git/name-hash.c

729 lines
19 KiB
C
Raw Normal View History

/*
* name-hash.c
*
* Hashing names in the index state
*
* Copyright (C) 2008 Linus Torvalds
*/
#include "cache.h"
#include "thread-utils.h"
name-hash.c: fix endless loop with core.ignorecase=true With core.ignorecase=true, name-hash.c builds a case insensitive index of all tracked directories. Currently, the existing cache entry structures are added multiple times to the same hashtable (with different name lengths and hash codes). However, there's only one dir_next pointer, which gets completely messed up in case of hash collisions. In the worst case, this causes an endless loop if ce == ce->dir_next (see t7062). Use a separate hashtable and separate structures for the directory index so that each directory entry has its own next pointer. Use reference counting to track which directory entry contains files. There are only slight changes to the name-hash.c API: - new free_name_hash() used by read_cache.c::discard_index() - remove_name_hash() takes an additional index_state parameter - index_name_exists() for a directory (trailing '/') may return a cache entry that has been removed (CE_UNHASHED). This is not a problem as the return value is only used to check if the directory exists (dir.c) or to normalize casing of directory names (read-cache.c). Getting rid of cache_entry.dir_next reduces memory consumption, especially with core.ignorecase=false (which doesn't use that member at all). With core.ignorecase=true, building the directory index is slightly faster as we add / check the parent directory first (instead of going through all directory levels for each file in the index). E.g. with WebKit (~200k files, ~7k dirs), time spent in lazy_init_name_hash is reduced from 176ms to 130ms. Signed-off-by: Karsten Blees <blees@dcon.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-28 07:57:48 +08:00
struct dir_entry {
struct hashmap_entry ent;
name-hash.c: fix endless loop with core.ignorecase=true With core.ignorecase=true, name-hash.c builds a case insensitive index of all tracked directories. Currently, the existing cache entry structures are added multiple times to the same hashtable (with different name lengths and hash codes). However, there's only one dir_next pointer, which gets completely messed up in case of hash collisions. In the worst case, this causes an endless loop if ce == ce->dir_next (see t7062). Use a separate hashtable and separate structures for the directory index so that each directory entry has its own next pointer. Use reference counting to track which directory entry contains files. There are only slight changes to the name-hash.c API: - new free_name_hash() used by read_cache.c::discard_index() - remove_name_hash() takes an additional index_state parameter - index_name_exists() for a directory (trailing '/') may return a cache entry that has been removed (CE_UNHASHED). This is not a problem as the return value is only used to check if the directory exists (dir.c) or to normalize casing of directory names (read-cache.c). Getting rid of cache_entry.dir_next reduces memory consumption, especially with core.ignorecase=false (which doesn't use that member at all). With core.ignorecase=true, building the directory index is slightly faster as we add / check the parent directory first (instead of going through all directory levels for each file in the index). E.g. with WebKit (~200k files, ~7k dirs), time spent in lazy_init_name_hash is reduced from 176ms to 130ms. Signed-off-by: Karsten Blees <blees@dcon.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-28 07:57:48 +08:00
struct dir_entry *parent;
int nr;
unsigned int namelen;
char name[FLEX_ARRAY];
name-hash.c: fix endless loop with core.ignorecase=true With core.ignorecase=true, name-hash.c builds a case insensitive index of all tracked directories. Currently, the existing cache entry structures are added multiple times to the same hashtable (with different name lengths and hash codes). However, there's only one dir_next pointer, which gets completely messed up in case of hash collisions. In the worst case, this causes an endless loop if ce == ce->dir_next (see t7062). Use a separate hashtable and separate structures for the directory index so that each directory entry has its own next pointer. Use reference counting to track which directory entry contains files. There are only slight changes to the name-hash.c API: - new free_name_hash() used by read_cache.c::discard_index() - remove_name_hash() takes an additional index_state parameter - index_name_exists() for a directory (trailing '/') may return a cache entry that has been removed (CE_UNHASHED). This is not a problem as the return value is only used to check if the directory exists (dir.c) or to normalize casing of directory names (read-cache.c). Getting rid of cache_entry.dir_next reduces memory consumption, especially with core.ignorecase=false (which doesn't use that member at all). With core.ignorecase=true, building the directory index is slightly faster as we add / check the parent directory first (instead of going through all directory levels for each file in the index). E.g. with WebKit (~200k files, ~7k dirs), time spent in lazy_init_name_hash is reduced from 176ms to 130ms. Signed-off-by: Karsten Blees <blees@dcon.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-28 07:57:48 +08:00
