mirror of
https://github.com/git/git.git
synced 2025-01-12 10:33:29 +08:00
0b0ab95f17
As with the *_fn members removed in a preceding commit, let's not copy
the "processes" member of the "struct run_process_parallel_opts" over
to the "struct parallel_processes".
In this case we need the number of processes for the kill_children()
function, which will be called from a signal handler. To do that
adjust this code added in c553c72eed
(run-command: add an
asynchronous parallel child processor, 2015-12-15) so that we use a
dedicated "struct parallel_processes_for_signal" for passing data to
the signal handler, in addition to the "struct parallel_process" it'll
now have access to our "opts" variable.
Signed-off-by: Ævar Arnfjörð Bjarmason <avarab@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
1985 lines
44 KiB
C
1985 lines
44 KiB
C
#include "cache.h"
|
|
#include "run-command.h"
|
|
#include "exec-cmd.h"
|
|
#include "sigchain.h"
|
|
#include "strvec.h"
|
|
#include "thread-utils.h"
|
|
#include "strbuf.h"
|
|
#include "string-list.h"
|
|
#include "quote.h"
|
|
#include "config.h"
|
|
#include "packfile.h"
|
|
#include "hook.h"
|
|
#include "compat/nonblock.h"
|
|
|
|
void child_process_init(struct child_process *child)
|
|
{
|
|
struct child_process blank = CHILD_PROCESS_INIT;
|
|
memcpy(child, &blank, sizeof(*child));
|
|
}
|
|
|
|
void child_process_clear(struct child_process *child)
|
|
{
|
|
strvec_clear(&child->args);
|
|
strvec_clear(&child->env);
|
|
}
|
|
|
|
struct child_to_clean {
|
|
pid_t pid;
|
|
struct child_process *process;
|
|
struct child_to_clean *next;
|
|
};
|
|
static struct child_to_clean *children_to_clean;
|
|
static int installed_child_cleanup_handler;
|
|
|
|
static void cleanup_children(int sig, int in_signal)
|
|
{
|
|
struct child_to_clean *children_to_wait_for = NULL;
|
|
|
|
while (children_to_clean) {
|
|
struct child_to_clean *p = children_to_clean;
|
|
children_to_clean = p->next;
|
|
|
|
if (p->process && !in_signal) {
|
|
struct child_process *process = p->process;
|
|
if (process->clean_on_exit_handler) {
|
|
trace_printf(
|
|
"trace: run_command: running exit handler for pid %"
|
|
PRIuMAX, (uintmax_t)p->pid
|
|
);
|
|
process->clean_on_exit_handler(process);
|
|
}
|
|
}
|
|
|
|
kill(p->pid, sig);
|
|
|
|
if (p->process && p->process->wait_after_clean) {
|
|
p->next = children_to_wait_for;
|
|
children_to_wait_for = p;
|
|
} else {
|
|
if (!in_signal)
|
|
free(p);
|
|
}
|
|
}
|
|
|
|
while (children_to_wait_for) {
|
|
struct child_to_clean *p = children_to_wait_for;
|
|
children_to_wait_for = p->next;
|
|
|
|
while (waitpid(p->pid, NULL, 0) < 0 && errno == EINTR)
|
|
; /* spin waiting for process exit or error */
|
|
|
|
if (!in_signal)
|
|
free(p);
|
|
}
|
|
}
|
|
|
|
static void cleanup_children_on_signal(int sig)
|
|
{
|
|
cleanup_children(sig, 1);
|
|
sigchain_pop(sig);
|
|
raise(sig);
|
|
}
|
|
|
|
static void cleanup_children_on_exit(void)
|
|
{
|
|
cleanup_children(SIGTERM, 0);
|
|
}
|
|
|
|
static void mark_child_for_cleanup(pid_t pid, struct child_process *process)
|
|
{
|
|
struct child_to_clean *p = xmalloc(sizeof(*p));
|
|
p->pid = pid;
|
|
p->process = process;
|
|
p->next = children_to_clean;
|
|
children_to_clean = p;
|
|
|
|
if (!installed_child_cleanup_handler) {
|
|
atexit(cleanup_children_on_exit);
|
|
sigchain_push_common(cleanup_children_on_signal);
|
|
installed_child_cleanup_handler = 1;
|
|
}
|
|
}
|
|
|
|
static void clear_child_for_cleanup(pid_t pid)
|
|
{
|
|
struct child_to_clean **pp;
|
|
|
|
for (pp = &children_to_clean; *pp; pp = &(*pp)->next) {
|
|
struct child_to_clean *clean_me = *pp;
|
|
|
|
if (clean_me->pid == pid) {
|
|
*pp = clean_me->next;
|
|
free(clean_me);
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
static inline void close_pair(int fd[2])
|
|
{
|
|
close(fd[0]);
|
|
close(fd[1]);
|
|
}
|
|
|
|
int is_executable(const char *name)
|
|
{
|
|
struct stat st;
|
|
|
|
if (stat(name, &st) || /* stat, not lstat */
|
|
!S_ISREG(st.st_mode))
|
|
return 0;
|
|
|
|
#if defined(GIT_WINDOWS_NATIVE)
|
|
/*
|
|
* On Windows there is no executable bit. The file extension
|
|
* indicates whether it can be run as an executable, and Git
|
|
* has special-handling to detect scripts and launch them
|
|
* through the indicated script interpreter. We test for the
|
|
* file extension first because virus scanners may make
|
|
* it quite expensive to open many files.
|
|
*/
|
|
if (ends_with(name, ".exe"))
|
|
return S_IXUSR;
|
|
|
|
{
|
|
/*
|
|
* Now that we know it does not have an executable extension,
|
|
* peek into the file instead.
|
|
*/
|
|
char buf[3] = { 0 };
|
|
int n;
|
|
int fd = open(name, O_RDONLY);
|
|
st.st_mode &= ~S_IXUSR;
|
|
if (fd >= 0) {
|
|
n = read(fd, buf, 2);
|
|
if (n == 2)
|
|
/* look for a she-bang */
|
|
if (!strcmp(buf, "#!"))
|
|
st.st_mode |= S_IXUSR;
|
|
close(fd);
|
|
}
|
|
}
|
|
#endif
|
|
return st.st_mode & S_IXUSR;
|
|
}
|
|
|
|
/*
|
|
* Search $PATH for a command. This emulates the path search that
|
|
* execvp would perform, without actually executing the command so it
|
|
* can be used before fork() to prepare to run a command using
|
|
* execve() or after execvp() to diagnose why it failed.
|
|
*
|
|
* The caller should ensure that file contains no directory
|
|
* separators.
|
|
*
|
|
* Returns the path to the command, as found in $PATH or NULL if the
|
|
* command could not be found. The caller inherits ownership of the memory
|
|
* used to store the resultant path.
|
|
*
|
|
* This should not be used on Windows, where the $PATH search rules
|
|
* are more complicated (e.g., a search for "foo" should find
|
|
* "foo.exe").
|
|
*/
|
|
static char *locate_in_PATH(const char *file)
|
|
{
|
|
const char *p = getenv("PATH");
|
|
struct strbuf buf = STRBUF_INIT;
|
|
|
|
if (!p || !*p)
|
|
return NULL;
|
|
|
|
while (1) {
|
|
const char *end = strchrnul(p, ':');
|
|
|
|
strbuf_reset(&buf);
|
|
|
|
/* POSIX specifies an empty entry as the current directory. */
|
|
if (end != p) {
|
|
strbuf_add(&buf, p, end - p);
|
|
strbuf_addch(&buf, '/');
|
|
}
|
|
strbuf_addstr(&buf, file);
|
|
|
|
if (is_executable(buf.buf))
|
|
return strbuf_detach(&buf, NULL);
|
|
|
|
if (!*end)
|
|
break;
|
|
p = end + 1;
|
|
}
|
|
|
|
strbuf_release(&buf);
|
|
return NULL;
|
|
}
|
|
|
|
int exists_in_PATH(const char *command)
|
|
{
|
|
char *r = locate_in_PATH(command);
|
|
int found = r != NULL;
|
|
free(r);
|
|
return found;
|
|
}
|
|
|
|
int sane_execvp(const char *file, char * const argv[])
|
|
{
|
|
#ifndef GIT_WINDOWS_NATIVE
|
|
/*
|
|
* execvp() doesn't return, so we all we can do is tell trace2
|
|
* what we are about to do and let it leave a hint in the log
|
|
* (unless of course the execvp() fails).
|
|
*
|
|
* we skip this for Windows because the compat layer already
|
|
* has to emulate the execvp() call anyway.
