Commit Graph

10 Commits

Author SHA1 Message Date
René Scharfe
116affac3f mem-pool: drop trailing semicolon from macro definition
Allow BLOCK_GROWTH_SIZE to be used like an integer literal by removing
the trailing semicolon from its definition.  Also wrap the expression in
parentheses, to allow it to be used with operators without leading to
unexpected results.  It doesn't matter for the current use site, but
make it follow standard macro rules anyway to avoid future surprises.

Signed-off-by: René Scharfe <l.s.r@web.de>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2021-03-17 10:20:16 -07:00
Elijah Newren
f87bf28483 mem-pool: use consistent pool variable name
About half the function declarations in mem-pool.h used 'struct mem_pool
*pool', while the other half used 'struct mem_pool *mem_pool'.  Make the
code a bit more consistent by just using 'pool' in preference to
'mem_pool' everywhere.

No behavioral changes included; this is just a mechanical rename (though
a line or two was rewrapped as well).

Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-08-18 12:16:08 -07:00
Elijah Newren
44c7e1a7e0 mem-pool: use more standard initialization and finalization
A typical memory type, such as strbuf, hashmap, or string_list can be
stored on the stack or embedded within another structure.  mem_pool
cannot be, because of how mem_pool_init() and mem_pool_discard() are
written.  mem_pool_init() does essentially the following (simplified
for purposes of explanation here):

    void mem_pool_init(struct mem_pool **pool...)
    {
        *pool = xcalloc(1, sizeof(*pool));

It seems weird to require that mem_pools can only be accessed through a
pointer.  It also seems slightly dangerous: unlike strbuf_release() or
strbuf_reset() or string_list_clear(), all of which put the data
structure into a state where it can be re-used after the call,
mem_pool_discard(pool) will leave pool pointing at free'd memory.
read-cache (and split-index) are the only current users of mem_pools,
and they haven't fallen into a use-after-free mistake here, but it seems
likely to be problematic for future users especially since several of
the current callers of mem_pool_init() will only call it when the
mem_pool* is not already allocated (i.e. is NULL).

This type of mechanism also prevents finding synchronization
points where one can free existing memory and then resume more
operations.  It would be natural at such points to run something like
    mem_pool_discard(pool...);
and, if necessary,
    mem_pool_init(&pool...);
and then carry on continuing to use the pool.  However, this fails badly
if several objects had a copy of the value of pool from before these
commands; in such a case, those objects won't get the updated value of
pool that mem_pool_init() overwrites pool with and they'll all instead
be reading and writing from free'd memory.

Modify mem_pool_init()/mem_pool_discard() to behave more like
   strbuf_init()/strbuf_release()
or
   string_list_init()/string_list_clear()
In particular: (1) make mem_pool_init() just take a mem_pool* and have
it only worry about allocating struct mp_blocks, not the struct mem_pool
itself, (2) make mem_pool_discard() free the memory that the pool was
responsible for, but leave it in a state where it can be used to
allocate more memory afterward (without the need to call mem_pool_init()
again).

Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-08-18 12:16:06 -07:00
Elijah Newren
a762c8c1e1 mem-pool: add convenience functions for strdup and strndup
fast-import had a special mem_pool_strdup() convenience function that I
want to be able to use from the new merge algorithm I am writing.  Move
it from fast-import to mem-pool, and also add a mem_pool_strndup()
while at it that I also want to use.

Signed-off-by: Elijah Newren <newren@gmail.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2020-08-18 12:14:37 -07:00
Jameson Miller
8616a2d0cb block alloc: add validations around cache_entry lifecyle
Add an option (controlled by an environment variable) perform extra
validations on mem_pool allocated cache entries. When set:

  1) Invalidate cache_entry memory when discarding cache_entry.

  2) When discarding index_state struct, verify that all cache_entries
     were allocated from expected mem_pool.

  3) When discarding mem_pools, invalidate mem_pool memory.

This should provide extra checks that mem_pools and their allocated
cache_entries are being used as expected.

Signed-off-by: Jameson Miller <jamill@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2018-07-03 10:58:27 -07:00
Jameson Miller
8e72d67529 block alloc: allocate cache entries from mem_pool
When reading large indexes from disk, a portion of the time is
dominated in malloc() calls. This can be mitigated by allocating a
large block of memory and manage it ourselves via memory pools.

This change moves the cache entry allocation to be on top of memory
pools.

Design:

The index_state struct will gain a notion of an associated memory_pool
from which cache_entries will be allocated from. When reading in the
index from disk, we have information on the number of entries and
their size, which can guide us in deciding how large our initial
memory allocation should be. When an index is discarded, the
associated memory_pool will be discarded as well - so the lifetime of
a cache_entry is tied to the lifetime of the index_state that it was
allocated for.