};
static int dir_entry_cmp(const void *unused_cmp_data,
const void *entry,
const void *entry_or_key,
const void *keydata)
{
const struct dir_entry *e1 = entry;
const struct dir_entry *e2 = entry_or_key;
const char *name = keydata;
return e1->namelen != e2->namelen || strncasecmp(e1->name,
name ? name : e2->name, e1->namelen);
}
static struct dir_entry *find_dir_entry__hash(struct index_state *istate,
const char *name, unsigned int namelen, unsigned int hash)
name-hash.c: fix endless loop with core.ignorecase=true With core.ignorecase=true, name-hash.c builds a case insensitive index of all tracked directories. Currently, the existing cache entry structures are added multiple times to the same hashtable (with different name lengths and hash codes). However, there's only one dir_next pointer, which gets completely messed up in case of hash collisions. In the worst case, this causes an endless loop if ce == ce->dir_next (see t7062). Use a separate hashtable and separate structures for the directory index so that each directory entry has its own next pointer. Use reference counting to track which directory entry contains files. There are only slight changes to the name-hash.c API: - new free_name_hash() used by read_cache.c::discard_index() - remove_name_hash() takes an additional index_state parameter - index_name_exists() for a directory (trailing '/') may return a cache entry that has been removed (CE_UNHASHED). This is not a problem as the return value is only used to check if the directory exists (dir.c) or to normalize casing of directory names (read-cache.c). Getting rid of cache_entry.dir_next reduces memory consumption, especially with core.ignorecase=false (which doesn't use that member at all). With core.ignorecase=true, building the directory index is slightly faster as we add / check the parent directory first (instead of going through all directory levels for each file in the index). E.g. with WebKit (~200k files, ~7k dirs), time spent in lazy_init_name_hash is reduced from 176ms to 130ms. Signed-off-by: Karsten Blees <blees@dcon.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-28 07:57:48 +08:00
{
struct dir_entry key;
hashmap_entry_init(&key.ent, hash);
key.namelen = namelen;
return hashmap_get_entry(&istate->dir_hash, &key, name,
struct dir_entry, ent);
name-hash.c: fix endless loop with core.ignorecase=true With core.ignorecase=true, name-hash.c builds a case insensitive index of all tracked directories. Currently, the existing cache entry structures are added multiple times to the same hashtable (with different name lengths and hash codes). However, there's only one dir_next pointer, which gets completely messed up in case of hash collisions. In the worst case, this causes an endless loop if ce == ce->dir_next (see t7062). Use a separate hashtable and separate structures for the directory index so that each directory entry has its own next pointer. Use reference counting to track which directory entry contains files. There are only slight changes to the name-hash.c API: - new free_name_hash() used by read_cache.c::discard_index() - remove_name_hash() takes an additional index_state parameter - index_name_exists() for a directory (trailing '/') may return a cache entry that has been removed (CE_UNHASHED). This is not a problem as the return value is only used to check if the directory exists (dir.c) or to normalize casing of directory names (read-cache.c). Getting rid of cache_entry.dir_next reduces memory consumption, especially with core.ignorecase=false (which doesn't use that member at all). With core.ignorecase=true, building the directory index is slightly faster as we add / check the parent directory first (instead of going through all directory levels for each file in the index). E.g. with WebKit (~200k files, ~7k dirs), time spent in lazy_init_name_hash is reduced from 176ms to 130ms. Signed-off-by: Karsten Blees <blees@dcon.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-28 07:57:48 +08:00
}
static struct dir_entry *find_dir_entry(struct index_state *istate,
const char *name, unsigned int namelen)
{
return find_dir_entry__hash(istate, name, namelen, memihash(name, namelen));
}
