mirror of
https://github.com/git/git.git
synced 2024-11-23 09:56:28 +08:00
cfd971520e
Since ref iterators do not hold onto the direct value of a reference without resolving it, the only way to get ahold of a direct value of a symbolic ref is to make a separate call to refs_read_symbolic_ref. To make accessing the direct value of a symbolic ref more efficient, let's save the direct value of the ref in the iterators for both the files backend and the reftable backend. Signed-off-by: John Cai <johncai86@gmail.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
512 lines
13 KiB
C
512 lines
13 KiB
C
#include "../git-compat-util.h"
|
|
#include "../hash.h"
|
|
#include "../refs.h"
|
|
#include "../repository.h"
|
|
#include "refs-internal.h"
|
|
#include "ref-cache.h"
|
|
#include "../iterator.h"
|
|
|
|
void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry)
|
|
{
|
|
ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc);
|
|
dir->entries[dir->nr++] = entry;
|
|
/* optimize for the case that entries are added in order */
|
|
if (dir->nr == 1 ||
|
|
(dir->nr == dir->sorted + 1 &&
|
|
strcmp(dir->entries[dir->nr - 2]->name,
|
|
dir->entries[dir->nr - 1]->name) < 0))
|
|
dir->sorted = dir->nr;
|
|
}
|
|
|
|
struct ref_dir *get_ref_dir(struct ref_entry *entry)
|
|
{
|
|
struct ref_dir *dir;
|
|
assert(entry->flag & REF_DIR);
|
|
dir = &entry->u.subdir;
|
|
if (entry->flag & REF_INCOMPLETE) {
|
|
if (!dir->cache->fill_ref_dir)
|
|
BUG("incomplete ref_store without fill_ref_dir function");
|
|
|
|
dir->cache->fill_ref_dir(dir->cache->ref_store, dir, entry->name);
|
|
entry->flag &= ~REF_INCOMPLETE;
|
|
}
|
|
return dir;
|
|
}
|
|
|
|
struct ref_entry *create_ref_entry(const char *refname,
|
|
const char *referent,
|
|
const struct object_id *oid, int flag)
|
|
{
|
|
struct ref_entry *ref;
|
|
|
|
FLEX_ALLOC_STR(ref, name, refname);
|
|
oidcpy(&ref->u.value.oid, oid);
|
|
ref->flag = flag;
|
|
ref->u.value.referent = xstrdup_or_null(referent);
|
|
|
|
return ref;
|
|
}
|
|
|
|
struct ref_cache *create_ref_cache(struct ref_store *refs,
|
|
fill_ref_dir_fn *fill_ref_dir)
|
|
{
|
|
struct ref_cache *ret = xcalloc(1, sizeof(*ret));
|
|
|
|
ret->ref_store = refs;
|
|
ret->fill_ref_dir = fill_ref_dir;
|
|
ret->root = create_dir_entry(ret, "", 0);
|
|
return ret;
|
|
}
|
|
|
|
static void clear_ref_dir(struct ref_dir *dir);
|
|
|
|
static void free_ref_entry(struct ref_entry *entry)
|
|
{
|
|
if (entry->flag & REF_DIR) {
|
|
/*
|
|
* Do not use get_ref_dir() here, as that might
|
|
* trigger the reading of loose refs.
|
|
*/
|
|
clear_ref_dir(&entry->u.subdir);
|
|
}
|
|
free(entry->u.value.referent);
|
|
free(entry);
|
|
}
|
|
|
|
void free_ref_cache(struct ref_cache *cache)
|
|
{
|
|
if (!cache)
|
|
return;
|
|
free_ref_entry(cache->root);
|
|
free(cache);
|
|
}
|
|
|
|
/*
|
|
* Clear and free all entries in dir, recursively.