In the case of a Split Index, the following rules are followed. 1st,
some terminology is defined:

Terminology:
  - 'the_index': represents the logical view of the index

  - 'split_index': represents the "base" cache entries. Read from the
    split index file.

'the_index' can reference a single split_index, as well as
cache_entries from the split_index. `the_index` will be discarded
before the `split_index` is.  This means that when we are allocating
cache_entries in the presence of a split index, we need to allocate
the entries from the `split_index`'s memory pool.  This allows us to
follow the pattern that `the_index` can reference cache_entries from
the `split_index`, and that the cache_entries will not be freed while
they are still being referenced.

Managing transient cache_entry structs:
Cache entries are usually allocated for an index, but this is not always
the case. Cache entries are sometimes allocated because this is the
type that the existing checkout_entry function works with. Because of
this, the existing code needs to handle cache entries associated with an
index / memory pool, and those that only exist transiently. Several
strategies were contemplated around how to handle this:

Chosen approach:
An extra field was added to the cache_entry type to track whether the
cache_entry was allocated from a memory pool or not. This is currently
an int field, as there are no more available bits in the existing
ce_flags bit field. If / when more bits are needed, this new field can
be turned into a proper bit field.

Alternatives:

1) Do not include any information about how the cache_entry was
allocated. Calling code would be responsible for tracking whether the
cache_entry needed to be freed or not.
  Pro: No extra memory overhead to track this state
  Con: Extra complexity in callers to handle this correctly.

The extra complexity and burden to not regress this behavior in the
future was more than we wanted.

2) cache_entry would gain knowledge about which mem_pool allocated it
  Pro: Could (potentially) do extra logic to know when a mem_pool no
       longer had references to any cache_entry
  Con: cache_entry would grow heavier by a pointer, instead of int

We didn't see a tangible benefit to this approach

3) Do not add any extra information to a cache_entry, but when freeing a
   cache entry, check if the memory exists in a region managed by existing
   mem_pools.
  Pro: No extra memory overhead to track state
  Con: Extra computation is performed when freeing cache entries

We decided tracking and iterating over known memory pool regions was
less desirable than adding an extra field to track this stae.

Signed-off-by: Jameson Miller <jamill@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2018-07-03 10:58:27 -07:00
Jameson Miller
0e58301d81 mem-pool: fill out functionality
Add functions for:

    - combining two memory pools

    - determining if a memory address is within the range managed by a
      memory pool

These functions will be used by future commits.

Signed-off-by: Jameson Miller <jamill@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2018-07-03 10:58:27 -07:00
Jameson Miller
158dfeff3d mem-pool: add life cycle management functions
Add initialization and discard functions to mem_pool type. As the
memory allocated by mem_pool can now be freed, we also track the large
allocations.

If the there are existing mp_blocks in the mem_poo's linked list of
mp_blocksl, then the mp_block for a large allocation is inserted
behind the head block. This is because only the head mp_block is considered
when searching for availble space. This results in the following
desirable properties:

1) The mp_block allocated for the large request will not be included
not included in the search for available in future requests, the large
mp_block is sized for the specific request and does not contain any
spare space.

2) The head mp_block will not bumped from considation for future
memory requests just because a request for a large chunk of memory
came in.

These changes are in preparation for a future commit that will utilize
creating and discarding memory pool.

Signed-off-by: Jameson Miller <jamill@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2018-07-03 10:58:27 -07:00
Jameson Miller
8fb8e3f636 mem-pool: only search head block for available space
Instead of searching all memory blocks for available space to fulfill
a memory request, only search the head block. If the head block does
not have space, assume that previous block would most likely not be
able to fulfill request either. This could potentially lead to more
memory fragmentation, but also avoids searching memory blocks that
probably will not be able to fulfill request.

This pattern will benefit consumers that are able to generate a good
estimate for how much memory will be needed, or if they are performing
fixed sized allocations, so that once a block is exhausted it will
never be able to fulfill a future request.

Signed-off-by: Jameson Miller <jamill@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2018-07-03 10:58:27 -07:00
Jameson Miller
065feab4eb mem-pool: move reusable parts of memory pool into its own file
This moves the reusable parts of the memory pool logic used by
fast-import.c into its own file for use by other components.

Signed-off-by: Jameson Miller <jamill@microsoft.com>
Signed-off-by: Junio C Hamano <gitster@pobox.com>
2018-04-12 11:55:20 +09:00