Commit Graph

230 Commits

Author SHA1 Message Date
Junio C Hamano
2b970bc09f Merge branch 'jk/optim-promisor-object-enumeration'
Collection of what is referenced by objects in promisor packs have
been optimized to inspect these objects in the in-pack order.

* jk/optim-promisor-object-enumeration:
  is_promisor_object(): walk promisor packs in pack-order
2022-07-11 15:38:50 -07:00
Jeff King
18c08abc82 is_promisor_object(): walk promisor packs in pack-order
When we generate the list of promisor objects, we walk every pack with a
.promisor file and examine its objects for any links to other objects.
By default, for_each_packed_object() will go in pack .idx order.

This is the worst case with respect to our delta base cache. If we have
a delta chain of A->B->C->D, then visiting A may require reconstructing
both B and C, unless we also visited B recently, in which case we may
have cached its value. Because .idx order is based on sha1, it's random
with respect to the actual object contents and deltas, and thus we're
unlikely to get many cache hits.

If we instead traverse in pack order, then we get the optimal case:
packs are written to keep delta families together, and to place bases
before their children.

Even on a modest repository like git.git, this has a noticeable speedup
on p5600.4, which runs "fsck" on a partial clone with blob:none (so lots
of trees which need to be walked, and which delta well):

Test       HEAD^               HEAD
-------------------------------------------------------
5600.4:    17.87(17.83+0.04)   15.42(15.35+0.06) -13.7%

On a larger repository like linux.git, the speedup is even more
pronounced:

Test       HEAD^                 HEAD
-----------------------------------------------------------
5600.4:    322.47(322.01+0.42)   186.41(185.76+0.63) -42.2%

Any other operations that call is_promisor_object(), like "rev-list
--exclude-promisor-objects", would similarly benefit, but the
invocations in p5600 don't actually trigger any such cases.

Note that we may pay a small price to build a rev-index in-memory to do
the pack-order traversal. But it's still a big net win, and even that
small cost goes away if you are using pack.writeReverseIndex.

Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-06-16 10:03:40 -07:00
Junio C Hamano
a50036da1a Merge branch 'tb/cruft-packs'
A mechanism to pack unreachable objects into a "cruft pack",
instead of ejecting them into loose form to be reclaimed later, has
been introduced.

* tb/cruft-packs:
  sha1-file.c: don't freshen cruft packs
  builtin/gc.c: conditionally avoid pruning objects via loose
  builtin/repack.c: add cruft packs to MIDX during geometric repack
  builtin/repack.c: use named flags for existing_packs
  builtin/repack.c: allow configuring cruft pack generation
  builtin/repack.c: support generating a cruft pack
  builtin/pack-objects.c: --cruft with expiration
  reachable: report precise timestamps from objects in cruft packs
  reachable: add options to add_unseen_recent_objects_to_traversal
  builtin/pack-objects.c: --cruft without expiration
  builtin/pack-objects.c: return from create_object_entry()
  t/helper: add 'pack-mtimes' test-tool
  pack-mtimes: support writing pack .mtimes files
  chunk-format.h: extract oid_version()
  pack-write: pass 'struct packing_data' to 'stage_tmp_packfiles'
  pack-mtimes: support reading .mtimes files
  Documentation/technical: add cruft-packs.txt
2022-06-03 14:30:37 -07:00
Taylor Blau
94cd775a6c pack-mtimes: support reading .mtimes files
To store the individual mtimes of objects in a cruft pack, introduce a
new `.mtimes` format that can optionally accompany a single pack in the
repository.

The format is defined in Documentation/technical/pack-format.txt, and
stores a 4-byte network order timestamp for each object in name (index)
order.

This patch prepares for cruft packs by defining the `.mtimes` format,
and introducing a basic API that callers can use to read out individual
mtimes.

Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-05-26 15:48:26 -07:00
Junio C Hamano
2b0a58d164 Merge branch 'ep/maint-equals-null-cocci' for maint-2.35
* ep/maint-equals-null-cocci:
  tree-wide: apply equals-null.cocci
  contrib/coccinnelle: add equals-null.cocci
2022-05-02 10:06:04 -07:00
Junio C Hamano
afe8a9070b tree-wide: apply equals-null.cocci
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-05-02 09:50:37 -07:00
Junio C Hamano
c9c082850d Merge branch 'jt/pack-header-lshift-overflow'
* jt/pack-header-lshift-overflow:
  packfile: fix off-by-one error in decoding logic
2022-01-12 15:11:41 -08:00
Junio C Hamano
a5c97b0164 packfile: fix off-by-one error in decoding logic
shift count being exactly at 7-bit smaller than the long is OK; on
32-bit architecture, shift count starts at 4 and goes through 11, 18
and 25, at which point the guard triggers one iteration too early.

Reported-by: Marc Strapetz <marc.strapetz@syntevo.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2022-01-12 12:14:49 -08:00
Junio C Hamano
79aee56c1e Merge branch 'tb/pack-revindex-on-disk-cleanup'
Code clean-up.

* tb/pack-revindex-on-disk-cleanup:
  packfile: make `close_pack_revindex()` static
2021-12-15 09:39:50 -08:00
Junio C Hamano
2d5b70de2d Merge branch 'jt/pack-header-lshift-overflow'
The code to decode the length of packed object size has been
corrected.

* jt/pack-header-lshift-overflow:
  packfile: avoid overflowing shift during decode
2021-12-10 14:35:08 -08:00
Taylor Blau
0bf0de6cc7 packfile: make close_pack_revindex() static
Since its definition in 2f4ba2a867 (packfile: prepare for the existence
of '*.rev' files, 2021-01-25), the only caller of
`close_pack_revindex()` was within packfile.c.