|
|
*/
|
|
int exec_id = trace2_exec(file, (const char **)argv);
|
|
#endif
|
|
|
|
if (!execvp(file, argv))
|
|
return 0; /* cannot happen ;-) */
|
|
|
|
#ifndef GIT_WINDOWS_NATIVE
|
|
{
|
|
int ec = errno;
|
|
trace2_exec_result(exec_id, ec);
|
|
errno = ec;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* When a command can't be found because one of the directories
|
|
* listed in $PATH is unsearchable, execvp reports EACCES, but
|
|
* careful usability testing (read: analysis of occasional bug
|
|
* reports) reveals that "No such file or directory" is more
|
|
* intuitive.
|
|
*
|
|
* We avoid commands with "/", because execvp will not do $PATH
|
|
* lookups in that case.
|
|
*
|
|
* The reassignment of EACCES to errno looks like a no-op below,
|
|
* but we need to protect against exists_in_PATH overwriting errno.
|
|
*/
|
|
if (errno == EACCES && !strchr(file, '/'))
|
|
errno = exists_in_PATH(file) ? EACCES : ENOENT;
|
|
else if (errno == ENOTDIR && !strchr(file, '/'))
|
|
errno = ENOENT;
|
|
return -1;
|
|
}
|
|
|
|
static const char **prepare_shell_cmd(struct strvec *out, const char **argv)
|
|
{
|
|
if (!argv[0])
|
|
BUG("shell command is empty");
|
|
|
|
if (strcspn(argv[0], "|&;<>()$`\\\"' \t\n*?[#~=%") != strlen(argv[0])) {
|
|
#ifndef GIT_WINDOWS_NATIVE
|
|
strvec_push(out, SHELL_PATH);
|
|
#else
|
|
strvec_push(out, "sh");
|
|
#endif
|
|
strvec_push(out, "-c");
|
|
|
|
/*
|
|
* If we have no extra arguments, we do not even need to
|
|
* bother with the "$@" magic.
|
|
*/
|
|
if (!argv[1])
|
|
strvec_push(out, argv[0]);
|
|
else
|
|
strvec_pushf(out, "%s \"$@\"", argv[0]);
|
|
}
|
|
|
|
strvec_pushv(out, argv);
|
|
return out->v;
|
|
}
|
|
|
|
#ifndef GIT_WINDOWS_NATIVE
|
|
static int child_notifier = -1;
|
|
|
|
enum child_errcode {
|
|
CHILD_ERR_CHDIR,
|
|
CHILD_ERR_DUP2,
|
|
CHILD_ERR_CLOSE,
|
|
CHILD_ERR_SIGPROCMASK,
|
|
CHILD_ERR_ENOENT,
|
|
CHILD_ERR_SILENT,
|
|
CHILD_ERR_ERRNO
|
|
};
|
|
|
|
struct child_err {
|
|
enum child_errcode err;
|
|
int syserr; /* errno */
|
|
};
|
|
|
|
static void child_die(enum child_errcode err)
|
|
{
|
|
struct child_err buf;
|
|
|
|
buf.err = err;
|
|
buf.syserr = errno;
|
|
|
|
/* write(2) on buf smaller than PIPE_BUF (min 512) is atomic: */
|
|
xwrite(child_notifier, &buf, sizeof(buf));
|
|
_exit(1);
|
|
}
|
|
|
|
static void child_dup2(int fd, int to)
|
|
{
|
|
if (dup2(fd, to) < 0)
|
|
child_die(CHILD_ERR_DUP2);
|
|
}
|
|
|
|
static void child_close(int fd)
|
|
{
|
|
if (close(fd))
|
|
child_die(CHILD_ERR_CLOSE);
|
|
}
|
|
|
|
static void child_close_pair(int fd[2])
|
|
{
|
|
child_close(fd[0]);
|
|
child_close(fd[1]);
|
|
}
|
|
|
|
static void child_error_fn(const char *err, va_list params)
|
|
{
|
|
const char msg[] = "error() should not be called in child\n";
|
|
xwrite(2, msg, sizeof(msg) - 1);
|
|
}
|
|
|
|
static void child_warn_fn(const char *err, va_list params)
|
|
{
|
|
const char msg[] = "warn() should not be called in child\n";
|
|
xwrite(2, msg, sizeof(msg) - 1);
|
|
}
|
|
|
|
static void NORETURN child_die_fn(const char *err, va_list params)
|
|
{
|
|
const char msg[] = "die() should not be called in child\n";
|
|
xwrite(2, msg, sizeof(msg) - 1);
|
|
_exit(2);
|
|
}
|
|
|
|
/* this runs in the parent process */
|
|
static void child_err_spew(struct child_process *cmd, struct child_err *cerr)
|
|
{
|
|
static void (*old_errfn)(const char *err, va_list params);
|
|
report_fn die_message_routine = get_die_message_routine();
|
|
|
|
old_errfn = get_error_routine();
|
|
set_error_routine(die_message_routine);
|
|
errno = cerr->syserr;
|
|
|
|
switch (cerr->err) {
|
|
case CHILD_ERR_CHDIR:
|
|
error_errno("exec '%s': cd to '%s' failed",
|
|
cmd->args.v[0], cmd->dir);
|
|
break;
|
|
case CHILD_ERR_DUP2:
|
|
error_errno("dup2() in child failed");
|
|
break;
|
|
case CHILD_ERR_CLOSE:
|
|
error_errno("close() in child failed");
|
|
break;
|
|
case CHILD_ERR_SIGPROCMASK:
|
|
error_errno("sigprocmask failed restoring signals");
|
|
break;
|
|
case CHILD_ERR_ENOENT:
|
|
error_errno("cannot run %s", cmd->args.v[0]);
|
|
break;
|
|
case CHILD_ERR_SILENT:
|
|
break;
|
|
case CHILD_ERR_ERRNO:
|
|
error_errno("cannot exec '%s'", cmd->args.v[0]);
|
|
break;
|
|
}
|
|
set_error_routine(old_errfn);
|
|
}
|
|
|
|
static int prepare_cmd(struct strvec *out, const struct child_process *cmd)
|
|
{
|
|
if (!cmd->args.v[0])
|
|
BUG("command is empty");
|
|
|
|
/*
|
|
* Add SHELL_PATH so in the event exec fails with ENOEXEC we can
|
|
* attempt to interpret the command with 'sh'.
|
|
*/
|
|
strvec_push(out, SHELL_PATH);
|
|
|
|
if (cmd->git_cmd) {
|
|
prepare_git_cmd(out, cmd->args.v);
|
|
} else if (cmd->use_shell) {
|
|
prepare_shell_cmd(out, cmd->args.v);
|
|
} else {
|
|
strvec_pushv(out, cmd->args.v);
|
|
}
|
|
|
|
/*
|
|
* If there are no dir separator characters in the command then perform
|
|
* a path lookup and use the resolved path as the command to exec. If
|
|
* there are dir separator characters, we have exec attempt to invoke
|
|
* the command directly.