name-hash.c: fix endless loop with core.ignorecase=true With core.ignorecase=true, name-hash.c builds a case insensitive index of all tracked directories. Currently, the existing cache entry structures are added multiple times to the same hashtable (with different name lengths and hash codes). However, there's only one dir_next pointer, which gets completely messed up in case of hash collisions. In the worst case, this causes an endless loop if ce == ce->dir_next (see t7062). Use a separate hashtable and separate structures for the directory index so that each directory entry has its own next pointer. Use reference counting to track which directory entry contains files. There are only slight changes to the name-hash.c API: - new free_name_hash() used by read_cache.c::discard_index() - remove_name_hash() takes an additional index_state parameter - index_name_exists() for a directory (trailing '/') may return a cache entry that has been removed (CE_UNHASHED). This is not a problem as the return value is only used to check if the directory exists (dir.c) or to normalize casing of directory names (read-cache.c). Getting rid of cache_entry.dir_next reduces memory consumption, especially with core.ignorecase=false (which doesn't use that member at all). With core.ignorecase=true, building the directory index is slightly faster as we add / check the parent directory first (instead of going through all directory levels for each file in the index). E.g. with WebKit (~200k files, ~7k dirs), time spent in lazy_init_name_hash is reduced from 176ms to 130ms. Signed-off-by: Karsten Blees <blees@dcon.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-28 07:57:48 +08:00
static struct dir_entry *hash_dir_entry(struct index_state *istate,
struct cache_entry *ce, int namelen)
{
/*
* Throw each directory component in the hash for quick lookup
name-hash: stop storing trailing '/' on paths in index_state.dir_hash When 5102c617 (Add case insensitivity support for directories when using git status, 2010-10-03) added directories to the name-hash there was only a single hash table in which both real cache entries and leading directory prefixes were registered. To distinguish between the two types of entries, directories were stored with a trailing '/'. 2092678c (name-hash.c: fix endless loop with core.ignorecase=true, 2013-02-28), however, moved directories to a separate hash table (index_state.dir_hash) but retained the (now) redundant trailing '/', thus callers continue to bear the burden of ensuring the slash's presence before searching the index for a directory. Eliminate this redundancy by storing paths in the dir-hash without the trailing '/'. An important benefit of this change is that it eliminates undocumented and dangerous behavior of dir.c:directory_exists_in_index_icase() in which it assumes not only that it can validly access one character beyond the end of its incoming directory argument, but also that that character will unconditionally be a '/'. This perilous behavior was "tolerated" because the string passed in by its lone caller always had a '/' in that position, however, things broke [1] when 2eac2a4c (ls-files -k: a directory only can be killed if the index has a non-directory, 2013-08-15) added a new caller which failed to respect the undocumented assumption. [1]: http://thread.gmane.org/gmane.comp.version-control.git/232727 Signed-off-by: Eric Sunshine <sunshine@sunshineco.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-09-17 15:06:16 +08:00
* during a git status. Directory components are stored without their
* closing slash. Despite submodules being a directory, they never
name-hash: stop storing trailing '/' on paths in index_state.dir_hash When 5102c617 (Add case insensitivity support for directories when using git status, 2010-10-03) added directories to the name-hash there was only a single hash table in which both real cache entries and leading directory prefixes were registered. To distinguish between the two types of entries, directories were stored with a trailing '/'. 2092678c (name-hash.c: fix endless loop with core.ignorecase=true, 2013-02-28), however, moved directories to a separate hash table (index_state.dir_hash) but retained the (now) redundant trailing '/', thus callers continue to bear the burden of ensuring the slash's presence before searching the index for a directory. Eliminate this redundancy by storing paths in the dir-hash without the trailing '/'. An important benefit of this change is that it eliminates undocumented and dangerous behavior of dir.c:directory_exists_in_index_icase() in which it assumes not only that it can validly access one character beyond the end of its incoming directory argument, but also that that character will unconditionally be a '/'. This perilous behavior was "tolerated" because the string passed in by its lone caller always had a '/' in that position, however, things broke [1] when 2eac2a4c (ls-files -k: a directory only can be killed if the index has a non-directory, 2013-08-15) added a new caller which failed to respect the undocumented assumption. [1]: http://thread.gmane.org/gmane.comp.version-control.git/232727 Signed-off-by: Eric Sunshine <sunshine@sunshineco.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-09-17 15:06:16 +08:00