|
|
*/
|
|
static void clear_ref_dir(struct ref_dir *dir)
|
|
{
|
|
int i;
|
|
for (i = 0; i < dir->nr; i++)
|
|
free_ref_entry(dir->entries[i]);
|
|
FREE_AND_NULL(dir->entries);
|
|
dir->sorted = dir->nr = dir->alloc = 0;
|
|
}
|
|
|
|
struct ref_entry *create_dir_entry(struct ref_cache *cache,
|
|
const char *dirname, size_t len)
|
|
{
|
|
struct ref_entry *direntry;
|
|
|
|
FLEX_ALLOC_MEM(direntry, name, dirname, len);
|
|
direntry->u.subdir.cache = cache;
|
|
direntry->flag = REF_DIR | REF_INCOMPLETE;
|
|
return direntry;
|
|
}
|
|
|
|
static int ref_entry_cmp(const void *a, const void *b)
|
|
{
|
|
struct ref_entry *one = *(struct ref_entry **)a;
|
|
struct ref_entry *two = *(struct ref_entry **)b;
|
|
return strcmp(one->name, two->name);
|
|
}
|
|
|
|
static void sort_ref_dir(struct ref_dir *dir);
|
|
|
|
struct string_slice {
|
|
size_t len;
|
|
const char *str;
|
|
};
|
|
|
|
static int ref_entry_cmp_sslice(const void *key_, const void *ent_)
|
|
{
|
|
const struct string_slice *key = key_;
|
|
const struct ref_entry *ent = *(const struct ref_entry * const *)ent_;
|
|
int cmp = strncmp(key->str, ent->name, key->len);
|
|
if (cmp)
|
|
return cmp;
|
|
return '\0' - (unsigned char)ent->name[key->len];
|
|
}
|
|
|
|
int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len)
|
|
{
|
|
struct ref_entry **r;
|
|
struct string_slice key;
|
|
|
|
if (refname == NULL || !dir->nr)
|
|
return -1;
|
|
|
|
sort_ref_dir(dir);
|
|
key.len = len;
|
|
key.str = refname;
|
|
r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries),
|
|
ref_entry_cmp_sslice);
|
|
|
|
if (!r)
|
|
return -1;
|
|
|
|
return r - dir->entries;
|
|
}
|
|
|
|
/*
|
|
* Search for a directory entry directly within dir (without
|
|
* recursing). Sort dir if necessary. subdirname must be a directory
|
|
* name (i.e., end in '/'). Returns NULL if the desired
|
|
* directory cannot be found. dir must already be complete.
|
|
*/
|
|
static struct ref_dir *search_for_subdir(struct ref_dir *dir,
|
|
const char *subdirname, size_t len)
|
|
{
|
|
int entry_index = search_ref_dir(dir, subdirname, len);
|
|
struct ref_entry *entry;
|
|
|
|
if (entry_index == -1)
|
|
return NULL;
|
|
|
|
entry = dir->entries[entry_index];
|
|
return get_ref_dir(entry);
|
|
}
|
|
|
|
/*
|
|
* If refname is a reference name, find the ref_dir within the dir
|
|
* tree that should hold refname. If refname is a directory name
|
|
* (i.e., it ends in '/'), then return that ref_dir itself. dir must
|
|
* represent the top-level directory and must already be complete.
|
|
* Sort ref_dirs and recurse into subdirectories as necessary. Will
|
|
* return NULL if the desired directory cannot be found.