|
|
*/
|
|
if (!has_dir_sep(out->v[1])) {
|
|
char *program = locate_in_PATH(out->v[1]);
|
|
if (program) {
|
|
free((char *)out->v[1]);
|
|
out->v[1] = program;
|
|
} else {
|
|
strvec_clear(out);
|
|
errno = ENOENT;
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static char **prep_childenv(const char *const *deltaenv)
|
|
{
|
|
extern char **environ;
|
|
char **childenv;
|
|
struct string_list env = STRING_LIST_INIT_DUP;
|
|
struct strbuf key = STRBUF_INIT;
|
|
const char *const *p;
|
|
int i;
|
|
|
|
/* Construct a sorted string list consisting of the current environ */
|
|
for (p = (const char *const *) environ; p && *p; p++) {
|
|
const char *equals = strchr(*p, '=');
|
|
|
|
if (equals) {
|
|
strbuf_reset(&key);
|
|
strbuf_add(&key, *p, equals - *p);
|
|
string_list_append(&env, key.buf)->util = (void *) *p;
|
|
} else {
|
|
string_list_append(&env, *p)->util = (void *) *p;
|
|
}
|
|
}
|
|
string_list_sort(&env);
|
|
|
|
/* Merge in 'deltaenv' with the current environ */
|
|
for (p = deltaenv; p && *p; p++) {
|
|
const char *equals = strchr(*p, '=');
|
|
|
|
if (equals) {
|
|
/* ('key=value'), insert or replace entry */
|
|
strbuf_reset(&key);
|
|
strbuf_add(&key, *p, equals - *p);
|
|
string_list_insert(&env, key.buf)->util = (void *) *p;
|
|
} else {
|
|
/* otherwise ('key') remove existing entry */
|
|
string_list_remove(&env, *p, 0);
|
|
}
|
|
}
|
|
|
|
/* Create an array of 'char *' to be used as the childenv */
|
|
ALLOC_ARRAY(childenv, env.nr + 1);
|
|
for (i = 0; i < env.nr; i++)
|
|
childenv[i] = env.items[i].util;
|
|
childenv[env.nr] = NULL;
|
|
|
|
string_list_clear(&env, 0);
|
|
strbuf_release(&key);
|
|
return childenv;
|
|
}
|
|
|
|
struct atfork_state {
|
|
#ifndef NO_PTHREADS
|
|
int cs;
|
|
#endif
|
|
sigset_t old;
|
|
};
|
|
|
|
#define CHECK_BUG(err, msg) \
|
|
do { \
|
|
int e = (err); \
|
|
if (e) \
|
|
BUG("%s: %s", msg, strerror(e)); \
|
|
} while(0)
|
|
|
|
static void atfork_prepare(struct atfork_state *as)
|
|
{
|
|
sigset_t all;
|
|
|
|
if (sigfillset(&all))
|
|
die_errno("sigfillset");
|
|
#ifdef NO_PTHREADS
|
|
if (sigprocmask(SIG_SETMASK, &all, &as->old))
|
|
die_errno("sigprocmask");
|
|
#else
|
|
CHECK_BUG(pthread_sigmask(SIG_SETMASK, &all, &as->old),
|
|
"blocking all signals");
|
|
CHECK_BUG(pthread_setcancelstate(PTHREAD_CANCEL_DISABLE, &as->cs),
|
|
"disabling cancellation");
|
|
#endif
|
|
}
|
|
|
|
static void atfork_parent(struct atfork_state *as)
|
|
{
|
|
#ifdef NO_PTHREADS
|
|
if (sigprocmask(SIG_SETMASK, &as->old, NULL))
|
|
die_errno("sigprocmask");
|
|
#else
|
|
CHECK_BUG(pthread_setcancelstate(as->cs, NULL),
|
|
"re-enabling cancellation");
|
|
CHECK_BUG(pthread_sigmask(SIG_SETMASK, &as->old, NULL),
|
|
"restoring signal mask");
|
|
#endif
|
|
}
|
|
#endif /* GIT_WINDOWS_NATIVE */
|
|
|
|
static inline void set_cloexec(int fd)
|
|
{
|
|
int flags = fcntl(fd, F_GETFD);
|
|
if (flags >= 0)
|
|
fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
|
|
}
|
|
|
|
static int wait_or_whine(pid_t pid, const char *argv0, int in_signal)
|
|
{
|
|
int status, code = -1;
|
|
pid_t waiting;
|
|
int failed_errno = 0;
|
|
|
|
while ((waiting = waitpid(pid, &status, 0)) < 0 && errno == EINTR)
|
|
; /* nothing */
|
|
|
|
if (waiting < 0) {
|
|
failed_errno = errno;
|
|
if (!in_signal)
|
|
error_errno("waitpid for %s failed", argv0);
|
|
} else if (waiting != pid) {
|
|
if (!in_signal)
|
|
error("waitpid is confused (%s)", argv0);
|
|
} else if (WIFSIGNALED(status)) {
|
|
code = WTERMSIG(status);
|
|
if (!in_signal && code != SIGINT && code != SIGQUIT && code != SIGPIPE)
|
|
error("%s died of signal %d", argv0, code);
|
|
/*
|
|
* This return value is chosen so that code & 0xff
|
|
* mimics the exit code that a POSIX shell would report for
|
|
* a program that died from this signal.
|
|
*/
|
|
code += 128;
|
|
} else if (WIFEXITED(status)) {
|
|
code = WEXITSTATUS(status);
|
|
} else {
|
|
if (!in_signal)
|
|
error("waitpid is confused (%s)", argv0);
|
|
}
|
|
|
|
if (!in_signal)
|
|
clear_child_for_cleanup(pid);
|
|
|
|
errno = failed_errno;
|
|
return code;
|
|
}
|
|
|
|
static void trace_add_env(struct strbuf *dst, const char *const *deltaenv)
|
|
{
|
|
struct string_list envs = STRING_LIST_INIT_DUP;
|
|
const char *const *e;
|
|
int i;
|
|
int printed_unset = 0;
|
|
|
|
/* Last one wins, see run-command.c:prep_childenv() for context */
|
|
for (e = deltaenv; e && *e; e++) {
|
|
struct strbuf key = STRBUF_INIT;
|
|
char *equals = strchr(*e, '=');
|
|
|
|
if (equals) {
|
|
strbuf_add(&key, *e, equals - *e);
|
|
string_list_insert(&envs, key.buf)->util = equals + 1;
|
|
} else {
|
|
string_list_insert(&envs, *e)->util = NULL;
|
|
}
|
|
strbuf_release(&key);
|
|
}
|
|
|
|
/* "unset X Y...;" */
|
|
for (i = 0; i < envs.nr; i++) {
|
|
const char *var = envs.items[i].string;
|
|
const char *val = envs.items[i].util;
|
|
|
|
if (val || !getenv(var))
|
|
continue;
|
|
|
|
if (!printed_unset) {
|
|
strbuf_addstr(dst, " unset");
|
|
printed_unset = 1;
|
|
}
|
|
strbuf_addf(dst, " %s", var);
|
|
}
|
|
if (printed_unset)
|
|
strbuf_addch(dst, ';');
|
|
|
|
/* ... followed by "A=B C=D ..." */
|
|
for (i = 0; i < envs.nr; i++) {
|
|
const char *var = envs.items[i].string;
|
|
const char *val = envs.items[i].util;
|
|
const char *oldval;
|
|
|
|
if (!val)
|
|
continue;
|
|
|
|
oldval = getenv(var);
|
|
if (oldval && !strcmp(val, oldval))
|
|
continue;
|
|
|
|
strbuf_addf(dst, " %s=", var);
|
|
sq_quote_buf_pretty(dst, val);
|
|
}
|
|
string_list_clear(&envs, 0);
|
|
}
|
|
|
|
static void trace_run_command(const struct child_process *cp)
|
|
{
|
|
struct strbuf buf = STRBUF_INIT;
|
|
|
|
if (!trace_want(&trace_default_key))
|
|
return;
|
|
|
|
strbuf_addstr(&buf, "trace: run_command:");
|
|
if (cp->dir) {
|
|
strbuf_addstr(&buf, " cd ");
|
|
sq_quote_buf_pretty(&buf, cp->dir);
|
|
strbuf_addch(&buf, ';');
|
|
}
|
|
trace_add_env(&buf, cp->env.v);
|
|
if (cp->git_cmd)
|
|
strbuf_addstr(&buf, " git");
|
|
sq_quote_argv_pretty(&buf, cp->args.v);
|
|
|
|
trace_printf("%s", buf.buf);
|
|
strbuf_release(&buf);
|
|
}
|
|
|
|
int start_command(struct child_process *cmd)
|
|
{
|
|
int need_in, need_out, need_err;
|
|
int fdin[2], fdout[2], fderr[2];
|
|
int failed_errno;
|
|
char *str;
|
|
|
|
/*
|
|
* In case of errors we must keep the promise to close FDs
|
|
* that have been passed in via ->in and ->out.
|
|
*/
|
|
|
|
need_in = !cmd->no_stdin && cmd->in < 0;
|
|
if (need_in) {
|
|
if (pipe(fdin) < 0) {
|
|
failed_errno = errno;
|
|
if (cmd->out > 0)
|
|
close(cmd->out);
|
|
str = "standard input";
|
|
goto fail_pipe;
|
|
}
|
|
cmd->in = fdin[1];
|
|
}
|
|
|
|
need_out = !cmd->no_stdout
|
|
&& !cmd->stdout_to_stderr
|
|
&& cmd->out < 0;
|
|
if (need_out) {
|
|
if (pipe(fdout) < 0) {
|
|
failed_errno = errno;
|
|
if (need_in)
|
|
close_pair(fdin);
|
|
else if (cmd->in)
|
|
close(cmd->in);
|
|
str = "standard output";
|
|
goto fail_pipe;
|
|
}
|
|
cmd->out = fdout[0];
|
|
}
|
|
|
|
need_err = !cmd->no_stderr && cmd->err < 0;
|
|
if (need_err) {
|
|
if (pipe(fderr) < 0) {
|
|
failed_errno = errno;
|
|
if (need_in)
|
|
close_pair(fdin);
|
|
else if (cmd->in)
|
|
close(cmd->in);
|
|
if (need_out)
|
|
close_pair(fdout);
|
|
else if (cmd->out)
|
|
close(cmd->out);
|
|
str = "standard error";
|
|
fail_pipe:
|
|
error("cannot create %s pipe for %s: %s",
|
|
str, cmd->args.v[0], strerror(failed_errno));
|
|
child_process_clear(cmd);
|
|
errno = failed_errno;
|
|
return -1;
|
|
}
|
|
cmd->err = fderr[0];
|
|
}
|
|
|
|
trace2_child_start(cmd);
|
|
trace_run_command(cmd);
|
|
|
|
fflush(NULL);
|
|
|
|
if (cmd->close_object_store)
|
|
close_object_store(the_repository->objects);
|
|
|
|
#ifndef GIT_WINDOWS_NATIVE
|
|
{
|
|
int notify_pipe[2];
|
|
int null_fd = -1;
|
|
char **childenv;
|
|
struct strvec argv = STRVEC_INIT;
|
|
struct child_err cerr;
|
|
struct atfork_state as;
|
|
|
|
if (prepare_cmd(&argv, cmd) < 0) {
|
|
failed_errno = errno;
|
|
cmd->pid = -1;
|
|
if (!cmd->silent_exec_failure)
|
|
error_errno("cannot run %s", cmd->args.v[0]);
|
|
goto end_of_spawn;
|
|
}
|
|
|
|
if (pipe(notify_pipe))
|
|
notify_pipe[0] = notify_pipe[1] = -1;
|
|
|
|
if (cmd->no_stdin || cmd->no_stdout || cmd->no_stderr) {
|
|
null_fd = xopen("/dev/null", O_RDWR | O_CLOEXEC);
|
|
set_cloexec(null_fd);
|
|
}
|
|
|
|
childenv = prep_childenv(cmd->env.v);
|
|
atfork_prepare(&as);
|
|
|
|
/*
|
|
* NOTE: In order to prevent deadlocking when using threads special
|
|
* care should be taken with the function calls made in between the
|
|
* fork() and exec() calls. No calls should be made to functions which
|
|
* require acquiring a lock (e.g. malloc) as the lock could have been
|
|
* held by another thread at the time of forking, causing the lock to
|
|
* never be released in the child process. This means only
|
|
* Async-Signal-Safe functions are permitted in the child.
