlno, int offset, int same, int parent_len,
|
|
struct blame_origin *parent,
|
|
struct blame_origin *target, int ignore_diffs)
|
|
{
|
|
struct blame_entry *e = **srcq;
|
|
struct blame_entry *samep = NULL, *diffp = NULL, *ignoredp = NULL;
|
|
struct blame_line_tracker *line_blames = NULL;
|
|
|
|
while (e && e->s_lno < tlno) {
|
|
struct blame_entry *next = e->next;
|
|
/*
|
|
* current record starts before differing portion. If
|
|
* it reaches into it, we need to split it up and
|
|
* examine the second part separately.
|
|
*/
|
|
if (e->s_lno + e->num_lines > tlno) {
|
|
/* Move second half to a new record */
|
|
struct blame_entry *n;
|
|
|
|
n = split_blame_at(e, tlno - e->s_lno, e->suspect);
|
|
/* Push new record to diffp */
|
|
n->next = diffp;
|
|
diffp = n;
|
|
} else
|
|
blame_origin_decref(e->suspect);
|
|
/* Pass blame for everything before the differing
|
|
* chunk to the parent */
|
|
e->suspect = blame_origin_incref(parent);
|
|
e->s_lno += offset;
|
|
e->next = samep;
|
|
samep = e;
|
|
e = next;
|
|
}
|
|
/*
|
|
* As we don't know how much of a common stretch after this
|
|
* diff will occur, the currently blamed parts are all that we
|
|
* can assign to the parent for now.
|
|
*/
|
|
|
|
if (samep) {
|
|
**dstq = reverse_blame(samep, **dstq);
|
|
*dstq = &samep->next;
|
|
}
|
|
/*
|
|
* Prepend the split off portions: everything after e starts
|
|
* after the blameable portion.
|
|
*/
|
|
e = reverse_blame(diffp, e);
|
|
|
|
/*
|
|
* Now retain records on the target while parts are different
|
|
* from the parent.
|
|
*/
|
|
samep = NULL;
|
|
diffp = NULL;
|
|
|
|
if (ignore_diffs && same - tlno > 0) {
|
|
CALLOC_ARRAY(line_blames, same - tlno);
|
|
guess_line_blames(parent, target, tlno, offset, same,
|
|
parent_len, line_blames);
|
|
}
|
|
|
|
while (e && e->s_lno < same) {
|
|
struct blame_entry *next = e->next;
|
|
|
|
/*
|
|
* If current record extends into sameness, need to split.
|
|
*/
|
|
if (e->s_lno + e->num_lines > same) {
|
|
/*
|
|
* Move second half to a new record to be
|
|
* processed by later chunks
|
|
*/
|
|
struct blame_entry *n;
|
|
|
|
n = split_blame_at(e, same - e->s_lno,
|
|
blame_origin_incref(e->suspect));
|
|
/* Push new record to samep */
|
|
n->next = samep;
|
|
samep = n;
|
|
}
|
|
if (ignore_diffs) {
|
|
ignore_blame_entry(e, parent, &diffp, &ignoredp,
|
|
line_blames + e->s_lno - tlno);
|
|
} else {
|
|
e->next = diffp;
|
|
diffp = e;
|
|
}
|
|
e = next;
|
|
}
|
|
free(line_blames);
|
|
if (ignoredp) {
|
|
/*
|
|
* Note ignoredp is not sorted yet, and thus neither is dstq.
|
|
* That list must be sorted before we queue_blames(). We defer
|
|
* sorting until after all diff hunks are processed, so that
|
|
* guess_line_blames() can pick *any* line in the parent. The
|
|
* slight drawback is that we end up sorting all blame entries
|
|
* passed to the parent, including those that are unrelated to
|
|
* changes made by the ignored commit.
|
|
*/
|
|
**dstq = reverse_blame(ignoredp, **dstq);
|
|
*dstq = &ignoredp->next;
|
|
}
|
|
**srcq = reverse_blame(diffp, reverse_blame(samep, e));
|
|
/* Move across elements that are in the unblamable portion */
|
|
if (diffp)
|
|
*srcq = &diffp->next;
|
|
}
|
|
|
|
struct blame_chunk_cb_data {
|
|
struct blame_origin *parent;
|
|
struct blame_origin *target;
|
|
long offset;
|
|
int ignore_diffs;
|
|
struct blame_entry **dstq;
|
|
struct blame_entry **srcq;
|
|
};
|
|
|
|
/* diff chunks are from parent to target */
|
|
static int blame_chunk_cb(long start_a, long count_a,
|
|
long start_b, long count_b, void *data)
|
|
{
|
|
struct blame_chunk_cb_data *d = data;
|
|
if (start_a - start_b != d->offset)
|
|
die("internal error in blame::blame_chunk_cb");
|
|
blame_chunk(&d->dstq, &d->srcq, start_b, start_a - start_b,
|
|
start_b + count_b, count_a, d->parent, d->target,
|
|
d->ignore_diffs);
|
|
d->offset = start_a + count_a - (start_b + count_b);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* We are looking at the origin 'target' and aiming to pass blame
|
|
* for the lines it is suspected to its parent. Run diff to find
|
|
* which lines came from parent and pass blame for them.