|
|
*/
|
|
static struct ref_dir *find_containing_dir(struct ref_dir *dir,
|
|
const char *refname)
|
|
{
|
|
const char *slash;
|
|
for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) {
|
|
size_t dirnamelen = slash - refname + 1;
|
|
struct ref_dir *subdir;
|
|
subdir = search_for_subdir(dir, refname, dirnamelen);
|
|
if (!subdir) {
|
|
dir = NULL;
|
|
break;
|
|
}
|
|
dir = subdir;
|
|
}
|
|
|
|
return dir;
|
|
}
|
|
|
|
struct ref_entry *find_ref_entry(struct ref_dir *dir, const char *refname)
|
|
{
|
|
int entry_index;
|
|
struct ref_entry *entry;
|
|
dir = find_containing_dir(dir, refname);
|
|
if (!dir)
|
|
return NULL;
|
|
entry_index = search_ref_dir(dir, refname, strlen(refname));
|
|
if (entry_index == -1)
|
|
return NULL;
|
|
entry = dir->entries[entry_index];
|
|
return (entry->flag & REF_DIR) ? NULL : entry;
|
|
}
|
|
|
|
/*
|
|
* Emit a warning and return true iff ref1 and ref2 have the same name
|
|
* and the same oid. Die if they have the same name but different
|
|
* oids.
|
|
*/
|
|
static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2)
|
|
{
|
|
if (strcmp(ref1->name, ref2->name))
|
|
return 0;
|
|
|
|
/* Duplicate name; make sure that they don't conflict: */
|
|
|
|
if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR))
|
|
/* This is impossible by construction */
|
|
die("Reference directory conflict: %s", ref1->name);
|
|
|
|
if (!oideq(&ref1->u.value.oid, &ref2->u.value.oid))
|
|
die("Duplicated ref, and SHA1s don't match: %s", ref1->name);
|
|
|
|
warning("Duplicated ref: %s", ref1->name);
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* Sort the entries in dir non-recursively (if they are not already
|
|
* sorted) and remove any duplicate entries.
|
|
*/
|
|
static void sort_ref_dir(struct ref_dir *dir)
|
|
{
|
|
int i, j;
|
|
struct ref_entry *last = NULL;
|
|
|
|
/*
|
|
* This check also prevents passing a zero-length array to qsort(),
|
|
* which is a problem on some platforms.
|
|
*/
|
|
if (dir->sorted == dir->nr)
|
|
return;
|
|
|
|
QSORT(dir->entries, dir->nr, ref_entry_cmp);
|
|
|
|
/* Remove any duplicates: */
|
|
for (i = 0, j = 0; j < dir->nr; j++) {
|
|
struct ref_entry *entry = dir->entries[j];
|
|
if (last && is_dup_ref(last, entry))
|
|
free_ref_entry(entry);
|
|
else
|
|
last = dir->entries[i++] = entry;
|
|
}
|
|
dir->sorted = dir->nr = i;
|
|
}
|
|
|
|
enum prefix_state {
|
|
/* All refs within the directory would match prefix: */
|
|
PREFIX_CONTAINS_DIR,
|
|
|
|
/* Some, but not all, refs within the directory might match prefix: */
|
|
PREFIX_WITHIN_DIR,
|
|
|
|
/* No refs within the directory could possibly match prefix: */
|
|
PREFIX_EXCLUDES_DIR
|
|
};
|
|
|
|
/*
|
|
* Return a `prefix_state` constant describing the relationship
|
|
* between the directory with the specified `dirname` and `prefix`.
|
|
*/
|
|
static enum prefix_state overlaps_prefix(const char *dirname,
|
|
const char *prefix)
|
|
{
|
|
while (*prefix && *dirname == *prefix) {
|
|
dirname++;
|
|
prefix++;
|
|
}
|
|
if (!*prefix)
|
|
return PREFIX_CONTAINS_DIR;
|
|
else if (!*dirname)
|
|
return PREFIX_WITHIN_DIR;
|
|
else
|
|
return PREFIX_EXCLUDES_DIR;
|
|
}
|
|
|
|
/*
|
|
* Load all of the refs from `dir` (recursively) that could possibly
|
|
* contain references matching `prefix` into our in-memory cache. If
|
|
* `prefix` is NULL, prime unconditionally.
|
|
*/
|
|
static void prime_ref_dir(struct ref_dir *dir, const char *prefix)
|
|
{
|
|
/*
|
|
* The hard work of loading loose refs is done by get_ref_dir(), so we
|
|
* just need to recurse through all of the sub-directories. We do not
|
|
* even need to care about sorting, as traversal order does not matter
|
|
* to us.