|
|
*/
|
|
cmd->pid = fork();
|
|
failed_errno = errno;
|
|
if (!cmd->pid) {
|
|
int sig;
|
|
/*
|
|
* Ensure the default die/error/warn routines do not get
|
|
* called, they can take stdio locks and malloc.
|
|
*/
|
|
set_die_routine(child_die_fn);
|
|
set_error_routine(child_error_fn);
|
|
set_warn_routine(child_warn_fn);
|
|
|
|
close(notify_pipe[0]);
|
|
set_cloexec(notify_pipe[1]);
|
|
child_notifier = notify_pipe[1];
|
|
|
|
if (cmd->no_stdin)
|
|
child_dup2(null_fd, 0);
|
|
else if (need_in) {
|
|
child_dup2(fdin[0], 0);
|
|
child_close_pair(fdin);
|
|
} else if (cmd->in) {
|
|
child_dup2(cmd->in, 0);
|
|
child_close(cmd->in);
|
|
}
|
|
|
|
if (cmd->no_stderr)
|
|
child_dup2(null_fd, 2);
|
|
else if (need_err) {
|
|
child_dup2(fderr[1], 2);
|
|
child_close_pair(fderr);
|
|
} else if (cmd->err > 1) {
|
|
child_dup2(cmd->err, 2);
|
|
child_close(cmd->err);
|
|
}
|
|
|
|
if (cmd->no_stdout)
|
|
child_dup2(null_fd, 1);
|
|
else if (cmd->stdout_to_stderr)
|
|
child_dup2(2, 1);
|
|
else if (need_out) {
|
|
child_dup2(fdout[1], 1);
|
|
child_close_pair(fdout);
|
|
} else if (cmd->out > 1) {
|
|
child_dup2(cmd->out, 1);
|
|
child_close(cmd->out);
|
|
}
|
|
|
|
if (cmd->dir && chdir(cmd->dir))
|
|
child_die(CHILD_ERR_CHDIR);
|
|
|
|
/*
|
|
* restore default signal handlers here, in case
|
|
* we catch a signal right before execve below
|
|
*/
|
|
for (sig = 1; sig < NSIG; sig++) {
|
|
/* ignored signals get reset to SIG_DFL on execve */
|
|
if (signal(sig, SIG_DFL) == SIG_IGN)
|
|
signal(sig, SIG_IGN);
|
|
}
|
|
|
|
if (sigprocmask(SIG_SETMASK, &as.old, NULL) != 0)
|
|
child_die(CHILD_ERR_SIGPROCMASK);
|
|
|
|
/*
|
|
* Attempt to exec using the command and arguments starting at
|
|
* argv.argv[1]. argv.argv[0] contains SHELL_PATH which will
|
|
* be used in the event exec failed with ENOEXEC at which point
|
|
* we will try to interpret the command using 'sh'.
|
|
*/
|
|
execve(argv.v[1], (char *const *) argv.v + 1,
|
|
(char *const *) childenv);
|
|
if (errno == ENOEXEC)
|
|
execve(argv.v[0], (char *const *) argv.v,
|
|
(char *const *) childenv);
|
|
|
|
if (errno == ENOENT) {
|
|
if (cmd->silent_exec_failure)
|
|
child_die(CHILD_ERR_SILENT);
|
|
child_die(CHILD_ERR_ENOENT);
|
|
} else {
|
|
child_die(CHILD_ERR_ERRNO);
|
|
}
|
|
}
|
|
atfork_parent(&as);
|
|
if (cmd->pid < 0)
|
|
error_errno("cannot fork() for %s", cmd->args.v[0]);
|
|
else if (cmd->clean_on_exit)
|
|
mark_child_for_cleanup(cmd->pid, cmd);
|
|
|
|
/*
|
|
* Wait for child's exec. If the exec succeeds (or if fork()
|
|
* failed), EOF is seen immediately by the parent. Otherwise, the
|
|
* child process sends a child_err struct.
|
|
* Note that use of this infrastructure is completely advisory,
|
|
* therefore, we keep error checks minimal.
|
|
*/
|
|
close(notify_pipe[1]);
|
|
if (xread(notify_pipe[0], &cerr, sizeof(cerr)) == sizeof(cerr)) {
|
|
/*
|
|
* At this point we know that fork() succeeded, but exec()
|
|
* failed. Errors have been reported to our stderr.
|
|
*/
|
|
wait_or_whine(cmd->pid, cmd->args.v[0], 0);
|
|
child_err_spew(cmd, &cerr);
|
|
failed_errno = errno;
|
|
cmd->pid = -1;
|
|
}
|
|
close(notify_pipe[0]);
|
|
|
|
if (null_fd >= 0)
|
|
close(null_fd);
|
|
strvec_clear(&argv);
|
|
free(childenv);
|
|
}
|
|
end_of_spawn:
|
|
|
|
#else
|
|
{
|
|
int fhin = 0, fhout = 1, fherr = 2;
|
|
const char **sargv = cmd->args.v;
|
|
struct strvec nargv = STRVEC_INIT;
|
|
|
|
if (cmd->no_stdin)
|
|
fhin = open("/dev/null", O_RDWR);
|
|
else if (need_in)
|
|
fhin = dup(fdin[0]);
|
|
else if (cmd->in)
|
|
fhin = dup(cmd->in);
|
|
|
|
if (cmd->no_stderr)
|
|
fherr = open("/dev/null", O_RDWR);
|
|
else if (need_err)
|
|
fherr = dup(fderr[1]);
|
|
else if (cmd->err > 2)
|
|
fherr = dup(cmd->err);
|
|
|
|
if (cmd->no_stdout)
|
|
fhout = open("/dev/null", O_RDWR);
|
|
else if (cmd->stdout_to_stderr)
|
|
fhout = dup(fherr);
|
|
else if (need_out)
|
|
fhout = dup(fdout[1]);
|
|
else if (cmd->out > 1)
|
|
fhout = dup(cmd->out);
|
|
|
|
if (cmd->git_cmd)
|
|
cmd->args.v = prepare_git_cmd(&nargv, sargv);
|
|
else if (cmd->use_shell)
|
|
cmd->args.v = prepare_shell_cmd(&nargv, sargv);
|
|
|
|
cmd->pid = mingw_spawnvpe(cmd->args.v[0], cmd->args.v,
|
|
(char**) cmd->env.v,
|
|
cmd->dir, fhin, fhout, fherr);
|
|
failed_errno = errno;
|
|
if (cmd->pid < 0 && (!cmd->silent_exec_failure || errno != ENOENT))
|
|
error_errno("cannot spawn %s", cmd->args.v[0]);
|
|
if (cmd->clean_on_exit && cmd->pid >= 0)
|
|
mark_child_for_cleanup(cmd->pid, cmd);
|
|
|
|
strvec_clear(&nargv);
|
|
cmd->args.v = sargv;
|
|
if (fhin != 0)
|
|
close(fhin);
|
|
if (fhout != 1)
|
|
close(fhout);
|
|
if (fherr != 2)
|
|
close(fherr);
|
|
}
|
|
#endif
|
|
|
|
if (cmd->pid < 0) {
|
|
trace2_child_exit(cmd, -1);
|
|
|
|
if (need_in)
|
|
close_pair(fdin);
|
|
else if (cmd->in)
|
|
close(cmd->in);
|
|
if (need_out)
|
|
close_pair(fdout);
|
|
else if (cmd->out)
|
|
close(cmd->out);
|
|
if (need_err)
|
|
close_pair(fderr);
|
|
else if (cmd->err)
|
|
close(cmd->err);
|
|
child_process_clear(cmd);
|
|
errno = failed_errno;
|
|
return -1;
|
|
}
|
|
|
|
if (need_in)
|
|
close(fdin[0]);
|
|
else if (cmd->in)
|
|
close(cmd->in);
|
|
|
|
if (need_out)
|
|
close(fdout[1]);
|
|
else if (cmd->out)
|
|
close(cmd->out);
|
|
|
|
if (need_err)
|
|
close(fderr[1]);
|
|
else if (cmd->err)
|
|
close(cmd->err);
|
|
|
|
return 0;
|
|
}
|
|
|
|
int finish_command(struct child_process *cmd)
|
|
{
|
|
int ret = wait_or_whine(cmd->pid, cmd->args.v[0], 0);
|
|
trace2_child_exit(cmd, ret);
|
|
child_process_clear(cmd);
|
|
invalidate_lstat_cache();
|
|
return ret;
|
|
}
|
|
|
|
int finish_command_in_signal(struct child_process *cmd)
|
|
{
|
|
int ret = wait_or_whine(cmd->pid, cmd->args.v[0], 1);
|
|
if (ret != -1)
|
|
trace2_child_exit(cmd, ret);
|
|
return ret;
|
|
}
|
|
|
|
|
|
int run_command(struct child_process *cmd)
|
|
{
|
|
int code;
|
|
|
|
if (cmd->out < 0 || cmd->err < 0)
|
|
BUG("run_command with a pipe can cause deadlock");
|
|
|
|
code = start_command(cmd);
|
|
if (code)
|
|