|
|
*/
|
|
static void pass_blame_to_parent(struct blame_scoreboard *sb,
|
|
struct blame_origin *target,
|
|
struct blame_origin *parent, int ignore_diffs)
|
|
{
|
|
mmfile_t file_p, file_o;
|
|
struct blame_chunk_cb_data d;
|
|
struct blame_entry *newdest = NULL;
|
|
|
|
if (!target->suspects)
|
|
return; /* nothing remains for this target */
|
|
|
|
d.parent = parent;
|
|
d.target = target;
|
|
d.offset = 0;
|
|
d.ignore_diffs = ignore_diffs;
|
|
d.dstq = &newdest; d.srcq = &target->suspects;
|
|
|
|
fill_origin_blob(&sb->revs->diffopt, parent, &file_p,
|
|
&sb->num_read_blob, ignore_diffs);
|
|
fill_origin_blob(&sb->revs->diffopt, target, &file_o,
|
|
&sb->num_read_blob, ignore_diffs);
|
|
sb->num_get_patch++;
|
|
|
|
if (diff_hunks(&file_p, &file_o, blame_chunk_cb, &d, sb->xdl_opts))
|
|
die("unable to generate diff (%s -> %s)",
|
|
oid_to_hex(&parent->commit->object.oid),
|
|
oid_to_hex(&target->commit->object.oid));
|
|
/* The rest are the same as the parent */
|
|
blame_chunk(&d.dstq, &d.srcq, INT_MAX, d.offset, INT_MAX, 0,
|
|
parent, target, 0);
|
|
*d.dstq = NULL;
|
|
if (ignore_diffs)
|
|
sort_blame_entries(&newdest, compare_blame_suspect);
|
|
queue_blames(sb, parent, newdest);
|
|
|
|
return;
|
|
}
|
|
|
|
/*
|
|
* The lines in blame_entry after splitting blames many times can become
|
|
* very small and trivial, and at some point it becomes pointless to
|
|
* blame the parents. E.g. "\t\t}\n\t}\n\n" appears everywhere in any
|
|
* ordinary C program, and it is not worth to say it was copied from
|
|
* totally unrelated file in the parent.
|
|
*
|
|
* Compute how trivial the lines in the blame_entry are.
|
|
*/
|
|
unsigned blame_entry_score(struct blame_scoreboard *sb, struct blame_entry *e)
|
|
{
|
|
unsigned score;
|
|
const char *cp, *ep;
|
|
|
|
if (e->score)
|
|
return e->score;
|
|
|
|
score = 1;
|
|
cp = blame_nth_line(sb, e->lno);
|
|
ep = blame_nth_line(sb, e->lno + e->num_lines);
|
|
while (cp < ep) {
|
|
unsigned ch = *((unsigned char *)cp);
|
|
if (isalnum(ch))
|
|
score++;
|
|
cp++;
|
|
}
|
|
e->score = score;
|
|
return score;
|
|
}
|
|
|
|
/*
|
|
* best_so_far[] and potential[] are both a split of an existing blame_entry
|
|
* that passes blame to the parent. Maintain best_so_far the best split so
|
|
* far, by comparing potential and best_so_far and copying potential into
|
|
* bst_so_far as needed.
|
|
*/
|
|
static void copy_split_if_better(struct blame_scoreboard *sb,
|
|
struct blame_entry *best_so_far,
|
|
struct blame_entry *potential)
|
|
{
|
|
int i;
|
|
|
|
if (!potential[1].suspect)
|
|
return;
|
|
if (best_so_far[1].suspect) {
|
|
if (blame_entry_score(sb, &potential[1]) <
|
|
blame_entry_score(sb, &best_so_far[1]))
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < 3; i++)
|
|
blame_origin_incref(potential[i].suspect);
|
|
decref_split(best_so_far);
|
|
memcpy(best_so_far, potential, sizeof(struct blame_entry[3]));
|
|
}
|
|
|
|
/*
|
|
* We are looking at a part of the final image represented by
|
|
* ent (tlno and same are offset by ent->s_lno).
|
|
* tlno is where we are looking at in the final image.
|
|
* up to (but not including) same match preimage.
|
|
* plno is where we are looking at in the preimage.
|
|
*
|
|
* <-------------- final image ---------------------->
|
|
* <------ent------>
|
|
* ^tlno ^same
|
|
* <---------preimage----->
|
|
* ^plno
|
|
*
|
|
* All line numbers are 0-based.
|
|
*/
|
|
static void handle_split(struct blame_scoreboard *sb,
|
|
struct blame_entry *ent,
|
|
int tlno, int plno, int same,
|
|
struct blame_origin *parent,
|
|
struct blame_entry *split)
|
|
{
|
|
if (ent->num_lines <= tlno)
|
|
return;
|
|
if (tlno < same) {
|
|
struct blame_entry potential[3];
|
|
tlno += ent->s_lno;
|
|
same += ent->s_lno;
|
|
split_overlap(potential, ent, tlno, plno, same, parent);
|
|
copy_split_if_better(sb, split, potential);
|
|
decref_split(potential);
|
|
}
|
|
}
|
|
|
|
struct handle_split_cb_data {
|
|
struct blame_scoreboard *sb;
|
|
struct blame_entry *ent;
|
|
struct blame_origin *parent;
|
|
struct blame_entry *split;
|
|
long plno;
|
|
long tlno;
|
|
};
|
|
|
|
static int handle_split_cb(long start_a, long count_a,
|
|
long start_b, long count_b, void *data)
|
|
{
|
|
struct handle_split_cb_data *d = data;
|
|
handle_split(d->sb, d->ent, d->tlno, d->plno, start_b, d->parent,
|
|
d->split);
|
|
d->plno = start_a + count_a;
|
|
d->tlno = start_b + count_b;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Find the lines from parent that are the same as ent so that
|
|
* we can pass blames to it. file_p has the blob contents for
|
|
* the parent.