|
|
*/
|
|
int i;
|
|
for (i = 0; i < dir->nr; i++) {
|
|
struct ref_entry *entry = dir->entries[i];
|
|
if (!(entry->flag & REF_DIR)) {
|
|
/* Not a directory; no need to recurse. */
|
|
} else if (!prefix) {
|
|
/* Recurse in any case: */
|
|
prime_ref_dir(get_ref_dir(entry), NULL);
|
|
} else {
|
|
switch (overlaps_prefix(entry->name, prefix)) {
|
|
case PREFIX_CONTAINS_DIR:
|
|
/*
|
|
* Recurse, and from here down we
|
|
* don't have to check the prefix
|
|
* anymore:
|
|
*/
|
|
prime_ref_dir(get_ref_dir(entry), NULL);
|
|
break;
|
|
case PREFIX_WITHIN_DIR:
|
|
prime_ref_dir(get_ref_dir(entry), prefix);
|
|
break;
|
|
case PREFIX_EXCLUDES_DIR:
|
|
/* No need to prime this directory. */
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* A level in the reference hierarchy that is currently being iterated
|
|
* through.
|
|
*/
|
|
struct cache_ref_iterator_level {
|
|
/*
|
|
* The ref_dir being iterated over at this level. The ref_dir
|
|
* is sorted before being stored here.
|
|
*/
|
|
struct ref_dir *dir;
|
|
|
|
enum prefix_state prefix_state;
|
|
|
|
/*
|
|
* The index of the current entry within dir (which might
|
|
* itself be a directory). If index == -1, then the iteration
|
|
* hasn't yet begun. If index == dir->nr, then the iteration
|
|
* through this level is over.
|
|
*/
|
|
int index;
|
|
};
|
|
|
|
/*
|
|
* Represent an iteration through a ref_dir in the memory cache. The
|
|
* iteration recurses through subdirectories.
|
|
*/
|
|
struct cache_ref_iterator {
|
|
struct ref_iterator base;
|
|
|
|
/*
|
|
* The number of levels currently on the stack. This is always
|
|
* at least 1, because when it becomes zero the iteration is
|
|
* ended and this struct is freed.
|
|
*/
|
|
size_t levels_nr;
|
|
|
|
/* The number of levels that have been allocated on the stack */
|
|
size_t levels_alloc;
|
|
|
|
/*
|
|
* Only include references with this prefix in the iteration.
|
|
* The prefix is matched textually, without regard for path
|
|
* component boundaries.
|
|
*/
|
|
const char *prefix;
|
|
|
|
/*
|
|
* A stack of levels. levels[0] is the uppermost level that is
|
|
* being iterated over in this iteration. (This is not
|
|
* necessary the top level in the references hierarchy. If we
|
|
* are iterating through a subtree, then levels[0] will hold
|
|
* the ref_dir for that subtree, and subsequent levels will go
|
|
* on from there.)