return code;
|
|
return finish_command(cmd);
|
|
}
|
|
|
|
int run_command_v_opt(const char **argv, int opt)
|
|
{
|
|
return run_command_v_opt_cd_env(argv, opt, NULL, NULL);
|
|
}
|
|
|
|
int run_command_v_opt_tr2(const char **argv, int opt, const char *tr2_class)
|
|
{
|
|
return run_command_v_opt_cd_env_tr2(argv, opt, NULL, NULL, tr2_class);
|
|
}
|
|
|
|
int run_command_v_opt_cd_env(const char **argv, int opt, const char *dir, const char *const *env)
|
|
{
|
|
return run_command_v_opt_cd_env_tr2(argv, opt, dir, env, NULL);
|
|
}
|
|
|
|
int run_command_v_opt_cd_env_tr2(const char **argv, int opt, const char *dir,
|
|
const char *const *env, const char *tr2_class)
|
|
{
|
|
struct child_process cmd = CHILD_PROCESS_INIT;
|
|
strvec_pushv(&cmd.args, argv);
|
|
cmd.no_stdin = opt & RUN_COMMAND_NO_STDIN ? 1 : 0;
|
|
cmd.git_cmd = opt & RUN_GIT_CMD ? 1 : 0;
|
|
cmd.stdout_to_stderr = opt & RUN_COMMAND_STDOUT_TO_STDERR ? 1 : 0;
|
|
cmd.silent_exec_failure = opt & RUN_SILENT_EXEC_FAILURE ? 1 : 0;
|
|
cmd.use_shell = opt & RUN_USING_SHELL ? 1 : 0;
|
|
cmd.clean_on_exit = opt & RUN_CLEAN_ON_EXIT ? 1 : 0;
|
|
cmd.wait_after_clean = opt & RUN_WAIT_AFTER_CLEAN ? 1 : 0;
|
|
cmd.close_object_store = opt & RUN_CLOSE_OBJECT_STORE ? 1 : 0;
|
|
cmd.dir = dir;
|
|
if (env)
|
|
strvec_pushv(&cmd.env, (const char **)env);
|
|
cmd.trace2_child_class = tr2_class;
|
|
return run_command(&cmd);
|
|
}
|
|
|
|
#ifndef NO_PTHREADS
|
|
static pthread_t main_thread;
|
|
static int main_thread_set;
|
|
static pthread_key_t async_key;
|
|
static pthread_key_t async_die_counter;
|
|
|
|
static void *run_thread(void *data)
|
|
{
|
|
struct async *async = data;
|
|
intptr_t ret;
|
|
|
|
if (async->isolate_sigpipe) {
|
|
sigset_t mask;
|
|
sigemptyset(&mask);
|
|
sigaddset(&mask, SIGPIPE);
|
|
if (pthread_sigmask(SIG_BLOCK, &mask, NULL) < 0) {
|
|
ret = error("unable to block SIGPIPE in async thread");
|
|
return (void *)ret;
|
|
}
|
|
}
|
|
|
|
pthread_setspecific(async_key, async);
|
|
ret = async->proc(async->proc_in, async->proc_out, async->data);
|
|
return (void *)ret;
|
|
}
|
|
|
|
static NORETURN void die_async(const char *err, va_list params)
|
|
{
|
|
report_fn die_message_fn = get_die_message_routine();
|
|
|
|
die_message_fn(err, params);
|
|
|
|
if (in_async()) {
|
|
struct async *async = pthread_getspecific(async_key);
|
|
if (async->proc_in >= 0)
|
|
close(async->proc_in);
|
|
if (async->proc_out >= 0)
|
|
close(async->proc_out);
|
|
pthread_exit((void *)128);
|
|
}
|
|
|
|
exit(128);
|
|
}
|
|
|
|
static int async_die_is_recursing(void)
|
|
{
|
|
void *ret = pthread_getspecific(async_die_counter);
|
|
pthread_setspecific(async_die_counter, &async_die_counter); /* set to any non-NULL valid pointer */
|
|
return ret != NULL;
|
|
}
|
|
|
|
int in_async(void)
|
|
{
|
|
if (!main_thread_set)
|
|
return 0; /* no asyncs started yet */
|
|
return !pthread_equal(main_thread, pthread_self());
|
|
}
|
|
|
|
static void NORETURN async_exit(int code)
|
|
{
|
|
pthread_exit((void *)(intptr_t)code);
|
|
}
|
|
|
|
#else
|
|
|
|
static struct {
|
|
void (**handlers)(void);
|
|
size_t nr;
|
|
size_t alloc;
|
|
} git_atexit_hdlrs;
|
|
|
|
static int git_atexit_installed;
|
|
|
|
static void git_atexit_dispatch(void)
|
|
{
|
|
size_t i;
|
|
|
|
for (i=git_atexit_hdlrs.nr ; i ; i--)
|
|
git_atexit_hdlrs.handlers[i-1]();
|
|
}
|
|
|
|
static void git_atexit_clear(void)
|
|
{
|
|
free(git_atexit_hdlrs.handlers);
|
|
memset(&git_atexit_hdlrs, 0, sizeof(git_atexit_hdlrs));
|
|
git_atexit_installed = 0;
|
|
}
|
|
|
|
#undef atexit
|
|
int git_atexit(void (*handler)(void))
|
|
{
|
|
ALLOC_GROW(git_atexit_hdlrs.handlers, git_atexit_hdlrs.nr + 1, git_atexit_hdlrs.alloc);
|
|
git_atexit_hdlrs.handlers[git_atexit_hdlrs.nr++] = handler;
|
|
if (!git_atexit_installed) {
|
|
if (atexit(&git_atexit_dispatch))
|
|
return -1;
|
|
git_atexit_installed = 1;
|
|
}
|
|
return 0;
|
|
}
|
|
#define atexit git_atexit
|
|
|
|
static int process_is_async;
|
|
int in_async(void)
|
|
{
|
|
return process_is_async;
|
|
}
|
|
|
|
static void NORETURN async_exit(int code)
|
|
{
|
|
exit(code);
|
|
}
|
|
|
|
#endif
|
|
|
|
void check_pipe(int err)
|
|
{
|
|
if (err == EPIPE) {
|
|
if (in_async())
|
|
async_exit(141);
|
|
|
|
signal(SIGPIPE, SIG_DFL);
|
|
raise(SIGPIPE);
|
|
/* Should never happen, but just in case... */
|
|
exit(141);
|
|
}
|
|
}
|
|
|
|
int start_async(struct async *async)
|
|
{
|
|
int need_in, need_out;
|
|
int fdin[2], fdout[2];
|
|
int proc_in, proc_out;
|
|
|
|
need_in = async->in < 0;
|
|
if (need_in) {
|
|
if (pipe(fdin) < 0) {
|
|
if (async->out > 0)
|
|
close(async->out);
|
|
return error_errno("cannot create pipe");
|
|
}
|
|
async->in = fdin[1];
|
|
}
|
|
|
|
need_out = async->out < 0;
|
|
if (need_out) {
|
|
if (pipe(fdout) < 0) {
|
|
if (need_in)
|
|
close_pair(fdin);
|
|
else if (async->in)
|
|
close(async->in);
|
|
return error_errno("cannot create pipe");
|
|
}
|
|
async->out = fdout[0];
|
|
}
|
|
|
|
if (need_in)
|
|
proc_in = fdin[0];
|
|
else if (async->in)
|
|
proc_in = async->in;
|
|
else
|
|
proc_in = -1;
|
|
|
|
if (need_out)
|
|
proc_out = fdout[1];
|
|
else if (async->out)
|
|
proc_out = async->out;
|
|
else
|
|
proc_out = -1;
|
|
|
|
#ifdef NO_PTHREADS
|
|
/* Flush stdio before fork() to avoid cloning buffers */
|
|
fflush(NULL);
|
|
|
|
async->pid = fork();
|
|
if (async->pid < 0) {
|
|
error_errno("fork (async) failed");
|
|
goto error;
|
|
}
|
|
if (!async->pid) {
|
|
if (need_in)
|
|
close(fdin[1]);
|
|
if (need_out)
|
|
close(fdout[0]);
|
|
git_atexit_clear();
|
|
process_is_async = 1;
|
|
exit(!!async->proc(proc_in, proc_out, async->data));
|
|
}
|
|
|
|
mark_child_for_cleanup(async->pid, NULL);
|
|
|
|
if (need_in)
|
|
close(fdin[0]);
|
|
else if (async->in)
|
|
close(async->in);
|
|
|
|
if (need_out)
|
|
close(fdout[1]);
|
|
else if (async->out)
|
|
close(async->out);
|
|
#else
|
|
if (!main_thread_set) {
|
|
/*
|
|
* We assume that the first time that start_async is called
|
|
* it is from the main thread.