|
|
*/
|
|
static void find_copy_in_blob(struct blame_scoreboard *sb,
|
|
struct blame_entry *ent,
|
|
struct blame_origin *parent,
|
|
struct blame_entry *split,
|
|
mmfile_t *file_p)
|
|
{
|
|
const char *cp;
|
|
mmfile_t file_o;
|
|
struct handle_split_cb_data d;
|
|
|
|
memset(&d, 0, sizeof(d));
|
|
d.sb = sb; d.ent = ent; d.parent = parent; d.split = split;
|
|
/*
|
|
* Prepare mmfile that contains only the lines in ent.
|
|
*/
|
|
cp = blame_nth_line(sb, ent->lno);
|
|
file_o.ptr = (char *) cp;
|
|
file_o.size = blame_nth_line(sb, ent->lno + ent->num_lines) - cp;
|
|
|
|
/*
|
|
* file_o is a part of final image we are annotating.
|
|
* file_p partially may match that image.
|
|
*/
|
|
memset(split, 0, sizeof(struct blame_entry [3]));
|
|
if (diff_hunks(file_p, &file_o, handle_split_cb, &d, sb->xdl_opts))
|
|
die("unable to generate diff (%s)",
|
|
oid_to_hex(&parent->commit->object.oid));
|
|
/* remainder, if any, all match the preimage */
|
|
handle_split(sb, ent, d.tlno, d.plno, ent->num_lines, parent, split);
|
|
}
|
|
|
|
/* Move all blame entries from list *source that have a score smaller
|
|
* than score_min to the front of list *small.
|
|
* Returns a pointer to the link pointing to the old head of the small list.
|
|
*/
|
|
|
|
static struct blame_entry **filter_small(struct blame_scoreboard *sb,
|
|
struct blame_entry **small,
|
|
struct blame_entry **source,
|
|
unsigned score_min)
|
|
{
|
|
struct blame_entry *p = *source;
|
|
struct blame_entry *oldsmall = *small;
|
|
while (p) {
|
|
if (blame_entry_score(sb, p) <= score_min) {
|
|
*small = p;
|
|
small = &p->next;
|
|
p = *small;
|
|
} else {
|
|
*source = p;
|
|
source = &p->next;
|
|
p = *source;
|
|
}
|
|
}
|
|
*small = oldsmall;
|
|
*source = NULL;
|
|
return small;
|
|
}
|
|
|
|
/*
|
|
* See if lines currently target is suspected for can be attributed to
|
|
* parent.
|
|
*/
|
|
static void find_move_in_parent(struct blame_scoreboard *sb,
|
|
struct blame_entry ***blamed,
|
|
struct blame_entry **toosmall,
|
|
struct blame_origin *target,
|
|
struct blame_origin *parent)
|
|
{
|
|
struct blame_entry *e, split[3];
|
|
struct blame_entry *unblamed = target->suspects;
|
|
struct blame_entry *leftover = NULL;
|
|
mmfile_t file_p;
|
|
|
|
if (!unblamed)
|
|
return; /* nothing remains for this target */
|
|
|
|
fill_origin_blob(&sb->revs->diffopt, parent, &file_p,
|
|
&sb->num_read_blob, 0);
|
|
if (!file_p.ptr)
|
|
return;
|
|
|
|
/* At each iteration, unblamed has a NULL-terminated list of
|
|
* entries that have not yet been tested for blame. leftover
|
|
* contains the reversed list of entries that have been tested
|
|
* without being assignable to the parent.
|
|
*/
|
|
do {
|
|
struct blame_entry **unblamedtail = &unblamed;
|
|
struct blame_entry *next;
|
|
for (e = unblamed; e; e = next) {
|
|
next = e->next;
|
|
find_copy_in_blob(sb, e, parent, split, &file_p);
|
|
if (split[1].suspect &&
|
|
sb->move_score < blame_entry_score(sb, &split[1])) {
|
|
split_blame(blamed, &unblamedtail, split, e);
|
|
} else {
|
|
e->next = leftover;
|
|
leftover = e;
|
|
}
|
|
decref_split(split);
|
|
}
|
|
*unblamedtail = NULL;
|
|
toosmall = filter_small(sb, toosmall, &unblamed, sb->move_score);
|
|
} while (unblamed);
|
|
target->suspects = reverse_blame(leftover, NULL);
|
|
}
|
|
|
|
struct blame_list {
|
|
struct blame_entry *ent;
|
|
struct blame_entry split[3];
|
|
};
|
|
|
|
/*
|
|
* Count the number of entries the target is suspected for,
|
|
* and prepare a list of entry and the best split.
|
|
*/
|
|
static struct blame_list *setup_blame_list(struct blame_entry *unblamed,
|
|
int *num_ents_p)
|
|
{
|
|
struct blame_entry *e;
|
|
int num_ents, i;
|
|
struct blame_list *blame_list = NULL;
|
|
|
|
for (e = unblamed, num_ents = 0; e; e = e->next)
|
|
num_ents++;
|
|
if (num_ents) {
|
|
CALLOC_ARRAY(blame_list, num_ents);
|
|
for (e = unblamed, i = 0; e; e = e->next)
|
|
blame_list[i++].ent = e;
|
|
}
|
|
*num_ents_p = num_ents;
|
|
return blame_list;
|
|
}
|
|
|
|
/*
|
|
* For lines target is suspected for, see if we can find code movement
|
|
* across file boundary from the parent commit. porigin is the path
|
|
* in the parent we already tried.
