#include "../git-compat-util.h" #include "../hash.h" #include "../refs.h" #include "../repository.h" #include "refs-internal.h" #include "ref-cache.h" #include "../iterator.h" void add_entry_to_dir(struct ref_dir *dir, struct ref_entry *entry) { ALLOC_GROW(dir->entries, dir->nr + 1, dir->alloc); dir->entries[dir->nr++] = entry; /* optimize for the case that entries are added in order */ if (dir->nr == 1 || (dir->nr == dir->sorted + 1 && strcmp(dir->entries[dir->nr - 2]->name, dir->entries[dir->nr - 1]->name) < 0)) dir->sorted = dir->nr; } struct ref_dir *get_ref_dir(struct ref_entry *entry) { struct ref_dir *dir; assert(entry->flag & REF_DIR); dir = &entry->u.subdir; if (entry->flag & REF_INCOMPLETE) { if (!dir->cache->fill_ref_dir) BUG("incomplete ref_store without fill_ref_dir function"); dir->cache->fill_ref_dir(dir->cache->ref_store, dir, entry->name); entry->flag &= ~REF_INCOMPLETE; } return dir; } struct ref_entry *create_ref_entry(const char *refname, const char *referent, const struct object_id *oid, int flag) { struct ref_entry *ref; FLEX_ALLOC_STR(ref, name, refname); oidcpy(&ref->u.value.oid, oid); ref->flag = flag; ref->u.value.referent = xstrdup_or_null(referent); return ref; } struct ref_cache *create_ref_cache(struct ref_store *refs, fill_ref_dir_fn *fill_ref_dir) { struct ref_cache *ret = xcalloc(1, sizeof(*ret)); ret->ref_store = refs; ret->fill_ref_dir = fill_ref_dir; ret->root = create_dir_entry(ret, "", 0); return ret; } static void clear_ref_dir(struct ref_dir *dir); static void free_ref_entry(struct ref_entry *entry) { if (entry->flag & REF_DIR) { /* * Do not use get_ref_dir() here, as that might * trigger the reading of loose refs. */ clear_ref_dir(&entry->u.subdir); } free(entry->u.value.referent); free(entry); } void free_ref_cache(struct ref_cache *cache) { if (!cache) return; free_ref_entry(cache->root); free(cache); } /* * Clear and free all entries in dir, recursively. */ static void clear_ref_dir(struct ref_dir *dir) { int i; for (i = 0; i < dir->nr; i++) free_ref_entry(dir->entries[i]); FREE_AND_NULL(dir->entries); dir->sorted = dir->nr = dir->alloc = 0; } struct ref_entry *create_dir_entry(struct ref_cache *cache, const char *dirname, size_t len) { struct ref_entry *direntry; FLEX_ALLOC_MEM(direntry, name, dirname, len); direntry->u.subdir.cache = cache; direntry->flag = REF_DIR | REF_INCOMPLETE; return direntry; } static int ref_entry_cmp(const void *a, const void *b) { struct ref_entry *one = *(struct ref_entry **)a; struct ref_entry *two = *(struct ref_entry **)b; return strcmp(one->name, two->name); } static void sort_ref_dir(struct ref_dir *dir); struct string_slice { size_t len; const char *str; }; static int ref_entry_cmp_sslice(const void *key_, const void *ent_) { const struct string_slice *key = key_; const struct ref_entry *ent = *(const struct ref_entry * const *)ent_; int cmp = strncmp(key->str, ent->name, key->len); if (cmp) return cmp; return '\0' - (unsigned char)ent->name[key->len]; } int search_ref_dir(struct ref_dir *dir, const char *refname, size_t len) { struct ref_entry **r; struct string_slice key; if (refname == NULL || !dir->nr) return -1; sort_ref_dir(dir); key.len = len; key.str = refname; r = bsearch(&key, dir->entries, dir->nr, sizeof(*dir->entries), ref_entry_cmp_sslice); if (!r) return -1; return r - dir->entries; } /* * Search for a directory entry directly within dir (without * recursing). Sort dir if necessary. subdirname must be a directory * name (i.e., end in '/'). Returns NULL if the desired * directory cannot be found. dir must already be complete. */ static struct ref_dir *search_for_subdir(struct ref_dir *dir, const char *subdirname, size_t len) { int entry_index = search_ref_dir(dir, subdirname, len); struct ref_entry *entry; if (entry_index == -1) return NULL; entry = dir->entries[entry_index]; return get_ref_dir(entry); } /* * If refname is a reference name, find the ref_dir within the dir * tree that should hold refname. If refname is a directory name * (i.e., it ends in '/'), then return that ref_dir itself. dir must * represent the top-level directory and must already be complete. * Sort ref_dirs and recurse