Thus there is no need for this to be exposed via packfile.h, and instead
can remain static within packfile.c's compilation unit. While we're
here, move the function's opening brace onto its own line.

Noticed-by: Ramsay Jones <ramsay@ramsayjones.plus.com>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-12-04 23:01:38 -08:00
Junio C Hamano
f9ba6acaa9 Merge branch 'mc/clean-smudge-with-llp64'
The clean/smudge conversion code path has been prepared to better
work on platforms where ulong is narrower than size_t.

* mc/clean-smudge-with-llp64:
  clean/smudge: allow clean filters to process extremely large files
  odb: guard against data loss checking out a huge file
  git-compat-util: introduce more size_t helpers
  odb: teach read_blob_entry to use size_t
  t1051: introduce a smudge filter test for extremely large files
  test-lib: add prerequisite for 64-bit platforms
  test-tool genzeros: generate large amounts of data more efficiently
  test-genzeros: allow more than 2G zeros in Windows
2021-11-29 15:41:51 -08:00
Jonathan Tan
34de5b8eac packfile: avoid overflowing shift during decode
unpack_object_header_buffer() attempts to protect against overflowing
left shifts, but the limit of the shift amount should not be the size of
the variable being shifted. It should be the size minus the size of its
contents. Fix that accordingly.

This was noticed at $DAYJOB by a fuzzer running internally.

Signed-off-by: Jonathan Tan <jonathantanmy@google.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-11-11 10:06:37 -08:00
Matt Cooper
d6a09e795d odb: guard against data loss checking out a huge file
This introduces an additional guard for platforms where `unsigned long`
and `size_t` are not of the same size. If the size of an object in the
database would overflow `unsigned long`, instead we now exit with an
error.

A complete fix will have to update _many_ other functions throughout the
codebase to use `size_t` instead of `unsigned long`. It will have to be
implemented at some stage.

This commit puts in a stop-gap for the time being.

Helped-by: Johannes Schindelin <johannes.schindelin@gmx.de>
Signed-off-by: Matt Cooper <vtbassmatt@gmail.com>
Signed-off-by: Johannes Schindelin <johannes.schindelin@gmx.de>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-11-03 11:22:27 -07:00
Junio C Hamano
068966d2e8 Merge branch 'rs/close-pack-leakfix'
Leakfix.

* rs/close-pack-leakfix:
  packfile: release bad_objects in close_pack()
2021-10-03 21:49:20 -07:00
René Scharfe
8c6b4332b4 packfile: release bad_objects in close_pack()
Unusable entries of a damaged pack file are recorded in the oidset
bad_objects.  Release it when we're done with the pack.

This doesn't affect intact packs because an empty oidset requires
no allocation.

Signed-off-by: René Scharfe <l.s.r@web.de>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-09-24 09:22:46 -07:00
Junio C Hamano
28caad63d0 Merge branch 'rs/packfile-bad-object-list-in-oidset'
Replace a handcrafted data structure used to keep track of bad
objects in the packfile API by an oidset.

* rs/packfile-bad-object-list-in-oidset:
  packfile: use oidset for bad objects
  packfile: convert has_packed_and_bad() to object_id
  packfile: convert mark_bad_packed_object() to object_id
  midx: inline nth_midxed_pack_entry()
  oidset: make oidset_size() an inline function
2021-09-23 13:44:46 -07:00
Junio C Hamano
0649303820 Merge branch 'tb/multi-pack-bitmaps'
The reachability bitmap file used to be generated only for a single
pack, but now we've learned to generate bitmaps for history that
span across multiple packfiles.

* tb/multi-pack-bitmaps: (29 commits)
  pack-bitmap: drop bitmap_index argument from try_partial_reuse()
  pack-bitmap: drop repository argument from prepare_midx_bitmap_git()
  p5326: perf tests for MIDX bitmaps
  p5310: extract full and partial bitmap tests
  midx: respect 'GIT_TEST_MULTI_PACK_INDEX_WRITE_BITMAP'
  t7700: update to work with MIDX bitmap test knob
  t5319: don't write MIDX bitmaps in t5319
  t5310: disable GIT_TEST_MULTI_PACK_INDEX_WRITE_BITMAP
  t0410: disable GIT_TEST_MULTI_PACK_INDEX_WRITE_BITMAP
  t5326: test multi-pack bitmap behavior
  t/helper/test-read-midx.c: add --checksum mode
  t5310: move some tests to lib-bitmap.sh
  pack-bitmap: write multi-pack bitmaps
  pack-bitmap: read multi-pack bitmaps
  pack-bitmap.c: avoid redundant calls to try_partial_reuse
  pack-bitmap.c: introduce 'bitmap_is_preferred_refname()'
  pack-bitmap.c: introduce 'nth_bitmap_object_oid()'
  pack-bitmap.c: introduce 'bitmap_num_objects()'
  midx: avoid opening multiple MIDXs when writing
  midx: close linked MIDXs, avoid leaking memory
  ...
2021-09-20 15:20:39 -07:00
René Scharfe
09ef66179b packfile: use oidset for bad objects
Store the object ID of broken pack entries in an oidset instead of
keeping only their hashes in an unsorted array.  The resulting code is
shorter and easier to read.  It also handles the (hopefully) very rare
case of having a high number of bad objects better.

Helped-by: Jeff King <peff@peff.net>
Signed-off-by: René Scharfe <l.s.r@web.de>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-09-12 16:14:32 -07:00
René Scharfe
7407d733a4 packfile: convert has_packed_and_bad() to object_id
The single caller has a full object ID, so pass it on instead of just
its hash member.