|
|
*/
|
|
static void find_copy_in_parent(struct blame_scoreboard *sb,
|
|
struct blame_entry ***blamed,
|
|
struct blame_entry **toosmall,
|
|
struct blame_origin *target,
|
|
struct commit *parent,
|
|
struct blame_origin *porigin,
|
|
int opt)
|
|
{
|
|
struct diff_options diff_opts;
|
|
int i, j;
|
|
struct blame_list *blame_list;
|
|
int num_ents;
|
|
struct blame_entry *unblamed = target->suspects;
|
|
struct blame_entry *leftover = NULL;
|
|
|
|
if (!unblamed)
|
|
return; /* nothing remains for this target */
|
|
|
|
repo_diff_setup(sb->repo, &diff_opts);
|
|
diff_opts.flags.recursive = 1;
|
|
diff_opts.output_format = DIFF_FORMAT_NO_OUTPUT;
|
|
|
|
diff_setup_done(&diff_opts);
|
|
|
|
/* Try "find copies harder" on new path if requested;
|
|
* we do not want to use diffcore_rename() actually to
|
|
* match things up; find_copies_harder is set only to
|
|
* force diff_tree_oid() to feed all filepairs to diff_queue,
|
|
* and this code needs to be after diff_setup_done(), which
|
|
* usually makes find-copies-harder imply copy detection.
|
|
*/
|
|
if ((opt & PICKAXE_BLAME_COPY_HARDEST)
|
|
|| ((opt & PICKAXE_BLAME_COPY_HARDER)
|
|
&& (!porigin || strcmp(target->path, porigin->path))))
|
|
diff_opts.flags.find_copies_harder = 1;
|
|
|
|
if (is_null_oid(&target->commit->object.oid))
|
|
do_diff_cache(get_commit_tree_oid(parent), &diff_opts);
|
|
else
|
|
diff_tree_oid(get_commit_tree_oid(parent),
|
|
get_commit_tree_oid(target->commit),
|
|
"", &diff_opts);
|
|
|
|
if (!diff_opts.flags.find_copies_harder)
|
|
diffcore_std(&diff_opts);
|
|
|
|
do {
|
|
struct blame_entry **unblamedtail = &unblamed;
|
|
blame_list = setup_blame_list(unblamed, &num_ents);
|
|
|
|
for (i = 0; i < diff_queued_diff.nr; i++) {
|
|
struct diff_filepair *p = diff_queued_diff.queue[i];
|
|
struct blame_origin *norigin;
|
|
mmfile_t file_p;
|
|
struct blame_entry potential[3];
|
|
|
|
if (!DIFF_FILE_VALID(p->one))
|
|
continue; /* does not exist in parent */
|
|
if (S_ISGITLINK(p->one->mode))
|
|
continue; /* ignore git links */
|
|
if (porigin && !strcmp(p->one->path, porigin->path))
|
|
/* find_move already dealt with this path */
|
|
continue;
|
|
|
|
norigin = get_origin(parent, p->one->path);
|
|
oidcpy(&norigin->blob_oid, &p->one->oid);
|
|
norigin->mode = p->one->mode;
|
|
fill_origin_blob(&sb->revs->diffopt, norigin, &file_p,
|
|
&sb->num_read_blob, 0);
|
|
if (!file_p.ptr)
|
|
continue;
|
|
|
|
for (j = 0; j < num_ents; j++) {
|
|
find_copy_in_blob(sb, blame_list[j].ent,
|
|
norigin, potential, &file_p);
|
|
copy_split_if_better(sb, blame_list[j].split,
|
|
potential);
|
|
decref_split(potential);
|
|
}
|
|
blame_origin_decref(norigin);
|
|
}
|
|
|
|
for (j = 0; j < num_ents; j++) {
|
|
struct blame_entry *split = blame_list[j].split;
|
|
if (split[1].suspect &&
|
|
sb->copy_score < blame_entry_score(sb, &split[1])) {
|
|
split_blame(blamed, &unblamedtail, split,
|
|
blame_list[j].ent);
|
|
} else {
|
|
blame_list[j].ent->next = leftover;
|
|
leftover = blame_list[j].ent;
|
|
}
|
|
decref_split(split);
|
|
}
|
|
free(blame_list);
|
|
*unblamedtail = NULL;
|
|
toosmall = filter_small(sb, toosmall, &unblamed, sb->copy_score);
|
|
} while (unblamed);
|
|
target->suspects = reverse_blame(leftover, NULL);
|
|
diff_flush(&diff_opts);
|
|
}
|
|
|
|
/*
|
|
* The blobs of origin and porigin exactly match, so everything
|
|
* origin is suspected for can be blamed on the parent.
|
|
*/
|
|
static void pass_whole_blame(struct blame_scoreboard *sb,
|
|
struct blame_origin *origin, struct blame_origin *porigin)
|
|
{
|
|
struct blame_entry *e, *suspects;
|
|
|
|
if (!porigin->file.ptr && origin->file.ptr) {
|
|
/* Steal its file */
|
|
porigin->file = origin->file;
|
|
origin->file.ptr = NULL;
|
|
}
|
|
suspects = origin->suspects;
|
|
origin->suspects = NULL;
|
|
for (e = suspects; e; e = e->next) {
|
|
blame_origin_incref(porigin);
|
|
blame_origin_decref(e->suspect);
|
|
e->suspect = porigin;
|
|
}
|
|
queue_blames(sb, porigin, suspects);
|
|
}
|
|
|
|
/*
|
|
* We pass blame from the current commit to its parents. We keep saying
|
|
* "parent" (and "porigin"), but what we mean is to find scapegoat to
|
|
* exonerate ourselves.