|
|
*/
|
|
main_thread_set = 1;
|
|
main_thread = pthread_self();
|
|
pthread_key_create(&async_key, NULL);
|
|
pthread_key_create(&async_die_counter, NULL);
|
|
set_die_routine(die_async);
|
|
set_die_is_recursing_routine(async_die_is_recursing);
|
|
}
|
|
|
|
if (proc_in >= 0)
|
|
set_cloexec(proc_in);
|
|
if (proc_out >= 0)
|
|
set_cloexec(proc_out);
|
|
async->proc_in = proc_in;
|
|
async->proc_out = proc_out;
|
|
{
|
|
int err = pthread_create(&async->tid, NULL, run_thread, async);
|
|
if (err) {
|
|
error(_("cannot create async thread: %s"), strerror(err));
|
|
goto error;
|
|
}
|
|
}
|
|
#endif
|
|
return 0;
|
|
|
|
error:
|
|
if (need_in)
|
|
close_pair(fdin);
|
|
else if (async->in)
|
|
close(async->in);
|
|
|
|
if (need_out)
|
|
close_pair(fdout);
|
|
else if (async->out)
|
|
close(async->out);
|
|
return -1;
|
|
}
|
|
|
|
int finish_async(struct async *async)
|
|
{
|
|
#ifdef NO_PTHREADS
|
|
int ret = wait_or_whine(async->pid, "child process", 0);
|
|
|
|
invalidate_lstat_cache();
|
|
|
|
return ret;
|
|
#else
|
|
void *ret = (void *)(intptr_t)(-1);
|
|
|
|
if (pthread_join(async->tid, &ret))
|
|
error("pthread_join failed");
|
|
invalidate_lstat_cache();
|
|
return (int)(intptr_t)ret;
|
|
|
|
#endif
|
|
}
|
|
|
|
int async_with_fork(void)
|
|
{
|
|
#ifdef NO_PTHREADS
|
|
return 1;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
struct io_pump {
|
|
/* initialized by caller */
|
|
int fd;
|
|
int type; /* POLLOUT or POLLIN */
|
|
union {
|
|
struct {
|
|
const char *buf;
|
|
size_t len;
|
|
} out;
|
|
struct {
|
|
struct strbuf *buf;
|
|
size_t hint;
|
|
} in;
|
|
} u;
|
|
|
|
/* returned by pump_io */
|
|
int error; /* 0 for success, otherwise errno */
|
|
|
|
/* internal use */
|
|
struct pollfd *pfd;
|
|
};
|
|
|
|
static int pump_io_round(struct io_pump *slots, int nr, struct pollfd *pfd)
|
|
{
|
|
int pollsize = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < nr; i++) {
|
|
struct io_pump *io = &slots[i];
|
|
if (io->fd < 0)
|
|
continue;
|
|
pfd[pollsize].fd = io->fd;
|
|
pfd[pollsize].events = io->type;
|
|
io->pfd = &pfd[pollsize++];
|
|
}
|
|
|
|
if (!pollsize)
|
|
return 0;
|
|
|
|
if (poll(pfd, pollsize, -1) < 0) {
|
|
if (errno == EINTR)
|
|
return 1;
|
|
die_errno("poll failed");
|
|
}
|
|
|
|
for (i = 0; i < nr; i++) {
|
|
struct io_pump *io = &slots[i];
|
|
|
|
if (io->fd < 0)
|
|
continue;
|
|
|
|
if (!(io->pfd->revents & (POLLOUT|POLLIN|POLLHUP|POLLERR|POLLNVAL)))
|
|
continue;
|
|
|
|
if (io->type == POLLOUT) {
|
|
ssize_t len;
|
|
|
|
/*
|
|
* Don't use xwrite() here. It loops forever on EAGAIN,
|
|
* and we're in our own poll() loop here.
|
|
*
|
|
* Note that we lose xwrite()'s handling of MAX_IO_SIZE
|
|
* and EINTR, so we have to implement those ourselves.
|
|
*/
|
|
len = write(io->fd, io->u.out.buf,
|
|
io->u.out.len <= MAX_IO_SIZE ?
|
|
io->u.out.len : MAX_IO_SIZE);
|
|
if (len < 0) {
|
|
if (errno != EINTR && errno != EAGAIN &&
|
|
errno != ENOSPC) {
|
|
io->error = errno;
|
|
close(io->fd);
|
|
io->fd = -1;
|
|
}
|
|
} else {
|
|
io->u.out.buf += len;
|
|
io->u.out.len -= len;
|
|
if (!io->u.out.len) {
|
|
close(io->fd);
|
|
io->fd = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (io->type == POLLIN) {
|
|
ssize_t len = strbuf_read_once(io->u.in.buf,
|
|
io->fd, io->u.in.hint);
|
|
if (len < 0)
|
|
io->error = errno;
|
|
if (len <= 0) {
|
|
close(io->fd);
|
|
io->fd = -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
static int pump_io(struct io_pump *slots, int nr)
|
|
{
|
|
struct pollfd *pfd;
|
|
int i;
|
|
|
|
for (i = 0; i < nr; i++)
|
|
slots[i].error = 0;
|
|
|
|
ALLOC_ARRAY(pfd, nr);
|
|
while (pump_io_round(slots, nr, pfd))
|
|
; /* nothing */
|
|
free(pfd);
|
|
|
|
/* There may be multiple errno values, so just pick the first. */
|
|
for (i = 0; i < nr; i++) {
|
|
if (slots[i].error) {
|
|
errno = slots[i].error;
|
|
return -1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
int pipe_command(struct child_process *cmd,
|
|
const char *in, size_t in_len,
|
|
struct strbuf *out, size_t out_hint,
|
|
struct strbuf *err, size_t err_hint)
|
|
{
|
|
struct io_pump io[3];
|
|
int nr = 0;
|
|
|
|
if (in)
|
|
cmd->in = -1;
|
|
if (out)
|
|
cmd->out = -1;
|
|
if (err)
|
|
cmd->err = -1;
|
|
|
|
if (start_command(cmd) < 0)
|
|
return -1;
|
|
|
|
if (in) {
|
|
if (enable_pipe_nonblock(cmd->in) < 0) {
|
|
error_errno("unable to make pipe non-blocking");
|
|
close(cmd->in);
|
|
if (out)
|
|
close(cmd->out);
|
|
if (err)
|
|
close(cmd->err);
|
|
return -1;
|
|
}
|
|
io[nr].fd = cmd->in;
|
|
io[nr].type = POLLOUT;
|
|
io[nr].u.out.buf = in;
|
|
io[nr].u.out.len = in_len;
|
|
nr++;
|
|
}
|
|
if (out) {
|
|
io[nr].fd = cmd->out;
|
|
io[nr].type = POLLIN;
|
|
io[nr].u.in.buf = out;
|
|
io[nr].u.in.hint = out_hint;
|
|
nr++;
|
|
}
|
|
if (err) {
|
|
io[nr].fd = cmd->err;
|
|
io[nr].type = POLLIN;
|
|
io[nr].u.in.buf = err;
|
|
io[nr].u.in.hint = err_hint;
|
|
nr++;
|
|
}
|
|
|
|
if (pump_io(io, nr) < 0) {
|
|
finish_command(cmd); /* throw away exit code */
|
|
return -1;
|
|
}
|
|
|
|
return finish_command(cmd);
|
|
}
|
|
|
|
enum child_state {
|
|
GIT_CP_FREE,
|
|
GIT_CP_WORKING,
|
|
GIT_CP_WAIT_CLEANUP,
|
|
};
|
|
|
|
struct parallel_processes {
|
|
size_t nr_processes;
|
|
|
|
struct {
|
|
enum child_state state;
|
|
struct child_process process;
|
|
struct strbuf err;
|
|
void *data;
|
|
} *children;
|
|
/*
|
|
* The struct pollfd is logically part of *children,
|
|
* but the system call expects it as its own array.