Signed-off-by: René Scharfe <l.s.r@web.de>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-09-12 16:14:32 -07:00
René Scharfe
751530de5d packfile: convert mark_bad_packed_object() to object_id
All callers have full object IDs, so pass them on instead of just their
hash member.

Signed-off-by: René Scharfe <l.s.r@web.de>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-09-12 16:14:32 -07:00
Taylor Blau
0f533c7284 pack-bitmap: read multi-pack bitmaps
This prepares the code in pack-bitmap to interpret the new multi-pack
bitmaps described in Documentation/technical/bitmap-format.txt, which
mostly involves converting bit positions to accommodate looking them up
in a MIDX.

Note that there are currently no writers who write multi-pack bitmaps,
and that this will be implemented in the subsequent commit. Note also
that get_midx_checksum() and get_midx_filename() are made non-static so
they can be called from pack-bitmap.c.

Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-09-01 13:56:43 -07:00
Taylor Blau
a241878ac7 object-store.h: teach for_each_packed_object to ignore kept packs
The next patch will reimplement a function that wants to iterate over
packed objects while ignoring packs which are marked as kept (either
in-core or on-disk).

Teach for_each_packed_object() to ignore all objects from those packs by
adding a new flag for each of the "kept" states that a pack can be in.

Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-08-29 23:23:39 -07:00
Eric Wong
dc05929411 xmmap: inform Linux users of tuning knobs on ENOMEM
Linux users may benefit from additional information on how to
avoid ENOMEM from mmap despite the system having enough RAM to
accomodate them.  We can't reliably unmap pack windows to work
around the issue since malloc and other library routines may
mmap without our knowledge.

Signed-off-by: Eric Wong <e@80x24.org>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-06-29 23:14:25 -07:00
Junio C Hamano
33be431c0c Merge branch 'en/dir-traversal'
"git clean" and "git ls-files -i" had confusion around working on
or showing ignored paths inside an ignored directory, which has
been corrected.

* en/dir-traversal:
  dir: introduce readdir_skip_dot_and_dotdot() helper
  dir: update stale description of treat_directory()
  dir: traverse into untracked directories if they may have ignored subfiles
  dir: avoid unnecessary traversal into ignored directory
  t3001, t7300: add testcase showcasing missed directory traversal
  t7300: add testcase showing unnecessary traversal into ignored directory
  ls-files: error out on -i unless -o or -c are specified
  dir: report number of visited directories and paths with trace2
  dir: convert trace calls to trace2 equivalents
2021-05-20 08:54:59 +09:00
Elijah Newren
b548f0f156 dir: introduce readdir_skip_dot_and_dotdot() helper
Many places in the code were doing
    while ((d = readdir(dir)) != NULL) {
        if (is_dot_or_dotdot(d->d_name))
            continue;
        ...process d...
    }
Introduce a readdir_skip_dot_and_dotdot() helper to make that a one-liner:
    while ((d = readdir_skip_dot_and_dotdot(dir)) != NULL) {
        ...process d...
    }

This helper particularly simplifies checks for empty directories.

Also use this helper in read_cached_dir() so that our statistics are
consistent across platforms.  (In other words, read_cached_dir() should
have been using is_dot_or_dotdot() and skipping such entries, but did
not and left it to treat_path() to detect and mark such entries as
path_none.)

Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-05-13 08:45:03 +09:00
Jeff King
fcc07e980b is_promisor_object(): free tree buffer after parsing
To get the list of all promisor objects, we not only include all objects
in promisor packs, but also parse each of those objects to see which
objects they reference. After parsing a tree object, the tree->buffer
field will remain populated until we explicitly free it. So in a partial
clone of blob:none, for example, we are essentially reading every tree
in the repository (since they're all in the initial promisor pack), and
keeping all of their uncompressed contents in memory at once.

This patch frees the tree buffers after we've finished marking all of
their reachable objects. We shouldn't need to do this for any other
object type. While we are using some extra memory to store the structs,
no other object type stores the whole contents in its parsed form (we do
sometimes hold on to commit buffers, but less so these days due to
commit graphs, plus most commands which care about promisor objects turn
off the save_commit_buffer global).

Even for a moderate-sized repository like git.git, this patch drops the
peak heap (as measured by massif) for git-fsck from ~1.7GB to ~138MB.
Fsck is a good candidate for measuring here because it doesn't interact
with the promisor code except to call is_promisor_object(), so we can
isolate just this problem.

The added perf test shows only a tiny improvement on my machine for
git.git, since 1.7GB isn't enough to cause any real memory pressure:

  Test                                 HEAD^               HEAD
  --------------------------------------------------------------------------------
  5600.4: fsck                         21.26(20.90+0.35)   20.84(20.79+0.04) -2.0%

With linux.git the absolute change is a bit bigger, though still a small
percentage:

  Test                          HEAD^                 HEAD
  -----------------------------------------------------------------------------
  5600.4: fsck                  262.26(259.13+3.12)   254.92(254.62+0.29) -2.8%

I didn't have the patience to run it under massif with linux.git, but
it's probably on the order of about 14GB improvement, since that's the
sum of the sizes of all of the uncompressed trees (but still isn't
enough to create memory pressure on this particular machine, which has
64GB of RAM). Smaller machines would probably see a bigger effect on
runtime (and sadly our perf suite does not measure peak heap).

Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-04-13 13:16:39 -07:00
Junio C Hamano
e6b971fcf5 Merge branch 'tb/reverse-midx'
An on-disk reverse-index to map the in-pack location of an object
back to its object name across multiple packfiles is introduced.