into subdirectories as necessary. Will * return NULL if the desired directory cannot be found. */ static struct ref_dir *find_containing_dir(struct ref_dir *dir, const char *refname) { const char *slash; for (slash = strchr(refname, '/'); slash; slash = strchr(slash + 1, '/')) { size_t dirnamelen = slash - refname + 1; struct ref_dir *subdir; subdir = search_for_subdir(dir, refname, dirnamelen); if (!subdir) { dir = NULL; break; } dir = subdir; } return dir; } struct ref_entry *find_ref_entry(struct ref_dir *dir, const char *refname) { int entry_index; struct ref_entry *entry; dir = find_containing_dir(dir, refname); if (!dir) return NULL; entry_index = search_ref_dir(dir, refname, strlen(refname)); if (entry_index == -1) return NULL; entry = dir->entries[entry_index]; return (entry->flag & REF_DIR) ? NULL : entry; } /* * Emit a warning and return true iff ref1 and ref2 have the same name * and the same oid. Die if they have the same name but different * oids. */ static int is_dup_ref(const struct ref_entry *ref1, const struct ref_entry *ref2) { if (strcmp(ref1->name, ref2->name)) return 0; /* Duplicate name; make sure that they don't conflict: */ if ((ref1->flag & REF_DIR) || (ref2->flag & REF_DIR)) /* This is impossible by construction */ die("Reference directory conflict: %s", ref1->name); if (!oideq(&ref1->u.value.oid, &ref2->u.value.oid)) die("Duplicated ref, and SHA1s don't match: %s", ref1->name); warning("Duplicated ref: %s", ref1->name); return 1; } /* * Sort the entries in dir non-recursively (if they are not already * sorted) and remove any duplicate entries. */ static void sort_ref_dir(struct ref_dir *dir) { int i, j; struct ref_entry *last = NULL; /* * This check also prevents passing a zero-length array to qsort(), * which is a problem on some platforms. */ if (dir->sorted == dir->nr) return; QSORT(dir->entries, dir->nr, ref_entry_cmp); /* Remove any duplicates: */ for (i = 0, j = 0; j < dir->nr; j++) { struct ref_entry *entry = dir->entries[j]; if (last && is_dup_ref(last, entry)) free_ref_entry(entry); else last = dir->entries[i++] = entry; } dir->sorted = dir->nr = i; } enum prefix_state { /* All refs within the directory would match prefix: */ PREFIX_CONTAINS_DIR, /* Some, but not all, refs within the directory might match prefix: */ PREFIX_WITHIN_DIR, /* No refs within the directory could possibly match prefix: */ PREFIX_EXCLUDES_DIR }; /* * Return a `prefix_state` constant describing the relationship * between the directory with the specified `dirname` and `prefix`. */ static enum prefix_state overlaps_prefix(const char *dirname, const char *prefix) { while (*prefix && *dirname == *prefix) { dirname++; prefix++; } if (!*prefix) return PREFIX_CONTAINS_DIR; else if (!*dirname) return PREFIX_WITHIN_DIR; else return PREFIX_EXCLUDES_DIR; } /* * Load all of the refs from `dir` (recursively) that could possibly * contain references matching `prefix` into our in-memory cache. If * `prefix` is NULL, prime unconditionally. */ static void prime_ref_dir(struct ref_dir *dir, const char *prefix) { /* * The hard work of loading loose refs is done by get_ref_dir(), so we * just need to recurse through all of the sub-directories. We do not * even need to care about sorting, as traversal order does not matter * to us. */ int i; for (i = 0; i < dir->nr; i++) { struct ref_entry *entry = dir->entries[i]; if (!(entry->flag & REF_DIR)) { /* Not a directory; no need to recurse. */ } else if (!prefix) { /* Recurse in any case: */ prime_ref_dir(get_ref_dir(entry), NULL); } else { switch (overlaps_prefix(entry->name, prefix)) { case PREFIX_CONTAINS_DIR: /* * Recurse, and from here down we * don't have to check the prefix * anymore: */ prime_ref_dir(get_ref_dir(entry), NULL); break; case PREFIX_WITHIN_DIR: prime_ref_dir(get_ref_dir(entry), prefix); break; case PREFIX_EXCLUDES_DIR: /* No need to prime this directory. */ break; } } } } /* * A level in the reference hierarchy that is currently being iterated * through. */ struct cache_ref_iterator_level { /* * The ref_dir being iterated over at this level. The ref_dir * is sorted before being stored here. */ struct ref_dir *dir; enum prefix_state