* reach this point, because they are stored
name-hash.c: fix endless loop with core.ignorecase=true With core.ignorecase=true, name-hash.c builds a case insensitive index of all tracked directories. Currently, the existing cache entry structures are added multiple times to the same hashtable (with different name lengths and hash codes). However, there's only one dir_next pointer, which gets completely messed up in case of hash collisions. In the worst case, this causes an endless loop if ce == ce->dir_next (see t7062). Use a separate hashtable and separate structures for the directory index so that each directory entry has its own next pointer. Use reference counting to track which directory entry contains files. There are only slight changes to the name-hash.c API: - new free_name_hash() used by read_cache.c::discard_index() - remove_name_hash() takes an additional index_state parameter - index_name_exists() for a directory (trailing '/') may return a cache entry that has been removed (CE_UNHASHED). This is not a problem as the return value is only used to check if the directory exists (dir.c) or to normalize casing of directory names (read-cache.c). Getting rid of cache_entry.dir_next reduces memory consumption, especially with core.ignorecase=false (which doesn't use that member at all). With core.ignorecase=true, building the directory index is slightly faster as we add / check the parent directory first (instead of going through all directory levels for each file in the index). E.g. with WebKit (~200k files, ~7k dirs), time spent in lazy_init_name_hash is reduced from 176ms to 130ms. Signed-off-by: Karsten Blees <blees@dcon.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-28 07:57:48 +08:00
* in index_state.name_hash (as ordinary cache_entries).
*/
name-hash.c: fix endless loop with core.ignorecase=true With core.ignorecase=true, name-hash.c builds a case insensitive index of all tracked directories. Currently, the existing cache entry structures are added multiple times to the same hashtable (with different name lengths and hash codes). However, there's only one dir_next pointer, which gets completely messed up in case of hash collisions. In the worst case, this causes an endless loop if ce == ce->dir_next (see t7062). Use a separate hashtable and separate structures for the directory index so that each directory entry has its own next pointer. Use reference counting to track which directory entry contains files. There are only slight changes to the name-hash.c API: - new free_name_hash() used by read_cache.c::discard_index() - remove_name_hash() takes an additional index_state parameter - index_name_exists() for a directory (trailing '/') may return a cache entry that has been removed (CE_UNHASHED). This is not a problem as the return value is only used to check if the directory exists (dir.c) or to normalize casing of directory names (read-cache.c). Getting rid of cache_entry.dir_next reduces memory consumption, especially with core.ignorecase=false (which doesn't use that member at all). With core.ignorecase=true, building the directory index is slightly faster as we add / check the parent directory first (instead of going through all directory levels for each file in the index). E.g. with WebKit (~200k files, ~7k dirs), time spent in lazy_init_name_hash is reduced from 176ms to 130ms. Signed-off-by: Karsten Blees <blees@dcon.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-28 07:57:48 +08:00
struct dir_entry *dir;
/* get length of parent directory */
while (namelen > 0 && !is_dir_sep(ce->name[namelen - 1]))
namelen--;
if (namelen <= 0)
return NULL;
name-hash: stop storing trailing '/' on paths in index_state.dir_hash When 5102c617 (Add case insensitivity support for directories when using git status, 2010-10-03) added directories to the name-hash there was only a single hash table in which both real cache entries and leading directory prefixes were registered. To distinguish between the two types of entries, directories were stored with a trailing '/'. 2092678c (name-hash.c: fix endless loop with core.ignorecase=true, 2013-02-28), however, moved directories to a separate hash table (index_state.dir_hash) but retained the (now) redundant trailing '/', thus callers continue to bear the burden of ensuring the slash's presence before searching the index for a directory. Eliminate this redundancy by storing paths in the dir-hash without the trailing '/'. An important benefit of this change is that it eliminates undocumented and dangerous behavior of dir.c:directory_exists_in_index_icase() in which it assumes not only that it can validly access one character beyond the end of its incoming directory argument, but also that that character will unconditionally be a '/'. This perilous behavior was "tolerated" because the string passed in by its lone caller always had a '/' in that position, however, things broke [1] when 2eac2a4c (ls-files -k: a directory only can be killed if the index has a non-directory, 2013-08-15) added a new caller which failed to respect the undocumented assumption. [1]: http://thread.gmane.org/gmane.comp.version-control.git/232727 Signed-off-by: Eric Sunshine <sunshine@sunshineco.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-09-17 15:06:16 +08:00