* tb/reverse-midx:
  midx.c: improve cache locality in midx_pack_order_cmp()
  pack-revindex: write multi-pack reverse indexes
  pack-write.c: extract 'write_rev_file_order'
  pack-revindex: read multi-pack reverse indexes
  Documentation/technical: describe multi-pack reverse indexes
  midx: make some functions non-static
  midx: keep track of the checksum
  midx: don't free midx_name early
  midx: allow marking a pack as preferred
  t/helper/test-read-midx.c: add '--show-objects'
  builtin/multi-pack-index.c: display usage on unrecognized command
  builtin/multi-pack-index.c: don't enter bogus cmd_mode
  builtin/multi-pack-index.c: split sub-commands
  builtin/multi-pack-index.c: define common usage with a macro
  builtin/multi-pack-index.c: don't handle 'progress' separately
  builtin/multi-pack-index.c: inline 'flags' with options
2021-04-08 13:23:25 -07:00
Taylor Blau
f894081dea pack-revindex: read multi-pack reverse indexes
Implement reading for multi-pack reverse indexes, as described in the
previous patch.

Note that these functions don't yet have any callers, and won't until
multi-pack reachability bitmaps are introduced in a later patch series.
In the meantime, this patch implements some of the infrastructure
necessary to support multi-pack bitmaps.

There are three new functions exposed by the revindex API:

  - load_midx_revindex(): loads the reverse index corresponding to the
    given multi-pack index.

  - midx_to_pack_pos() and pack_pos_to_midx(): these convert between the
    multi-pack index and pseudo-pack order.

load_midx_revindex() and pack_pos_to_midx() are both relatively
straightforward.

load_midx_revindex() needs a few functions to be exposed from the midx
API. One to get the checksum of a midx, and another to get the .rev's
filename. Similar to recent changes in the packed_git struct, three new
fields are added to the multi_pack_index struct: one to keep track of
the size, one to keep track of the mmap'd pointer, and another to point
past the header and at the reverse index's data.

pack_pos_to_midx() simply reads the corresponding entry out of the
table.

midx_to_pack_pos() is the trickiest, since it needs to find an object's
position in the psuedo-pack order, but that order can only be recovered
in the .rev file itself. This mapping can be implemented with a binary
search, but note that the thing we're binary searching over isn't an
array of values, but rather a permuted order of those values.

So, when comparing two items, it's helpful to keep in mind the
difference. Instead of a traditional binary search, where you are
comparing two things directly, here we're comparing a (pack, offset)
tuple with an index into the multi-pack index. That index describes
another (pack, offset) tuple, and it is _those_ two tuples that are
compared.

Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-04-01 13:07:37 -07:00
Junio C Hamano
2744383cbd Merge branch 'tb/geometric-repack'
"git repack" so far has been only capable of repacking everything
under the sun into a single pack (or split by size).  A cleverer
strategy to reduce the cost of repacking a repository has been
introduced.

* tb/geometric-repack:
  builtin/pack-objects.c: ignore missing links with --stdin-packs
  builtin/repack.c: reword comment around pack-objects flags
  builtin/repack.c: be more conservative with unsigned overflows
  builtin/repack.c: assign pack split later
  t7703: test --geometric repack with loose objects
  builtin/repack.c: do not repack single packs with --geometric
  builtin/repack.c: add '--geometric' option
  packfile: add kept-pack cache for find_kept_pack_entry()
  builtin/pack-objects.c: rewrite honor-pack-keep logic
  p5303: measure time to repack with keep
  p5303: add missing &&-chains
  builtin/pack-objects.c: add '--stdin-packs' option
  revision: learn '--no-kept-objects'
  packfile: introduce 'find_kept_pack_entry()'
2021-03-24 14:36:27 -07:00
René Scharfe
ca56dadb4b use CALLOC_ARRAY
Add and apply a semantic patch for converting code that open-codes
CALLOC_ARRAY to use it instead.  It shortens the code and infers the
element size automatically.

Signed-off-by: René Scharfe <l.s.r@web.de>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-03-13 16:00:09 -08:00
Jeff King
20b031fede packfile: add kept-pack cache for find_kept_pack_entry()
In a recent patch we added a function 'find_kept_pack_entry()' to look
for an object only among kept packs.

While this function avoids doing any lookup work in non-kept packs, it
is still linear in the number of packs, since we have to traverse the
linked list of packs once per object. Let's cache a reduced version of
that list to save us time.

Note that this cache will last the lifetime of the program. We could
invalidate it on reprepare_packed_git(), but there's not much point in
being rigorous here:

  - we might already fail to notice new .keep packs showing up after the
    program starts. We only reprepare_packed_git() when we fail to find
    an object. But adding a new pack won't cause that to happen.
    Somebody repacking could add a new pack and delete an old one, but
    most of the time we'd have a descriptor or mmap open to the old
    pack anyway, so we might not even notice.

  - in pack-objects we already cache the .keep state at startup, since
    56dfeb6263 (pack-objects: compute local/ignore_pack_keep early,
    2016-07-29). So this is just extending that concept further.

  - we don't have to worry about any packed_git being removed; we always
    keep the old structs around, even after reprepare_packed_git()

We do defensively invalidate the cache in case the set of kept packs
being asked for changes (e.g., only in-core kept packs were cached, but
suddenly the caller also wants on-disk kept packs, too). In theory we
could build all three caches and switch between them, but it's not
necessary, since this patch (and series) never changes the set of kept
packs that it wants to inspect from the cache.

So that "optimization" is more about being defensive in the face of
future changes than it is about asking for multiple kinds of kept packs
in this patch.