prefix_state; /* * The index of the current entry within dir (which might * itself be a directory). If index == -1, then the iteration * hasn't yet begun. If index == dir->nr, then the iteration * through this level is over. */ int index; }; /* * Represent an iteration through a ref_dir in the memory cache. The * iteration recurses through subdirectories. */ struct cache_ref_iterator { struct ref_iterator base; /* * The number of levels currently on the stack. This is always * at least 1, because when it becomes zero the iteration is * ended and this struct is freed. */ size_t levels_nr; /* The number of levels that have been allocated on the stack */ size_t levels_alloc; /* * Only include references with this prefix in the iteration. * The prefix is matched textually, without regard for path * component boundaries. */ const char *prefix; /* * A stack of levels. levels[0] is the uppermost level that is * being iterated over in this iteration. (This is not * necessary the top level in the references hierarchy. If we * are iterating through a subtree, then levels[0] will hold * the ref_dir for that subtree, and subsequent levels will go * on from there.) */ struct cache_ref_iterator_level *levels; struct repository *repo; }; static int cache_ref_iterator_advance(struct ref_iterator *ref_iterator) { struct cache_ref_iterator *iter = (struct cache_ref_iterator *)ref_iterator; while (1) { struct cache_ref_iterator_level *level = &iter->levels[iter->levels_nr - 1]; struct ref_dir *dir = level->dir; struct ref_entry *entry; enum prefix_state entry_prefix_state; if (level->index == -1) sort_ref_dir(dir); if (++level->index == level->dir->nr) { /* This level is exhausted; pop up a level */ if (--iter->levels_nr == 0) return ref_iterator_abort(ref_iterator); continue; } entry = dir->entries[level->index]; if (level->prefix_state == PREFIX_WITHIN_DIR) { entry_prefix_state = overlaps_prefix(entry->name, iter->prefix); if (entry_prefix_state == PREFIX_EXCLUDES_DIR || (entry_prefix_state == PREFIX_WITHIN_DIR && !(entry->flag & REF_DIR))) continue; } else { entry_prefix_state = level->prefix_state; } if (entry->flag & REF_DIR) { /* push down a level */ ALLOC_GROW(iter->levels, iter->levels_nr + 1, iter->levels_alloc); level = &iter->levels[iter->levels_nr++]; level->dir = get_ref_dir(entry); level->prefix_state = entry_prefix_state; level->index = -1; } else { iter->base.refname = entry->name; iter->base.referent = entry->u.value.referent; iter->base.oid = &entry->u.value.oid; iter->base.flags = entry->flag; return ITER_OK; } } } static int cache_ref_iterator_peel(struct ref_iterator *ref_iterator, struct object_id *peeled) { struct cache_ref_iterator *iter = (struct cache_ref_iterator *)ref_iterator; return peel_object(iter->repo, ref_iterator->oid, peeled) ? -1 : 0; } static int cache_ref_iterator_abort(struct ref_iterator *ref_iterator) { struct cache_ref_iterator *iter = (struct cache_ref_iterator *)ref_iterator; free((char *)iter->prefix); free(iter->levels); base_ref_iterator_free(ref_iterator); return ITER_DONE; } static struct ref_iterator_vtable cache_ref_iterator_vtable = { .advance = cache_ref_iterator_advance, .peel = cache_ref_iterator_peel, .abort = cache_ref_iterator_abort }; struct ref_iterator *cache_ref_iterator_begin(struct ref_cache *cache, const char *prefix, struct repository *repo, int prime_dir) { struct ref_dir *dir; struct cache_ref_iterator *iter; struct ref_iterator *ref_iterator; struct cache_ref_iterator_level *level; dir = get_ref_dir(cache->root); if (prefix && *prefix) dir = find_containing_dir(dir, prefix); if (!dir) /* There's nothing to iterate over. */ return empty_ref_iterator_begin(); if (prime_dir) prime_ref_dir(dir, prefix); CALLOC_ARRAY(iter, 1); ref_iterator = &iter->base; base_ref_iterator_init(ref_iterator, &cache_ref_iterator_vtable); ALLOC_GROW(iter->levels, 10, iter->levels_alloc); iter->levels_nr = 1; level = &iter->levels[0]; level->index = -1; level->dir = dir; if (prefix && *prefix) { iter->prefix = xstrdup(prefix); level->prefix_state = PREFIX_WITHIN_DIR; } else { level->prefix_state = PREFIX_CONTAINS_DIR; } iter->repo = repo; return ref_iterator; }