namelen--;
name-hash.c: fix endless loop with core.ignorecase=true With core.ignorecase=true, name-hash.c builds a case insensitive index of all tracked directories. Currently, the existing cache entry structures are added multiple times to the same hashtable (with different name lengths and hash codes). However, there's only one dir_next pointer, which gets completely messed up in case of hash collisions. In the worst case, this causes an endless loop if ce == ce->dir_next (see t7062). Use a separate hashtable and separate structures for the directory index so that each directory entry has its own next pointer. Use reference counting to track which directory entry contains files. There are only slight changes to the name-hash.c API: - new free_name_hash() used by read_cache.c::discard_index() - remove_name_hash() takes an additional index_state parameter - index_name_exists() for a directory (trailing '/') may return a cache entry that has been removed (CE_UNHASHED). This is not a problem as the return value is only used to check if the directory exists (dir.c) or to normalize casing of directory names (read-cache.c). Getting rid of cache_entry.dir_next reduces memory consumption, especially with core.ignorecase=false (which doesn't use that member at all). With core.ignorecase=true, building the directory index is slightly faster as we add / check the parent directory first (instead of going through all directory levels for each file in the index). E.g. with WebKit (~200k files, ~7k dirs), time spent in lazy_init_name_hash is reduced from 176ms to 130ms. Signed-off-by: Karsten Blees <blees@dcon.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-28 07:57:48 +08:00
/* lookup existing entry for that directory */
dir = find_dir_entry(istate, ce->name, namelen);
if (!dir) {
/* not found, create it and add to hash table */
FLEX_ALLOC_MEM(dir, name, ce->name, namelen);
hashmap_entry_init(&dir->ent, memihash(ce->name, namelen));
name-hash.c: fix endless loop with core.ignorecase=true With core.ignorecase=true, name-hash.c builds a case insensitive index of all tracked directories. Currently, the existing cache entry structures are added multiple times to the same hashtable (with different name lengths and hash codes). However, there's only one dir_next pointer, which gets completely messed up in case of hash collisions. In the worst case, this causes an endless loop if ce == ce->dir_next (see t7062). Use a separate hashtable and separate structures for the directory index so that each directory entry has its own next pointer. Use reference counting to track which directory entry contains files. There are only slight changes to the name-hash.c API: - new free_name_hash() used by read_cache.c::discard_index() - remove_name_hash() takes an additional index_state parameter - index_name_exists() for a directory (trailing '/') may return a cache entry that has been removed (CE_UNHASHED). This is not a problem as the return value is only used to check if the directory exists (dir.c) or to normalize casing of directory names (read-cache.c). Getting rid of cache_entry.dir_next reduces memory consumption, especially with core.ignorecase=false (which doesn't use that member at all). With core.ignorecase=true, building the directory index is slightly faster as we add / check the parent directory first (instead of going through all directory levels for each file in the index). E.g. with WebKit (~200k files, ~7k dirs), time spent in lazy_init_name_hash is reduced from 176ms to 130ms. Signed-off-by: Karsten Blees <blees@dcon.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-28 07:57:48 +08:00
dir->namelen = namelen;
hashmap_add(&istate->dir_hash, &dir->ent);