Here are p5303 results (as always, measured against the kernel):

  Test                                        HEAD^                   HEAD
  -----------------------------------------------------------------------------------------------
  5303.5: repack (1)                          57.34(54.66+10.88)      56.98(54.36+10.98) -0.6%
  5303.6: repack with kept (1)                57.38(54.83+10.49)      57.17(54.97+10.26) -0.4%
  5303.11: repack (50)                        71.70(88.99+4.74)       71.62(88.48+5.08) -0.1%
  5303.12: repack with kept (50)              72.58(89.61+4.78)       71.56(88.80+4.59) -1.4%
  5303.17: repack (1000)                      217.19(491.72+14.25)    217.31(490.82+14.53) +0.1%
  5303.18: repack with kept (1000)            246.12(520.07+14.93)    217.08(490.37+15.10) -11.8%

and the --stdin-packs case, which scales a little bit better (although
not by that much even at 1,000 packs):

  5303.7: repack with --stdin-packs (1)       0.00(0.00+0.00)         0.00(0.00+0.00) =
  5303.13: repack with --stdin-packs (50)     3.43(11.75+0.24)        3.43(11.69+0.30) +0.0%
  5303.19: repack with --stdin-packs (1000)   130.50(307.15+7.66)     125.13(301.36+8.04) -4.1%

Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-02-22 23:30:52 -08:00
Taylor Blau
f62312e028 packfile: introduce 'find_kept_pack_entry()'
Future callers will want a function to fill a 'struct pack_entry' for a
given object id but _only_ from its position in any kept pack(s).

In particular, an new 'git repack' mode which ensures the resulting
packs form a geometric progress by object count will mark packs that it
does not want to repack as "kept in-core", and it will want to halt a
reachability traversal as soon as it visits an object in any of the kept
packs. But, it does not want to halt the traversal at non-kept, or
.keep packs.

The obvious alternative is 'find_pack_entry()', but this doesn't quite
suffice since it only returns the first pack it finds, which may or may
not be kept (and the mru cache makes it unpredictable which one you'll
get if there are options).

Short of that, you could walk over all packs looking for the object in
each one, but it scales with the number of packs, which may be
prohibitive.

Introduce 'find_kept_pack_entry()', a function which is like
'find_pack_entry()', but only fills in objects in the kept packs.

Handle packs which have .keep files, as well as in-core kept packs
separately, since certain callers will want to distinguish one from the
other. (Though on-disk and in-core kept packs share the adjective
"kept", it is best to think of the two sets as independent.)

There is a gotcha when looking up objects that are duplicated in kept
and non-kept packs, particularly when the MIDX stores the non-kept
version and the caller asked for kept objects only. This could be
resolved by teaching the MIDX to resolve duplicates by always favoring
the kept pack (if one exists), but this breaks an assumption in existing
MIDXs, and so it would require a format change.

The benefit to changing the MIDX in this way is marginal, so we instead
have a more thorough check here which is explained with a comment.

Callers will be added in subsequent patches.

Co-authored-by: Jeff King <peff@peff.net>
Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Reviewed-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-02-22 23:30:52 -08:00
Taylor Blau
2f4ba2a867 packfile: prepare for the existence of '*.rev' files
Specify the format of the on-disk reverse index 'pack-*.rev' file, as
well as prepare the code for the existence of such files.

The reverse index maps from pack relative positions (i.e., an index into
the array of object which is sorted by their offsets within the
packfile) to their position within the 'pack-*.idx' file. Today, this is
done by building up a list of (off_t, uint32_t) tuples for each object
(the off_t corresponding to that object's offset, and the uint32_t
corresponding to its position in the index). To convert between pack and
index position quickly, this array of tuples is radix sorted based on
its offset.

This has two major drawbacks:

First, the in-memory cost scales linearly with the number of objects in
a pack.  Each 'struct revindex_entry' is sizeof(off_t) +
sizeof(uint32_t) + padding bytes for a total of 16.

To observe this, force Git to load the reverse index by, for e.g.,
running 'git cat-file --batch-check="%(objectsize:disk)"'. When asking
for a single object in a fresh clone of the kernel, Git needs to
allocate 120+ MB of memory in order to hold the reverse index in memory.

Second, the cost to sort also scales with the size of the pack.
Luckily, this is a linear function since 'load_pack_revindex()' uses a
radix sort, but this cost still must be paid once per pack per process.

As an example, it takes ~60x longer to print the _size_ of an object as
it does to print that entire object's _contents_:

  Benchmark #1: git.compile cat-file --batch <obj
    Time (mean ± σ):       3.4 ms ±   0.1 ms    [User: 3.3 ms, System: 2.1 ms]
    Range (min … max):     3.2 ms …   3.7 ms    726 runs

  Benchmark #2: git.compile cat-file --batch-check="%(objectsize:disk)" <obj
    Time (mean ± σ):     210.3 ms ±   8.9 ms    [User: 188.2 ms, System: 23.2 ms]
    Range (min … max):   193.7 ms … 224.4 ms    13 runs

Instead, avoid computing and sorting the revindex once per process by
writing it to a file when the pack itself is generated.

The format is relatively straightforward. It contains an array of
uint32_t's, the length of which is equal to the number of objects in the
pack.  The ith entry in this table contains the index position of the
ith object in the pack, where "ith object in the pack" is determined by
pack offset.

One thing that the on-disk format does _not_ contain is the full (up to)
eight-byte offset corresponding to each object. This is something that
the in-memory revindex contains (it stores an off_t in 'struct
revindex_entry' along with the same uint32_t that the on-disk format
has). Omit it in the on-disk format, since knowing the index position
for some object is sufficient to get a constant-time lookup in the
pack-*.idx file to ask for an object's offset within the pack.

This trades off between the on-disk size of the 'pack-*.rev' file for
runtime to chase down the offset for some object. Even though the lookup
is constant time, the constant is heavier, since it can potentially
involve two pointer walks in v2 indexes (one to access the 4-byte offset
table, and potentially a second to access the double wide offset table).