|
|
*/
|
|
struct pollfd *pfd;
|
|
|
|
unsigned shutdown : 1;
|
|
|
|
size_t output_owner;
|
|
struct strbuf buffered_output; /* of finished children */
|
|
};
|
|
|
|
struct parallel_processes_for_signal {
|
|
const struct run_process_parallel_opts *opts;
|
|
const struct parallel_processes *pp;
|
|
};
|
|
|
|
static void kill_children(const struct parallel_processes *pp,
|
|
const struct run_process_parallel_opts *opts,
|
|
int signo)
|
|
{
|
|
for (size_t i = 0; i < opts->processes; i++)
|
|
if (pp->children[i].state == GIT_CP_WORKING)
|
|
kill(pp->children[i].process.pid, signo);
|
|
}
|
|
|
|
static void kill_children_signal(const struct parallel_processes_for_signal *pp_sig,
|
|
int signo)
|
|
{
|
|
kill_children(pp_sig->pp, pp_sig->opts, signo);
|
|
}
|
|
|
|
static struct parallel_processes_for_signal *pp_for_signal;
|
|
|
|
static void handle_children_on_signal(int signo)
|
|
{
|
|
kill_children_signal(pp_for_signal, signo);
|
|
sigchain_pop(signo);
|
|
raise(signo);
|
|
}
|
|
|
|
static void pp_init(struct parallel_processes *pp,
|
|
const struct run_process_parallel_opts *opts,
|
|
struct parallel_processes_for_signal *pp_sig)
|
|
{
|
|
const size_t n = opts->processes;
|
|
|
|
if (!n)
|
|
BUG("you must provide a non-zero number of processes!");
|
|
|
|
trace_printf("run_processes_parallel: preparing to run up to %"PRIuMAX" tasks",
|
|
(uintmax_t)n);
|
|
|
|
if (!opts->get_next_task)
|
|
BUG("you need to specify a get_next_task function");
|
|
|
|
CALLOC_ARRAY(pp->children, n);
|
|
if (!opts->ungroup)
|
|
CALLOC_ARRAY(pp->pfd, n);
|
|
|
|
for (size_t i = 0; i < n; i++) {
|
|
strbuf_init(&pp->children[i].err, 0);
|
|
child_process_init(&pp->children[i].process);
|
|
if (pp->pfd) {
|
|
pp->pfd[i].events = POLLIN | POLLHUP;
|
|
pp->pfd[i].fd = -1;
|
|
}
|
|
}
|
|
|
|
pp_sig->pp = pp;
|
|
pp_sig->opts = opts;
|
|
pp_for_signal = pp_sig;
|
|
sigchain_push_common(handle_children_on_signal);
|
|
}
|
|
|
|
static void pp_cleanup(struct parallel_processes *pp,
|
|
const struct run_process_parallel_opts *opts)
|
|
{
|
|
trace_printf("run_processes_parallel: done");
|
|
for (size_t i = 0; i < opts->processes; i++) {
|
|
strbuf_release(&pp->children[i].err);
|
|
child_process_clear(&pp->children[i].process);
|
|
}
|
|
|
|
free(pp->children);
|
|
free(pp->pfd);
|
|
|
|
/*
|
|
* When get_next_task added messages to the buffer in its last
|
|
* iteration, the buffered output is non empty.
|
|
*/
|
|
strbuf_write(&pp->buffered_output, stderr);
|
|
strbuf_release(&pp->buffered_output);
|
|
|
|
sigchain_pop_common();
|
|
}
|
|
|
|
/* returns
|
|
* 0 if a new task was started.
|
|
* 1 if no new jobs was started (get_next_task ran out of work, non critical
|
|
* problem with starting a new command)
|
|
* <0 no new job was started, user wishes to shutdown early. Use negative code
|
|
* to signal the children.
|
|
*/
|
|
static int pp_start_one(struct parallel_processes *pp,
|
|
const struct run_process_parallel_opts *opts)
|
|
{
|
|
size_t i;
|
|
int code;
|
|
|
|
for (i = 0; i < opts->processes; i++)
|
|
if (pp->children[i].state == GIT_CP_FREE)
|
|
break;
|
|
if (i == opts->processes)
|
|
BUG("bookkeeping is hard");
|
|
|
|
code = opts->get_next_task(&pp->children[i].process,
|
|
opts->ungroup ? NULL : &pp->children[i].err,
|
|
opts->data,
|
|
&pp->children[i].data);
|
|
if (!code) {
|
|
if (!opts->ungroup) {
|
|
strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
|
|
strbuf_reset(&pp->children[i].err);
|
|
}
|
|
return 1;
|
|
}
|
|
if (!opts->ungroup) {
|
|
pp->children[i].process.err = -1;
|
|
pp->children[i].process.stdout_to_stderr = 1;
|
|
}
|
|
pp->children[i].process.no_stdin = 1;
|
|
|
|
if (start_command(&pp->children[i].process)) {
|
|
if (opts->start_failure)
|
|
code = opts->start_failure(opts->ungroup ? NULL :
|
|
&pp->children[i].err,
|
|
opts->data,
|
|
pp->children[i].data);
|
|
else
|
|
code = 0;
|
|
|
|
if (!opts->ungroup) {
|
|
strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
|
|
strbuf_reset(&pp->children[i].err);
|
|
}
|
|
if (code)
|
|
pp->shutdown = 1;
|
|
return code;
|
|
}
|
|
|
|
pp->nr_processes++;
|
|
pp->children[i].state = GIT_CP_WORKING;
|
|
if (pp->pfd)
|
|
pp->pfd[i].fd = pp->children[i].process.err;
|
|
return 0;
|
|
}
|
|
|
|
static void pp_buffer_stderr(struct parallel_processes *pp,
|
|
const struct run_process_parallel_opts *opts,
|
|
int output_timeout)
|
|
{
|
|
int i;
|
|
|
|
while ((i = poll(pp->pfd, opts->processes, output_timeout) < 0)) {
|
|
if (errno == EINTR)
|
|
continue;
|
|
pp_cleanup(pp, opts);
|
|
die_errno("poll");
|
|
}
|
|
|
|
/* Buffer output from all pipes. */
|
|
for (size_t i = 0; i < opts->processes; i++) {
|
|
if (pp->children[i].state == GIT_CP_WORKING &&
|
|
pp->pfd[i].revents & (POLLIN | POLLHUP)) {
|
|
int n = strbuf_read_once(&pp->children[i].err,
|
|
pp->children[i].process.err, 0);
|
|
if (n == 0) {
|
|
close(pp->children[i].process.err);
|
|
pp->children[i].state = GIT_CP_WAIT_CLEANUP;
|
|
} else if (n < 0)
|
|
if (errno != EAGAIN)
|
|
die_errno("read");
|
|
}
|
|
}
|
|
}
|
|
|
|
static void pp_output(const struct parallel_processes *pp)
|
|
{
|
|
size_t i = pp->output_owner;
|
|
|
|
if (pp->children[i].state == GIT_CP_WORKING &&
|
|
pp->children[i].err.len) {
|
|
strbuf_write(&pp->children[i].err, stderr);
|
|
strbuf_reset(&pp->children[i].err);
|
|
}
|
|
}
|
|
|
|
static int pp_collect_finished(struct parallel_processes *pp,
|
|
const struct run_process_parallel_opts *opts)
|
|
{
|
|
int code;
|
|
size_t i;
|
|
int result = 0;
|
|
|
|
while (pp->nr_processes > 0) {
|
|
for (i = 0; i < opts->processes; i++)
|
|
if (pp->children[i].state == GIT_CP_WAIT_CLEANUP)
|
|
break;
|
|
if (i == opts->processes)
|
|
break;
|
|
|
|
code = finish_command(&pp->children[i].process);
|
|
|
|
if (opts->task_finished)
|
|
code = opts->task_finished(code, opts->ungroup ? NULL :
|
|
&pp->children[i].err, opts->data,
|
|
pp->children[i].data);
|
|
else
|
|
code = 0;
|
|
|
|
if (code)
|
|
result = code;
|
|
if (code < 0)
|
|
break;
|
|
|
|
pp->nr_processes--;
|
|
pp->children[i].state = GIT_CP_FREE;
|
|
if (pp->pfd)
|
|
pp->pfd[i].fd = -1;
|
|
child_process_init(&pp->children[i].process);
|
|
|
|
if (opts->ungroup) {
|
|
; /* no strbuf_*() work to do here */
|
|
} else if (i != pp->output_owner) {
|
|
strbuf_addbuf(&pp->buffered_output, &pp->children[i].err);
|
|
strbuf_reset(&pp->children[i].err);
|
|
} else {
|
|
const size_t n = opts->processes;
|
|
|
|
strbuf_write(&pp->children[i].err, stderr);
|
|
strbuf_reset(&pp->children[i].err);
|
|
|
|
/* Output all other finished child processes */
|
|
strbuf_write(&pp->buffered_output, stderr);
|
|
strbuf_reset(&pp->buffered_output);
|
|
|
|
/*
|
|
* Pick next process to output live.