name-hash.c: fix endless loop with core.ignorecase=true With core.ignorecase=true, name-hash.c builds a case insensitive index of all tracked directories. Currently, the existing cache entry structures are added multiple times to the same hashtable (with different name lengths and hash codes). However, there's only one dir_next pointer, which gets completely messed up in case of hash collisions. In the worst case, this causes an endless loop if ce == ce->dir_next (see t7062). Use a separate hashtable and separate structures for the directory index so that each directory entry has its own next pointer. Use reference counting to track which directory entry contains files. There are only slight changes to the name-hash.c API: - new free_name_hash() used by read_cache.c::discard_index() - remove_name_hash() takes an additional index_state parameter - index_name_exists() for a directory (trailing '/') may return a cache entry that has been removed (CE_UNHASHED). This is not a problem as the return value is only used to check if the directory exists (dir.c) or to normalize casing of directory names (read-cache.c). Getting rid of cache_entry.dir_next reduces memory consumption, especially with core.ignorecase=false (which doesn't use that member at all). With core.ignorecase=true, building the directory index is slightly faster as we add / check the parent directory first (instead of going through all directory levels for each file in the index). E.g. with WebKit (~200k files, ~7k dirs), time spent in lazy_init_name_hash is reduced from 176ms to 130ms. Signed-off-by: Karsten Blees <blees@dcon.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-28 07:57:48 +08:00
/* recursively add missing parent directories */
name-hash: stop storing trailing '/' on paths in index_state.dir_hash When 5102c617 (Add case insensitivity support for directories when using git status, 2010-10-03) added directories to the name-hash there was only a single hash table in which both real cache entries and leading directory prefixes were registered. To distinguish between the two types of entries, directories were stored with a trailing '/'. 2092678c (name-hash.c: fix endless loop with core.ignorecase=true, 2013-02-28), however, moved directories to a separate hash table (index_state.dir_hash) but retained the (now) redundant trailing '/', thus callers continue to bear the burden of ensuring the slash's presence before searching the index for a directory. Eliminate this redundancy by storing paths in the dir-hash without the trailing '/'. An important benefit of this change is that it eliminates undocumented and dangerous behavior of dir.c:directory_exists_in_index_icase() in which it assumes not only that it can validly access one character beyond the end of its incoming directory argument, but also that that character will unconditionally be a '/'. This perilous behavior was "tolerated" because the string passed in by its lone caller always had a '/' in that position, however, things broke [1] when 2eac2a4c (ls-files -k: a directory only can be killed if the index has a non-directory, 2013-08-15) added a new caller which failed to respect the undocumented assumption. [1]: http://thread.gmane.org/gmane.comp.version-control.git/232727 Signed-off-by: Eric Sunshine <sunshine@sunshineco.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-09-17 15:06:16 +08:00
dir->parent = hash_dir_entry(istate, ce, namelen);
}
name-hash.c: fix endless loop with core.ignorecase=true With core.ignorecase=true, name-hash.c builds a case insensitive index of all tracked directories. Currently, the existing cache entry structures are added multiple times to the same hashtable (with different name lengths and hash codes). However, there's only one dir_next pointer, which gets completely messed up in case of hash collisions. In the worst case, this causes an endless loop if ce == ce->dir_next (see t7062). Use a separate hashtable and separate structures for the directory index so that each directory entry has its own next pointer. Use reference counting to track which directory entry contains files. There are only slight changes to the name-hash.c API: - new free_name_hash() used by read_cache.c::discard_index() - remove_name_hash() takes an additional index_state parameter - index_name_exists() for a directory (trailing '/') may return a cache entry that has been removed (CE_UNHASHED). This is not a problem as the return value is only used to check if the directory exists (dir.c) or to normalize casing of directory names (read-cache.c). Getting rid of cache_entry.dir_next reduces memory consumption, especially with core.ignorecase=false (which doesn't use that member at all). With core.ignorecase=true, building the directory index is slightly faster as we add / check the parent directory first (instead of going through all directory levels for each file in the index). E.g. with WebKit (~200k files, ~7k dirs), time spent in lazy_init_name_hash is reduced from 176ms to 130ms. Signed-off-by: Karsten Blees <blees@dcon.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-28 07:57:48 +08:00
return dir;
}
static void add_dir_entry(struct index_state *istate, struct cache_entry *ce)
{
/* Add reference to the directory entry (and parents if 0). */
struct dir_entry *dir = hash_dir_entry(istate, ce, ce_namelen(ce));
while (dir && !(dir->nr++))
dir = dir->parent;
}
static void remove_dir_entry(struct index_state *istate, struct cache_entry *ce)
{
/*
* Release reference to the directory entry. If 0, remove and continue
* with parent directory.