Consider trying to map an object's pack offset to a relative position
within that pack. In a cold-cache scenario, more page faults occur while
switching between binary searching through the reverse index and
searching through the *.idx file for an object's offset. Sure enough,
with a cold cache (writing '3' into '/proc/sys/vm/drop_caches' after
'sync'ing), printing out the entire object's contents is still
marginally faster than printing its size:

  Benchmark #1: git.compile cat-file --batch-check="%(objectsize:disk)" <obj >/dev/null
    Time (mean ± σ):      22.6 ms ±   0.5 ms    [User: 2.4 ms, System: 7.9 ms]
    Range (min … max):    21.4 ms …  23.5 ms    41 runs

  Benchmark #2: git.compile cat-file --batch <obj >/dev/null
    Time (mean ± σ):      17.2 ms ±   0.7 ms    [User: 2.8 ms, System: 5.5 ms]
    Range (min … max):    15.6 ms …  18.2 ms    45 runs

(Numbers taken in the kernel after cheating and using the next patch to
generate a reverse index). There are a couple of approaches to improve
cold cache performance not pursued here:

  - We could include the object offsets in the reverse index format.
    Predictably, this does result in fewer page faults, but it triples
    the size of the file, while simultaneously duplicating a ton of data
    already available in the .idx file. (This was the original way I
    implemented the format, and it did show
    `--batch-check='%(objectsize:disk)'` winning out against `--batch`.)

    On the other hand, this increase in size also results in a large
    block-cache footprint, which could potentially hurt other workloads.

  - We could store the mapping from pack to index position in more
    cache-friendly way, like constructing a binary search tree from the
    table and writing the values in breadth-first order. This would
    result in much better locality, but the price you pay is trading
    O(1) lookup in 'pack_pos_to_index()' for an O(log n) one (since you
    can no longer directly index the table).

So, neither of these approaches are taken here. (Thankfully, the format
is versioned, so we are free to pursue these in the future.) But, cold
cache performance likely isn't interesting outside of one-off cases like
asking for the size of an object directly. In real-world usage, Git is
often performing many operations in the revindex (i.e., asking about
many objects rather than a single one).

The trade-off is worth it, since we will avoid the vast majority of the
cost of generating the revindex that the extra pointer chase will look
like noise in the following patch's benchmarks.

This patch describes the format and prepares callers (like in
pack-revindex.c) to be able to read *.rev files once they exist. An
implementation of the writer will appear in the next patch, and callers
will gradually begin to start using the writer in the patches that
follow after that.

Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-01-25 18:32:43 -08:00
Junio C Hamano
bcaaf972e6 Merge branch 'tb/pack-revindex-api'
Abstract accesses to in-core revindex that allows enumerating
objects stored in a packfile in the order they appear in the pack,
in preparation for introducing an on-disk precomputed revindex.

* tb/pack-revindex-api: (21 commits)
  for_each_object_in_pack(): clarify pack vs index ordering
  pack-revindex.c: avoid direct revindex access in 'offset_to_pack_pos()'
  pack-revindex: hide the definition of 'revindex_entry'
  pack-revindex: remove unused 'find_revindex_position()'
  pack-revindex: remove unused 'find_pack_revindex()'
  builtin/gc.c: guess the size of the revindex
  for_each_object_in_pack(): convert to new revindex API
  unpack_entry(): convert to new revindex API
  packed_object_info(): convert to new revindex API
  retry_bad_packed_offset(): convert to new revindex API
  get_delta_base_oid(): convert to new revindex API
  rebuild_existing_bitmaps(): convert to new revindex API
  try_partial_reuse(): convert to new revindex API
  get_size_by_pos(): convert to new revindex API
  show_objects_for_type(): convert to new revindex API
  bitmap_position_packfile(): convert to new revindex API
  check_object(): convert to new revindex API
  write_reused_pack_verbatim(): convert to new revindex API
  write_reused_pack_one(): convert to new revindex API
  write_reuse_object(): convert to new revindex API
  ...
2021-01-25 14:19:20 -08:00
Jeff King
779412b9d9 for_each_object_in_pack(): clarify pack vs index ordering
We may return objects in one of two orders: how they appear in the .idx
(sorted by object id) or how they appear in the packfile itself. To
further complicate matters, we have two ordering variables, "i" and
"pos", and it is not clear to which order they apply.

Let's clarify this by using an unambiguous name where possible, and
leaving a comment for the variable that does double-duty.

Signed-off-by: Jeff King <peff@peff.net>
Acked-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-01-14 18:22:27 -08:00
Taylor Blau
b130aef65e for_each_object_in_pack(): convert to new revindex API
Avoid looking at the 'revindex' pointer directly and instead call
'pack_pos_to_index()'.

Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-01-13 21:53:47 -08:00
Taylor Blau
0a7e3642bc unpack_entry(): convert to new revindex API
Remove direct manipulation of the 'struct revindex_entry' type as well
as calls to the deprecated API in 'packfile.c:unpack_entry()'. Usual
clean-up is performed (replacing '->nr' with calls to
'pack_pos_to_index()' and so on).

Add an additional check to make sure that 'obj_offset()' points at a
valid object. In the case this check is violated, we cannot call
'mark_bad_packed_object()' because we don't know the OID. At the top of
the call stack is do_oid_object_info_extended() (via
packed_object_info()), which does mark the object.

Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-01-13 21:53:47 -08:00
Taylor Blau
fc150caf67 packed_object_info(): convert to new revindex API
Convert another call of 'find_pack_revindex()' to its replacement
'pack_pos_to_offset()'. Likewise:

  - Avoid manipulating `struct packed_git`'s `revindex` pointer directly
    by removing the pointer-as-array indexing.