|
|
* NEEDSWORK:
|
|
* For now we pick it randomly by doing a round
|
|
* robin. Later we may want to pick the one with
|
|
* the most output or the longest or shortest
|
|
* running process time.
|
|
*/
|
|
for (i = 0; i < n; i++)
|
|
if (pp->children[(pp->output_owner + i) % n].state == GIT_CP_WORKING)
|
|
break;
|
|
pp->output_owner = (pp->output_owner + i) % n;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void run_processes_parallel(const struct run_process_parallel_opts *opts)
|
|
{
|
|
int i, code;
|
|
int output_timeout = 100;
|
|
int spawn_cap = 4;
|
|
struct parallel_processes_for_signal pp_sig;
|
|
struct parallel_processes pp = {
|
|
.buffered_output = STRBUF_INIT,
|
|
};
|
|
/* options */
|
|
const char *tr2_category = opts->tr2_category;
|
|
const char *tr2_label = opts->tr2_label;
|
|
const int do_trace2 = tr2_category && tr2_label;
|
|
|
|
if (do_trace2)
|
|
trace2_region_enter_printf(tr2_category, tr2_label, NULL,
|
|
"max:%d", opts->processes);
|
|
|
|
pp_init(&pp, opts, &pp_sig);
|
|
while (1) {
|
|
for (i = 0;
|
|
i < spawn_cap && !pp.shutdown &&
|
|
pp.nr_processes < opts->processes;
|
|
i++) {
|
|
code = pp_start_one(&pp, opts);
|
|
if (!code)
|
|
continue;
|
|
if (code < 0) {
|
|
pp.shutdown = 1;
|
|
kill_children(&pp, opts, -code);
|
|
}
|
|
break;
|
|
}
|
|
if (!pp.nr_processes)
|
|
break;
|
|
if (opts->ungroup) {
|
|
for (size_t i = 0; i < opts->processes; i++)
|
|
pp.children[i].state = GIT_CP_WAIT_CLEANUP;
|
|
} else {
|
|
pp_buffer_stderr(&pp, opts, output_timeout);
|
|
pp_output(&pp);
|
|
}
|
|
code = pp_collect_finished(&pp, opts);
|
|
if (code) {
|
|
pp.shutdown = 1;
|
|
if (code < 0)
|
|
kill_children(&pp, opts,-code);
|
|
}
|
|
}
|
|
|
|
pp_cleanup(&pp, opts);
|
|
|
|
if (do_trace2)
|
|
trace2_region_leave(tr2_category, tr2_label, NULL);
|
|
}
|
|
|
|
int run_auto_maintenance(int quiet)
|
|
{
|
|
int enabled;
|
|
struct child_process maint = CHILD_PROCESS_INIT;
|
|
|
|
if (!git_config_get_bool("maintenance.auto", &enabled) &&
|
|
!enabled)
|
|
return 0;
|
|
|
|
maint.git_cmd = 1;
|
|
maint.close_object_store = 1;
|
|
strvec_pushl(&maint.args, "maintenance", "run", "--auto", NULL);
|
|
strvec_push(&maint.args, quiet ? "--quiet" : "--no-quiet");
|
|
|
|
return run_command(&maint);
|
|
}
|
|
|
|
void prepare_other_repo_env(struct strvec *env, const char *new_git_dir)
|
|
{
|
|
const char * const *var;
|
|
|
|
for (var = local_repo_env; *var; var++) {
|
|
if (strcmp(*var, CONFIG_DATA_ENVIRONMENT) &&
|
|
strcmp(*var, CONFIG_COUNT_ENVIRONMENT))
|
|
strvec_push(env, *var);
|
|
}
|
|
strvec_pushf(env, "%s=%s", GIT_DIR_ENVIRONMENT, new_git_dir);
|
|
}
|
|
|
|
enum start_bg_result start_bg_command(struct child_process *cmd,
|
|
start_bg_wait_cb *wait_cb,
|
|
void *cb_data,
|
|
unsigned int timeout_sec)
|
|
{
|
|
enum start_bg_result sbgr = SBGR_ERROR;
|
|
int ret;
|
|
int wait_status;
|
|
pid_t pid_seen;
|
|
time_t time_limit;
|
|
|
|
/*
|
|
* We do not allow clean-on-exit because the child process
|
|
* should persist in the background and possibly/probably
|
|
* after this process exits. So we don't want to kill the
|
|
* child during our atexit routine.
|
|
*/
|
|
if (cmd->clean_on_exit)
|
|
BUG("start_bg_command() does not allow non-zero clean_on_exit");
|
|
|
|
if (!cmd->trace2_child_class)
|
|
cmd->trace2_child_class = "background";
|
|
|
|
ret = start_command(cmd);
|
|
if (ret) {
|
|
/*
|
|
* We assume that if `start_command()` fails, we
|
|
* either get a complete `trace2_child_start() /
|
|
* trace2_child_exit()` pair or it fails before the
|
|
* `trace2_child_start()` is emitted, so we do not
|
|
* need to worry about it here.
|
|
*
|
|
* We also assume that `start_command()` does not add
|
|
* us to the cleanup list. And that it calls
|
|
* calls `child_process_clear()`.
|
|
*/
|
|
sbgr = SBGR_ERROR;
|
|
goto done;
|
|
}
|
|
|
|
time(&time_limit);
|
|
time_limit += timeout_sec;
|
|
|
|
wait:
|
|
pid_seen = waitpid(cmd->pid, &wait_status, WNOHANG);
|
|
|
|
if (!pid_seen) {
|
|
/*
|
|
* The child is currently running. Ask the callback
|
|
* if the child is ready to do work or whether we
|
|
* should keep waiting for it to boot up.
|
|
*/
|
|
ret = (*wait_cb)(cmd, cb_data);
|
|
if (!ret) {
|
|
/*
|
|
* The child is running and "ready".
|
|
*/
|
|
trace2_child_ready(cmd, "ready");
|
|
sbgr = SBGR_READY;
|
|
goto done;
|
|
} else if (ret > 0) {
|
|
/*
|
|
* The callback said to give it more time to boot up
|
|
* (subject to our timeout limit).
|
|
*/
|
|
time_t now;
|
|
|
|
time(&now);
|
|
if (now < time_limit)
|
|
goto wait;
|
|
|
|
/*
|
|
* Our timeout has expired. We don't try to
|
|
* kill the child, but rather let it continue
|
|
* (hopefully) trying to startup.
|
|
*/
|
|
trace2_child_ready(cmd, "timeout");
|
|
sbgr = SBGR_TIMEOUT;
|
|
goto done;
|
|
} else {
|
|
/*
|
|
* The cb gave up on this child. It is still running,
|
|
* but our cb got an error trying to probe it.
|
|
*/
|
|
trace2_child_ready(cmd, "error");
|
|
sbgr = SBGR_CB_ERROR;
|
|
goto done;
|
|
}
|
|
}
|
|
|
|
else if (pid_seen == cmd->pid) {
|
|
int child_code = -1;
|
|
|
|
/*
|
|
* The child started, but exited or was terminated
|
|
* before becoming "ready".
|
|
*
|
|
* We try to match the behavior of `wait_or_whine()`
|
|
* WRT the handling of WIFSIGNALED() and WIFEXITED()
|
|
* and convert the child's status to a return code for
|
|
* tracing purposes and emit the `trace2_child_exit()`
|
|
* event.
|
|
*
|
|
* We do not want the wait_or_whine() error message
|
|
* because we will be called by client-side library
|
|
* routines.
|
|
*/
|
|
if (WIFEXITED(wait_status))
|
|
child_code = WEXITSTATUS(wait_status);
|
|
else if (WIFSIGNALED(wait_status))
|
|
child_code = WTERMSIG(wait_status) + 128;
|
|
trace2_child_exit(cmd, child_code);
|
|
|
|
sbgr = SBGR_DIED;
|
|
goto done;
|
|
}
|
|
|
|
else if (pid_seen < 0 && errno == EINTR)
|
|
goto wait;
|
|
|
|
trace2_child_exit(cmd, -1);
|
|
sbgr = SBGR_ERROR;
|
|
|
|
done:
|
|
child_process_clear(cmd);
|
|
invalidate_lstat_cache();
|
|
return sbgr;
|
|
}
|