|
|
*/
|
|
static struct commit_list *first_scapegoat(struct rev_info *revs, struct commit *commit,
|
|
int reverse)
|
|
{
|
|
if (!reverse) {
|
|
if (revs->first_parent_only &&
|
|
commit->parents &&
|
|
commit->parents->next) {
|
|
free_commit_list(commit->parents->next);
|
|
commit->parents->next = NULL;
|
|
}
|
|
return commit->parents;
|
|
}
|
|
return lookup_decoration(&revs->children, &commit->object);
|
|
}
|
|
|
|
static int num_scapegoats(struct rev_info *revs, struct commit *commit, int reverse)
|
|
{
|
|
struct commit_list *l = first_scapegoat(revs, commit, reverse);
|
|
return commit_list_count(l);
|
|
}
|
|
|
|
/* Distribute collected unsorted blames to the respected sorted lists
|
|
* in the various origins.
|
|
*/
|
|
static void distribute_blame(struct blame_scoreboard *sb, struct blame_entry *blamed)
|
|
{
|
|
sort_blame_entries(&blamed, compare_blame_suspect);
|
|
while (blamed)
|
|
{
|
|
struct blame_origin *porigin = blamed->suspect;
|
|
struct blame_entry *suspects = NULL;
|
|
do {
|
|
struct blame_entry *next = blamed->next;
|
|
blamed->next = suspects;
|
|
suspects = blamed;
|
|
blamed = next;
|
|
} while (blamed && blamed->suspect == porigin);
|
|
suspects = reverse_blame(suspects, NULL);
|
|
queue_blames(sb, porigin, suspects);
|
|
}
|
|
}
|
|
|
|
#define MAXSG 16
|
|
|
|
typedef struct blame_origin *(*blame_find_alg)(struct repository *,
|
|
struct commit *,
|
|
struct blame_origin *,
|
|
struct blame_bloom_data *);
|
|
|
|
static void pass_blame(struct blame_scoreboard *sb, struct blame_origin *origin, int opt)
|
|
{
|
|
struct rev_info *revs = sb->revs;
|
|
int i, pass, num_sg;
|
|
struct commit *commit = origin->commit;
|
|
struct commit_list *sg;
|
|
struct blame_origin *sg_buf[MAXSG];
|
|
struct blame_origin *porigin, **sg_origin = sg_buf;
|
|
struct blame_entry *toosmall = NULL;
|
|
struct blame_entry *blames, **blametail = &blames;
|
|
|
|
num_sg = num_scapegoats(revs, commit, sb->reverse);
|
|
if (!num_sg)
|
|
goto finish;
|
|
else if (num_sg < ARRAY_SIZE(sg_buf))
|
|
memset(sg_buf, 0, sizeof(sg_buf));
|
|
else
|
|
CALLOC_ARRAY(sg_origin, num_sg);
|
|
|
|
/*
|
|
* The first pass looks for unrenamed path to optimize for
|
|
* common cases, then we look for renames in the second pass.
|
|
*/
|
|
for (pass = 0; pass < 2 - sb->no_whole_file_rename; pass++) {
|
|
blame_find_alg find = pass ? find_rename : find_origin;
|
|
|
|
for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
|
|
i < num_sg && sg;
|
|
sg = sg->next, i++) {
|
|
struct commit *p = sg->item;
|
|
int j, same;
|
|
|
|
if (sg_origin[i])
|
|
continue;
|
|
if (repo_parse_commit(the_repository, p))
|
|
continue;
|
|
porigin = find(sb->repo, p, origin, sb->bloom_data);
|
|
if (!porigin)
|
|
continue;
|
|
if (oideq(&porigin->blob_oid, &origin->blob_oid)) {
|
|
pass_whole_blame(sb, origin, porigin);
|
|
blame_origin_decref(porigin);
|
|
goto finish;
|
|
}
|
|
for (j = same = 0; j < i; j++)
|
|
if (sg_origin[j] &&
|
|
oideq(&sg_origin[j]->blob_oid, &porigin->blob_oid)) {
|
|
same = 1;
|
|
break;
|
|
}
|
|
if (!same)
|
|
sg_origin[i] = porigin;
|
|
else
|
|
blame_origin_decref(porigin);
|
|
}
|
|
}
|
|
|
|
sb->num_commits++;
|
|
for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
|
|
i < num_sg && sg;
|
|
sg = sg->next, i++) {
|
|
struct blame_origin *porigin = sg_origin[i];
|
|
if (!porigin)
|
|
continue;
|
|
if (!origin->previous) {
|
|
blame_origin_incref(porigin);
|
|
origin->previous = porigin;
|
|
}
|
|
pass_blame_to_parent(sb, origin, porigin, 0);
|
|
if (!origin->suspects)
|
|
goto finish;
|
|
}
|
|
|
|
/*
|
|
* Pass remaining suspects for ignored commits to their parents.
|
|
*/
|
|
if (oidset_contains(&sb->ignore_list, &commit->object.oid)) {
|
|
for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
|
|
i < num_sg && sg;
|
|
sg = sg->next, i++) {
|
|
struct blame_origin *porigin = sg_origin[i];
|
|
|
|
if (!porigin)
|
|
continue;
|
|
pass_blame_to_parent(sb, origin, porigin, 1);
|
|
/*
|
|
* Preemptively drop porigin so we can refresh the
|
|
* fingerprints if we use the parent again, which can
|
|
* occur if you ignore back-to-back commits.
|
|
*/
|
|
drop_origin_blob(porigin);
|
|
if (!origin->suspects)
|
|
goto finish;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Optionally find moves in parents' files.
|
|
*/
|
|
if (opt & PICKAXE_BLAME_MOVE) {
|
|
filter_small(sb, &toosmall, &origin->suspects, sb->move_score);
|
|
if (origin->suspects) {
|
|
for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
|
|
i < num_sg && sg;
|
|
sg = sg->next, i++) {
|
|
struct blame_origin *porigin = sg_origin[i];
|
|
if (!porigin)
|
|
continue;
|
|
find_move_in_parent(sb, &blametail, &toosmall, origin, porigin);
|
|
if (!origin->suspects)
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Optionally find copies from parents' files.