  - Add an additional guard to check that the offset 'obj_offset()'
    points to a real object. This should be the case with well-behaved
    callers to 'packed_object_info()', but isn't guarenteed.

    Other blocks that fill in various other values from the 'struct
    object_info' request handle bad inputs by setting the type to
    'OBJ_BAD' and jumping to 'out'. Do the same when given a bad offset
    here.

    The previous code would have segfaulted when given a bad
    'obj_offset' value, since 'find_pack_revindex()' would return
    'NULL', and then the line that fills 'oi->disk_sizep' would try to
    access 'NULL[1]' with a stride of 16 bytes (the width of 'struct
    revindex_entry)'.

Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-01-13 21:53:47 -08:00
Taylor Blau
3a3f54dd0a retry_bad_packed_offset(): convert to new revindex API
Perform exactly the same conversion as in the previous commit to another
caller within 'packfile.c'.

Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-01-13 21:53:47 -08:00
Taylor Blau
45bef5c064 get_delta_base_oid(): convert to new revindex API
Replace direct accesses to the 'struct revindex' type with a call to
'pack_pos_to_index()'.

Likewise drop the old-style 'find_pack_revindex()' with its replacement
'offset_to_pack_pos()' (while continuing to perform the same error
checking).

Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-01-13 21:53:46 -08:00
Martin Ågren
bc62692757 hash-lookup: rename from sha1-lookup
Change all remnants of "sha1" in hash-lookup.c and .h and rename them to
reflect that we're not just able to handle SHA-1 these days.

Signed-off-by: Martin Ågren <martin.agren@gmail.com>
Reviewed-by: Derrick Stolee <dstolee@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-01-04 13:01:55 -08:00
Junio C Hamano
6bac6a1ef9 Merge branch 'tb/idx-midx-race-fix'
Processes that access packdata while the .idx file gets removed
(e.g. while repacking) did not fail or fall back gracefully as they
could.

* tb/idx-midx-race-fix:
  midx.c: protect against disappearing packs
  packfile.c: protect against disappearing indexes
2020-12-08 15:11:18 -08:00
Taylor Blau
c8a45eb66e packfile.c: protect against disappearing indexes
In 17c35c8969 (packfile: skip loading index if in multi-pack-index,
2018-07-12) we stopped loading the .idx file for packs that are
contained within a multi-pack index.

This saves us the effort of loading an .idx and doing some lightweight
validity checks by way of 'packfile.c:load_idx()', but introduces a race
between processes that need to load the index (e.g., to generate a
reverse index) and processes that can delete the index.

For example, running the following in your shell:

    $ git init repo && cd repo
    $ git commit --allow-empty -m 'base'
    $ git repack -ad && git multi-pack-index write

followed by:

    $ rm -f .git/objects/pack/pack-*.idx
    $ git rev-parse HEAD | git cat-file --batch-check='%(objectsize:disk)'

will result in a segfault prior to this patch. What's happening here is
that we notice that the pack is in the multi-pack index, and so don't
check that it still has a .idx. When we then try and load that index to
generate a reverse index, we don't have it, so the call to
'find_pack_revindex()' in 'packfile.c:packed_object_info()' returns
NULL, and then dereferencing it causes a segfault.

Of course, we don't ever expect someone to remove the index file by
hand, or to be in a state where we never wrote it to begin with (yet
find that pack in the multi-pack-index). But, this can happen in a
timing race with 'git repack -ad', which removes all existing packs
after writing a new pack containing all of their objects.

Avoid this by reverting the hunk of 17c35c8969 which stops loading the
index when the pack is contained in a MIDX. This makes the latter half
of 17c35c8969 useless, since we'll always have a non-NULL
'p->index_data', in which case that if statement isn't guarding
anything.

These two together effectively revert 17c35c8969, and avoid the race
explained above.

Co-authored-by: Jeff King <peff@peff.net>
Signed-off-by: Taylor Blau <me@ttaylorr.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-11-25 13:15:49 -08:00
Jeff King
81c4c5cf2e packfile: detect overflow in .idx file size checks
In load_idx(), we check that the .idx file is sized appropriately for
the number of objects it claims to have. We recently fixed the case
where the number of objects caused our expected size to overflow a
32-bit unsigned int, and we switched to size_t.

On a 64-bit system, this is fine; our size_t covers any expected size.
On a 32-bit system, though, it won't. The file may claim to have 2^31
objects, which will overflow even a size_t.

This doesn't hurt us at all for a well-formed idx file. A 32-bit system
would already have failed to mmap such a file, since it would be too
big. But an .idx file which _claims_ to have 2^31 objects but is
actually much smaller would fool our check.

This is a broken file, and for the most part we don't care that much
what happens. But:

  - it's a little friendlier to notice up front "woah, this file is
    broken" than it is to get nonsense results

  - later access of the data assumes that the loading function
    sanity-checked that we have at least enough bytes for the regular
    object-id table. A malformed .idx file could lead to an
    out-of-bounds read.

So let's use our overflow-checking functions to make sure that we're not
fooled by a malformed file.

Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-11-16 13:41:35 -08:00
Jeff King
a9bc372ef8 use size_t to store pack .idx byte offsets
We sometimes store the offset into a pack .idx file as an "unsigned
long", but the mmap'd size of a pack .idx file can exceed 4GB. This is
sufficient on LP64 systems like Linux, but will be too small on LLP64
systems like Windows, where "unsigned long" is still only 32 bits. Let's
use size_t, which is a better type for an offset into a memory buffer.

Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-11-16 13:41:35 -08:00
Jeff King
f86f769550 compute pack .idx byte offsets using size_t
A pack and its matching .idx file are limited to 2^32 objects, because
the pack format contains a 32-bit field to store the number of objects.
Hence we use uint32_t in the code.

But the byte count of even a .idx file can be much larger than that,
because it stores at least a hash and an offset for each object. So
using SHA-1, a v2 .idx file will cross the 4GB boundary at 153,391,650
objects. This confuses load_idx(), which computes the minimum size like
this:

  unsigned long min_size = 8 + 4*256 + nr*(hashsz + 4 + 4) + hashsz + hashsz;

Even though min_size will be big enough on most 64-bit platforms, the
actual arithmetic is done as a uint32_t, resulting in a truncation. We
actually exceed that min_size, but then we do:

  unsigned long max_size = min_size;
  if (nr)
          max_size += (nr - 1)*8;

to account for the variable-sized table. That computation doesn't
overflow quite so low, but with the truncation for min_size, we end up
with a max_size that is much smaller than our actual size. So we
complain that the idx is invalid, and can't find any of its objects.

We can fix this case by casting "nr" to a size_t, which will do the
multiplication in 64-bits (assuming you're on a 64-bit platform; this
will never work on a 32-bit system since we couldn't map the whole .idx
anyway). Likewise, we don't have to worry about further additions,
because adding a smaller number to a size_t will convert the other side
to a size_t.

A few notes:

  - obviously we could just declare "nr" as a size_t in the first place
    (and likewise, packed_git.num_objects).  But it's conceptually a
    uint32_t because of the on-disk format, and we correctly treat it
    that way in other contexts that don't need to compute byte offsets
    (e.g., iterating over the set of objects should and generally does
    use a uint32_t). Switching to size_t would make all of those other
    cases look wrong.

  - it could be argued that the proper type is off_t to represent the
    file offset. But in practice the .idx file must fit within memory,
    because we mmap the whole thing. And the rest of the code (including
    the idx_size variable we're comparing against) uses size_t.

  - we'll add the same cast to the max_size arithmetic line. Even though
    we're adding to a larger type, which will convert our result, the
    multiplication is still done as a 32-bit value and can itself
    overflow. I didn't check this with my test case, since it would need
    an even larger pack (~530M objects), but looking at compiler output
    shows that it works this way. The standard should agree, but I
    couldn't find anything explicit in 6.3.1.8 ("usual arithmetic
    conversions").

The case in load_idx() was the most immediate one that I was able to
trigger. After fixing it, looking up actual objects (including the very
last one in sha1 order) works in a test repo with 153,725,110 objects.
That's because bsearch_hash() works with uint32_t entry indices, and the
actual byte access:

  int cmp = hashcmp(table + mi * stride, sha1);

is done with "stride" as a size_t, causing the uint32_t "mi" to be
promoted to a size_t. This is the way most code will access the index
data.

However, I audited all of the other byte-wise accesses of
packed_git.index_data, and many of the others are suspect (they are
similar to the max_size one, where we are adding to a properly sized
offset or directly to a pointer, but the multiplication in the
sub-expression can overflow). I didn't trigger any of these in practice,
but I believe they're potential problems, and certainly adding in the
cast is not going to hurt anything here.

Signed-off-by: Jeff King <peff@peff.net>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-11-16 13:41:35 -08:00
Junio C Hamano
26b42b4dd8 Merge branch 'mt/delta-base-cache-races'
A race that leads to an access to a free'd data was corrected in
the codepath that reads pack files.

* mt/delta-base-cache-races:
  packfile: fix memory leak in add_delta_base_cache()
  packfile: fix race condition on unpack_entry()
2020-10-04 12:49:15 -07:00
Matheus Tavares
bda959c476 packfile: fix memory leak in add_delta_base_cache()
When add_delta_base_cache() is called with a base that is already in the
cache, no operation is performed. But the check is done after allocating
space for a new entry, so we end up leaking memory on the early return.
In addition, the caller never free()'s the base as it expects the
function to take ownership of it. But the base is not released when we
skip insertion, so it also gets leaked. To fix these problems, move the
allocation of a new entry further down in add_delta_base_cache(), and
free() the base on early return.

Signed-off-by: Matheus Tavares <matheus.bernardino@usp.br>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-09-28 17:41:53 -07:00
Matheus Tavares
74b052f8c2 packfile: fix race condition on unpack_entry()
The third phase of unpack_entry() performs the following sequence in a
loop, until all the deltas enumerated in phase one are applied and the
entry is fully reconstructed:

1. Add the current base entry to the delta base cache
2. Unpack the next delta
3. Patch the unpacked delta on top of the base

When the optional object reading lock is enabled, the above steps will
be performed while holding the lock. However, step 2. momentarily
releases it so that inflation can be performed in parallel for increased
performance. Because the `base` buffer inserted in the cache at 1. is
not duplicated, another thread can potentially free() it while the lock
is released at 2. (e.g. when there is no space left in the cache to
insert another entry). In this case, the later attempt to dereference
`base` at 3. will cause a segmentation fault. This problem was observed
during a multithreaded git-grep execution on a repository with large
objects.

To fix the race condition (and later segmentation fault), let's reorder
the aforementioned steps so that `base` is only added to the cache at
the end. This will prevent the buffer from being released by another
thread while it is still in use. An alternative solution which would not
require the reordering would be to duplicate `base` before inserting it
in the cache. However, as Phil Hord mentioned, memcpy()'ing large bases
can negatively affect performance: in his experiments, this alternative
approach slowed git-grep down by 10% to 20%.

Reported-by: Phil Hord <phil.hord@gmail.com>
Signed-off-by: Matheus Tavares <matheus.bernardino@usp.br>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-09-28 17:41:52 -07:00