|
|
*/
|
|
struct cache_ref_iterator_level *levels;
|
|
|
|
struct repository *repo;
|
|
};
|
|
|
|
static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator)
|
|
{
|
|
struct cache_ref_iterator *iter =
|
|
(struct cache_ref_iterator *)ref_iterator;
|
|
|
|
while (1) {
|
|
struct cache_ref_iterator_level *level =
|
|
&iter->levels[iter->levels_nr - 1];
|
|
struct ref_dir *dir = level->dir;
|
|
struct ref_entry *entry;
|
|
enum prefix_state entry_prefix_state;
|
|
|
|
if (level->index == -1)
|
|
sort_ref_dir(dir);
|
|
|
|
if (++level->index == level->dir->nr) {
|
|
/* This level is exhausted; pop up a level */
|
|
if (--iter->levels_nr == 0)
|
|
return ref_iterator_abort(ref_iterator);
|
|
|
|
continue;
|
|
}
|
|
|
|
entry = dir->entries[level->index];
|
|
|
|
if (level->prefix_state == PREFIX_WITHIN_DIR) {
|
|
entry_prefix_state = overlaps_prefix(entry->name, iter->prefix);
|
|
if (entry_prefix_state == PREFIX_EXCLUDES_DIR ||
|
|
(entry_prefix_state == PREFIX_WITHIN_DIR && !(entry->flag & REF_DIR)))
|
|
continue;
|
|
} else {
|
|
entry_prefix_state = level->prefix_state;
|
|
}
|
|
|
|
if (entry->flag & REF_DIR) {
|
|
/* push down a level */
|
|
ALLOC_GROW(iter->levels, iter->levels_nr + 1,
|
|
iter->levels_alloc);
|
|
|
|
level = &iter->levels[iter->levels_nr++];
|
|
level->dir = get_ref_dir(entry);
|
|
level->prefix_state = entry_prefix_state;
|
|
level->index = -1;
|
|
} else {
|
|
iter->base.refname = entry->name;
|
|
iter->base.referent = entry->u.value.referent;
|
|
iter->base.oid = &entry->u.value.oid;
|
|
iter->base.flags = entry->flag;
|
|
return ITER_OK;
|
|
}
|
|
}
|
|
}
|
|
|
|
static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator,
|
|
struct object_id *peeled)
|
|
{
|
|
struct cache_ref_iterator *iter =
|
|
(struct cache_ref_iterator *)ref_iterator;
|
|
return peel_object(iter->repo, ref_iterator->oid, peeled) ? -1 : 0;
|
|
}
|
|
|
|
static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator)
|
|
{
|
|
struct cache_ref_iterator *iter =
|
|
(struct cache_ref_iterator *)ref_iterator;
|
|
|
|
free((char *)iter->prefix);
|
|
free(iter->levels);
|
|
base_ref_iterator_free(ref_iterator);
|
|
return ITER_DONE;
|
|
}
|
|
|
|
static struct ref_iterator_vtable cache_ref_iterator_vtable = {
|
|
.advance = cache_ref_iterator_advance,
|
|
.peel = cache_ref_iterator_peel,
|
|
.abort = cache_ref_iterator_abort
|
|
};
|
|
|
|
struct ref_iterator *cache_ref_iterator_begin(struct ref_cache *cache,
|
|
const char *prefix,
|
|
struct repository *repo,
|
|
int prime_dir)
|
|
{
|
|
struct ref_dir *dir;
|
|
struct cache_ref_iterator *iter;
|
|
struct ref_iterator *ref_iterator;
|
|
struct cache_ref_iterator_level *level;
|
|
|
|
dir = get_ref_dir(cache->root);
|
|
if (prefix && *prefix)
|
|
dir = find_containing_dir(dir, prefix);
|
|
if (!dir)
|
|
/* There's nothing to iterate over. */
|
|
return empty_ref_iterator_begin();
|
|
|
|
if (prime_dir)
|
|
prime_ref_dir(dir, prefix);
|
|
|
|
CALLOC_ARRAY(iter, 1);
|
|
ref_iterator = &iter->base;
|
|
base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable);
|
|
ALLOC_GROW(iter->levels, 10, iter->levels_alloc);
|
|
|
|
iter->levels_nr = 1;
|
|
level = &iter->levels[0];
|
|
level->index = -1;
|
|
level->dir = dir;
|
|
|
|
if (prefix && *prefix) {
|
|
iter->prefix = xstrdup(prefix);
|
|
level->prefix_state = PREFIX_WITHIN_DIR;
|
|
} else {
|
|
level->prefix_state = PREFIX_CONTAINS_DIR;
|
|
}
|
|
|
|
iter->repo = repo;
|
|
|
|
return ref_iterator;
|
|
}
|