|
|
*/
|
|
if (opt & PICKAXE_BLAME_COPY) {
|
|
if (sb->copy_score > sb->move_score)
|
|
filter_small(sb, &toosmall, &origin->suspects, sb->copy_score);
|
|
else if (sb->copy_score < sb->move_score) {
|
|
origin->suspects = blame_merge(origin->suspects, toosmall);
|
|
toosmall = NULL;
|
|
filter_small(sb, &toosmall, &origin->suspects, sb->copy_score);
|
|
}
|
|
if (!origin->suspects)
|
|
goto finish;
|
|
|
|
for (i = 0, sg = first_scapegoat(revs, commit, sb->reverse);
|
|
i < num_sg && sg;
|
|
sg = sg->next, i++) {
|
|
struct blame_origin *porigin = sg_origin[i];
|
|
find_copy_in_parent(sb, &blametail, &toosmall,
|
|
origin, sg->item, porigin, opt);
|
|
if (!origin->suspects)
|
|
goto finish;
|
|
}
|
|
}
|
|
|
|
finish:
|
|
*blametail = NULL;
|
|
distribute_blame(sb, blames);
|
|
/*
|
|
* prepend toosmall to origin->suspects
|
|
*
|
|
* There is no point in sorting: this ends up on a big
|
|
* unsorted list in the caller anyway.
|
|
*/
|
|
if (toosmall) {
|
|
struct blame_entry **tail = &toosmall;
|
|
while (*tail)
|
|
tail = &(*tail)->next;
|
|
*tail = origin->suspects;
|
|
origin->suspects = toosmall;
|
|
}
|
|
for (i = 0; i < num_sg; i++) {
|
|
if (sg_origin[i]) {
|
|
if (!sg_origin[i]->suspects)
|
|
drop_origin_blob(sg_origin[i]);
|
|
blame_origin_decref(sg_origin[i]);
|
|
}
|
|
}
|
|
drop_origin_blob(origin);
|
|
if (sg_buf != sg_origin)
|
|
free(sg_origin);
|
|
}
|
|
|
|
/*
|
|
* The main loop -- while we have blobs with lines whose true origin
|
|
* is still unknown, pick one blob, and allow its lines to pass blames
|
|
* to its parents. */
|
|
void assign_blame(struct blame_scoreboard *sb, int opt)
|
|
{
|
|
struct rev_info *revs = sb->revs;
|
|
struct commit *commit = prio_queue_get(&sb->commits);
|
|
|
|
while (commit) {
|
|
struct blame_entry *ent;
|
|
struct blame_origin *suspect = get_blame_suspects(commit);
|
|
|
|
/* find one suspect to break down */
|
|
while (suspect && !suspect->suspects)
|
|
suspect = suspect->next;
|
|
|
|
if (!suspect) {
|
|
commit = prio_queue_get(&sb->commits);
|
|
continue;
|
|
}
|
|
|
|
assert(commit == suspect->commit);
|
|
|
|
/*
|
|
* We will use this suspect later in the loop,
|
|
* so hold onto it in the meantime.
|
|
*/
|
|
blame_origin_incref(suspect);
|
|
repo_parse_commit(the_repository, commit);
|
|
if (sb->reverse ||
|
|
(!(commit->object.flags & UNINTERESTING) &&
|
|
!(revs->max_age != -1 && commit->date < revs->max_age)))
|
|
pass_blame(sb, suspect, opt);
|
|
else {
|
|
commit->object.flags |= UNINTERESTING;
|
|
if (commit->object.parsed)
|
|
mark_parents_uninteresting(sb->revs, commit);
|
|
}
|
|
/* treat root commit as boundary */
|
|
if (!commit->parents && !sb->show_root)
|
|
commit->object.flags |= UNINTERESTING;
|
|
|
|
/* Take responsibility for the remaining entries */
|
|
ent = suspect->suspects;
|
|
if (ent) {
|
|
suspect->guilty = 1;
|
|
for (;;) {
|
|
struct blame_entry *next = ent->next;
|
|
if (sb->found_guilty_entry)
|
|
sb->found_guilty_entry(ent, sb->found_guilty_entry_data);
|
|
if (next) {
|
|
ent = next;
|
|
continue;
|
|
}
|
|
ent->next = sb->ent;
|
|
sb->ent = suspect->suspects;
|
|
suspect->suspects = NULL;
|
|
break;
|
|
}
|
|
}
|
|
blame_origin_decref(suspect);
|
|
|
|
if (sb->debug) /* sanity */
|
|
sanity_check_refcnt(sb);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* To allow quick access to the contents of nth line in the
|
|
* final image, prepare an index in the scoreboard.