name-hash.c: fix endless loop with core.ignorecase=true With core.ignorecase=true, name-hash.c builds a case insensitive index of all tracked directories. Currently, the existing cache entry structures are added multiple times to the same hashtable (with different name lengths and hash codes). However, there's only one dir_next pointer, which gets completely messed up in case of hash collisions. In the worst case, this causes an endless loop if ce == ce->dir_next (see t7062). Use a separate hashtable and separate structures for the directory index so that each directory entry has its own next pointer. Use reference counting to track which directory entry contains files. There are only slight changes to the name-hash.c API: - new free_name_hash() used by read_cache.c::discard_index() - remove_name_hash() takes an additional index_state parameter - index_name_exists() for a directory (trailing '/') may return a cache entry that has been removed (CE_UNHASHED). This is not a problem as the return value is only used to check if the directory exists (dir.c) or to normalize casing of directory names (read-cache.c). Getting rid of cache_entry.dir_next reduces memory consumption, especially with core.ignorecase=false (which doesn't use that member at all). With core.ignorecase=true, building the directory index is slightly faster as we add / check the parent directory first (instead of going through all directory levels for each file in the index). E.g. with WebKit (~200k files, ~7k dirs), time spent in lazy_init_name_hash is reduced from 176ms to 130ms. Signed-off-by: Karsten Blees <blees@dcon.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-28 07:57:48 +08:00
*/
struct dir_entry *dir = hash_dir_entry(istate, ce, ce_namelen(ce));
while (dir && !(--dir->nr)) {
struct dir_entry *parent = dir->parent;
hashmap_remove(&istate->dir_hash, &dir->ent, NULL);
free(dir);
dir = parent;
}
}
static void hash_index_entry(struct index_state *istate, struct cache_entry *ce)
{
if (ce->ce_flags & CE_HASHED)
return;
ce->ce_flags |= CE_HASHED;
hashmap_entry_init(&ce->ent, memihash(ce->name, ce_namelen(ce)));
hashmap_add(&istate->name_hash, &ce->ent);
if (ignore_case)
name-hash.c: fix endless loop with core.ignorecase=true With core.ignorecase=true, name-hash.c builds a case insensitive index of all tracked directories. Currently, the existing cache entry structures are added multiple times to the same hashtable (with different name lengths and hash codes). However, there's only one dir_next pointer, which gets completely messed up in case of hash collisions. In the worst case, this causes an endless loop if ce == ce->dir_next (see t7062). Use a separate hashtable and separate structures for the directory index so that each directory entry has its own next pointer. Use reference counting to track which directory entry contains files. There are only slight changes to the name-hash.c API: - new free_name_hash() used by read_cache.c::discard_index() - remove_name_hash() takes an additional index_state parameter - index_name_exists() for a directory (trailing '/') may return a cache entry that has been removed (CE_UNHASHED). This is not a problem as the return value is only used to check if the directory exists (dir.c) or to normalize casing of directory names (read-cache.c). Getting rid of cache_entry.dir_next reduces memory consumption, especially with core.ignorecase=false (which doesn't use that member at all). With core.ignorecase=true, building the directory index is slightly faster as we add / check the parent directory first (instead of going through all directory levels for each file in the index). E.g. with WebKit (~200k files, ~7k dirs), time spent in lazy_init_name_hash is reduced from 176ms to 130ms. Signed-off-by: Karsten Blees <blees@dcon.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-28 07:57:48 +08:00
add_dir_entry(istate, ce);
}
static int cache_entry_cmp(const void *unused_cmp_data,
const void *entry,
const void *entry_or_key,
const void *remove)
{
const struct cache_entry *ce1 = entry;
const struct cache_entry *ce2 = entry_or_key;
/*
* For remove_name_hash, find the exact entry (pointer equality); for
* index_file_exists, find all entries with matching hash code and
* decide whether the entry matches in same_name.