|
|
*/
|
|
static int prepare_lines(struct blame_scoreboard *sb)
|
|
{
|
|
sb->num_lines = find_line_starts(&sb->lineno, sb->final_buf,
|
|
sb->final_buf_size);
|
|
return sb->num_lines;
|
|
}
|
|
|
|
static struct commit *find_single_final(struct rev_info *revs,
|
|
const char **name_p)
|
|
{
|
|
int i;
|
|
struct commit *found = NULL;
|
|
const char *name = NULL;
|
|
|
|
for (i = 0; i < revs->pending.nr; i++) {
|
|
struct object *obj = revs->pending.objects[i].item;
|
|
if (obj->flags & UNINTERESTING)
|
|
continue;
|
|
obj = deref_tag(revs->repo, obj, NULL, 0);
|
|
if (!obj || obj->type != OBJ_COMMIT)
|
|
die("Non commit %s?", revs->pending.objects[i].name);
|
|
if (found)
|
|
die("More than one commit to dig from %s and %s?",
|
|
revs->pending.objects[i].name, name);
|
|
found = (struct commit *)obj;
|
|
name = revs->pending.objects[i].name;
|
|
}
|
|
if (name_p)
|
|
*name_p = xstrdup_or_null(name);
|
|
return found;
|
|
}
|
|
|
|
static struct commit *dwim_reverse_initial(struct rev_info *revs,
|
|
const char **name_p)
|
|
{
|
|
/*
|
|
* DWIM "git blame --reverse ONE -- PATH" as
|
|
* "git blame --reverse ONE..HEAD -- PATH" but only do so
|
|
* when it makes sense.
|
|
*/
|
|
struct object *obj;
|
|
struct commit *head_commit;
|
|
struct object_id head_oid;
|
|
|
|
if (revs->pending.nr != 1)
|
|
return NULL;
|
|
|
|
/* Is that sole rev a committish? */
|
|
obj = revs->pending.objects[0].item;
|
|
obj = deref_tag(revs->repo, obj, NULL, 0);
|
|
if (!obj || obj->type != OBJ_COMMIT)
|
|
return NULL;
|
|
|
|
/* Do we have HEAD? */
|
|
if (!refs_resolve_ref_unsafe(get_main_ref_store(the_repository), "HEAD", RESOLVE_REF_READING, &head_oid, NULL))
|
|
return NULL;
|
|
head_commit = lookup_commit_reference_gently(revs->repo,
|
|
&head_oid, 1);
|
|
if (!head_commit)
|
|
return NULL;
|
|
|
|
/* Turn "ONE" into "ONE..HEAD" then */
|
|
obj->flags |= UNINTERESTING;
|
|
add_pending_object(revs, &head_commit->object, "HEAD");
|
|
|
|
if (name_p)
|
|
*name_p = revs->pending.objects[0].name;
|
|
return (struct commit *)obj;
|
|
}
|
|
|
|
static struct commit *find_single_initial(struct rev_info *revs,
|
|
const char **name_p)
|
|
{
|
|
int i;
|
|
struct commit *found = NULL;
|
|
const char *name = NULL;
|
|
|
|
/*
|
|
* There must be one and only one negative commit, and it must be
|
|
* the boundary.
|
|
*/
|
|
for (i = 0; i < revs->pending.nr; i++) {
|
|
struct object *obj = revs->pending.objects[i].item;
|
|
if (!(obj->flags & UNINTERESTING))
|
|
continue;
|
|
obj = deref_tag(revs->repo, obj, NULL, 0);
|
|
if (!obj || obj->type != OBJ_COMMIT)
|
|
die("Non commit %s?", revs->pending.objects[i].name);
|
|
if (found)
|
|
die("More than one commit to dig up from, %s and %s?",
|
|
revs->pending.objects[i].name, name);
|
|
found = (struct commit *) obj;
|
|
name = revs->pending.objects[i].name;
|
|
}
|
|
|
|
if (!name)
|
|
found = dwim_reverse_initial(revs, &name);
|
|
if (!name)
|
|
die("No commit to dig up from?");
|
|
|
|
if (name_p)
|
|
*name_p = xstrdup(name);
|
|
return found;
|
|
}
|
|
|
|
void init_scoreboard(struct blame_scoreboard *sb)
|
|
{
|
|
memset(sb, 0, sizeof(struct blame_scoreboard));
|
|
sb->move_score = BLAME_DEFAULT_MOVE_SCORE;
|
|
sb->copy_score = BLAME_DEFAULT_COPY_SCORE;
|
|
}
|
|
|
|
void setup_scoreboard(struct blame_scoreboard *sb,
|
|
struct blame_origin **orig)
|
|
{
|
|
const char *final_commit_name = NULL;
|
|
struct blame_origin *o;
|
|
struct commit *final_commit = NULL;
|
|
enum object_type type;
|
|
|
|
init_blame_suspects(&blame_suspects);
|
|
|
|
if (sb->reverse && sb->contents_from)
|
|
die(_("--contents and --reverse do not blend well."));
|
|
|
|
if (!sb->repo)
|
|
BUG("repo is NULL");
|
|
|
|
if (!sb->reverse) {
|
|
sb->final = find_single_final(sb->revs, &final_commit_name);
|
|
sb->commits.compare = compare_commits_by_commit_date;
|
|
} else {
|
|
sb->final = find_single_initial(sb->revs, &final_commit_name);
|
|
sb->commits.compare = compare_commits_by_reverse_commit_date;
|
|
}
|
|
|
|
if (sb->reverse && sb->revs->first_parent_only)
|
|
sb->revs->children.name = NULL;
|
|
|
|
if (sb->contents_from || !sb->final) {
|
|
struct object_id head_oid, *parent_oid;
|
|
|
|
/*
|
|
* Build a fake commit at the top of the history, when
|
|
* (1) "git blame [^A] --path", i.e. with no positive end
|
|
* of the history range, in which case we build such
|
|
* a fake commit on top of the HEAD to blame in-tree
|
|
* modifications.
|
|
* (2) "git blame --contents=file [A] -- path", with or
|
|
* without positive end of the history range but with
|
|
* --contents, in which case we pretend that there is
|
|
* a fake commit on top of the positive end (defaulting to
|
|
* HEAD) that has the given contents in the path.
|
|
*/
|
|
if (sb->final) {
|
|
parent_oid = &sb->final->object.oid;
|
|
} else {
|
|
if (!refs_resolve_ref_unsafe(get_main_ref_store(the_repository), "HEAD", RESOLVE_REF_READING, &head_oid, NULL))
|
|
die("no such ref: HEAD");
|
|
parent_oid = &head_oid;
|
|
}
|
|
|
|
if (!sb->contents_from)
|
|
setup_work_tree();
|
|
|
|
sb->final = fake_working_tree_commit(sb->repo,
|
|
&sb->revs->diffopt,
|
|
sb->path, sb->contents_from,
|
|
parent_oid);
|
|
add_pending_object(sb->revs, &(sb->final->object), ":");
|
|
}
|
|
|
|
if (sb->reverse && sb->revs->first_parent_only) {
|
|
final_commit = find_single_final(sb->revs, NULL);
|
|
if (!final_commit)
|
|
die(_("--reverse and --first-parent together require specified latest commit"));
|
|
}
|
|
|
|
/*
|
|
* If we have bottom, this will mark the ancestors of the
|
|
* bottom commits we would reach while traversing as
|
|
* uninteresting.
|
|
*/
|
|
if (prepare_revision_walk(sb->revs))
|
|
die(_("revision walk setup failed"));
|
|
|
|
if (sb->reverse && sb->revs->first_parent_only) {
|
|
struct commit *c = final_commit;
|
|
|
|
sb->revs->children.name = "children";
|
|
while (c->parents &&
|
|
!oideq(&c->object.oid, &sb->final->object.oid)) {
|
|
struct commit_list *l = xcalloc(1, sizeof(*l));
|
|
|
|
l->item = c;
|
|
if (add_decoration(&sb->revs->children,
|
|
&c->parents->item->object, l))
|
|
BUG("not unique item in first-parent chain");
|
|
c = c->parents->item;
|
|
}
|
|
|
|
if (!oideq(&c->object.oid, &sb->final->object.oid))
|
|
die(_("--reverse --first-parent together require range along first-parent chain"));
|
|
}
|
|
|
|
if (is_null_oid(&sb->final->object.oid)) {
|
|
o = get_blame_suspects(sb->final);
|
|
sb->final_buf = xmemdupz(o->file.ptr, o->file.size);
|
|
sb->final_buf_size = o->file.size;
|
|
}
|
|
else {
|
|
o = get_origin(sb->final, sb->path);
|
|
if (fill_blob_sha1_and_mode(sb->repo, o))
|
|
die(_("no such path %s in %s"), sb->path, final_commit_name);
|
|
|
|
if (sb->revs->diffopt.flags.allow_textconv &&
|
|
textconv_object(sb->repo, sb->path, o->mode, &o->blob_oid, 1, (char **) &sb->final_buf,
|
|
&sb->final_buf_size))
|
|
;
|
|
else
|
|
sb->final_buf = repo_read_object_file(the_repository,
|
|
&o->blob_oid,
|
|
&type,
|
|
&sb->final_buf_size);
|
|
|
|
if (!sb->final_buf)
|
|
die(_("cannot read blob %s for path %s"),
|
|
oid_to_hex(&o->blob_oid),
|
|
sb->path);
|
|
}
|
|
sb->num_read_blob++;
|
|
prepare_lines(sb);
|
|
|
|
if (orig)
|
|
*orig = o;
|
|
|
|
free((char *)final_commit_name);
|
|
}
|
|
|
|
|
|
|
|
struct blame_entry *blame_entry_prepend(struct blame_entry *head,
|
|
long start, long end,
|
|
struct blame_origin *o)
|
|
{
|
|
struct blame_entry *new_head = xcalloc(1, sizeof(struct blame_entry));
|
|
new_head->lno = start;
|
|
new_head->num_lines = end - start;
|
|
new_head->suspect = o;
|
|
new_head->s_lno = start;
|
|
new_head->next = head;
|
|
blame_origin_incref(o);
|
|
return new_head;
|
|
}
|
|
|
|
void setup_blame_bloom_data(struct blame_scoreboard *sb)
|
|
{
|
|
struct blame_bloom_data *bd;
|
|
struct bloom_filter_settings *bs;
|
|
|
|
if (!sb->repo->objects->commit_graph)
|
|
return;
|
|
|
|
bs = get_bloom_filter_settings(sb->repo);
|
|
if (!bs)
|
|
return;
|
|
|
|
bd = xmalloc(sizeof(struct blame_bloom_data));
|
|
|
|
bd->settings = bs;
|
|
|
|
bd->alloc = 4;
|
|
bd->nr = 0;
|
|
ALLOC_ARRAY(bd->keys, bd->alloc);
|
|
|
|
add_bloom_key(bd, sb->path);
|
|
|
|
sb->bloom_data = bd;
|
|
}
|
|
|
|
void cleanup_scoreboard(struct blame_scoreboard *sb)
|
|
{
|
|
free(sb->lineno);
|
|
clear_prio_queue(&sb->commits);
|
|
oidset_clear(&sb->ignore_list);
|
|
|
|
if (sb->bloom_data) {
|
|
int i;
|
|
for (i = 0; i < sb->bloom_data->nr; i++) {
|
|
free(sb->bloom_data->keys[i]->hashes);
|
|
free(sb->bloom_data->keys[i]);
|
|
}
|
|
free(sb->bloom_data->keys);
|
|
FREE_AND_NULL(sb->bloom_data);
|
|
|
|
trace2_data_intmax("blame", sb->repo,
|
|
"bloom/queries", bloom_count_queries);
|
|
trace2_data_intmax("blame", sb->repo,
|
|
"bloom/response-no", bloom_count_no);
|
|
}
|
|
}
|