*/
return remove ? !(ce1 == ce2) : 0;
}
static int lazy_try_threaded = 1;
static int lazy_nr_dir_threads;
/*
* Set a minimum number of cache_entries that we will handle per
* thread and use that to decide how many threads to run (upto
* the number on the system).
*
* For guidance setting the lower per-thread bound, see:
* t/helper/test-lazy-init-name-hash --analyze
*/
#define LAZY_THREAD_COST (2000)
/*
* We use n mutexes to guard n partitions of the "istate->dir_hash"
* hashtable. Since "find" and "insert" operations will hash to a
* particular bucket and modify/search a single chain, we can say
* that "all chains mod n" are guarded by the same mutex -- rather
* than having a single mutex to guard the entire table. (This does
* require that we disable "rehashing" on the hashtable.)
*
* So, a larger value here decreases the probability of a collision
* and the time that each thread must wait for the mutex.
*/
#define LAZY_MAX_MUTEX (32)
static pthread_mutex_t *lazy_dir_mutex_array;
/*
* An array of lazy_entry items is used by the n threads in
* the directory parse (first) phase to (lock-free) store the
* intermediate results. These values are then referenced by
* the 2 threads in the second phase.
*/
struct lazy_entry {
struct dir_entry *dir;
unsigned int hash_dir;
unsigned int hash_name;
};
/*
* Decide if we want to use threads (if available) to load
* the hash tables. We set "lazy_nr_dir_threads" to zero when
* it is not worth it.
*/
static int lookup_lazy_params(struct index_state *istate)
{
int nr_cpus;
lazy_nr_dir_threads = 0;
if (!lazy_try_threaded)
return 0;
/*
* If we are respecting case, just use the original
* code to build the "istate->name_hash". We don't
* need the complexity here.
*/
if (!ignore_case)
return 0;
nr_cpus = online_cpus();
if (nr_cpus < 2)
return 0;
if (istate->cache_nr < 2 * LAZY_THREAD_COST)
return 0;
if (istate->cache_nr < nr_cpus * LAZY_THREAD_COST)
nr_cpus = istate->cache_nr / LAZY_THREAD_COST;
lazy_nr_dir_threads = nr_cpus;
return lazy_nr_dir_threads;
}
/*
* Initialize n mutexes for use when searching and inserting
* into "istate->dir_hash". All "dir" threads are trying
* to insert partial pathnames into the hash as they iterate
* over their portions of the index, so lock contention is
* high.
*
* However, the hashmap is going to put items into bucket
* chains based on their hash values. Use that to create n
* mutexes and lock on mutex[bucket(hash) % n]. This will
* decrease the collision rate by (hopefully) by a factor of n.
*/
static void init_dir_mutex(void)
{
int j;
lazy_dir_mutex_array = xcalloc(LAZY_MAX_MUTEX, sizeof(pthread_mutex_t));
for (j = 0; j < LAZY_MAX_MUTEX; j++)
init_recursive_mutex(&lazy_dir_mutex_array[j]);
}
static void cleanup_dir_mutex(void)
{
int j;
for (j = 0; j < LAZY_MAX_MUTEX; j++)
pthread_mutex_destroy(&lazy_dir_mutex_array[j]);
free(lazy_dir_mutex_array);
}
static void lock_dir_mutex(int j)
{
pthread_mutex_lock(&lazy_dir_mutex_array[j]);
}
static void unlock_dir_mutex(int j)
{
pthread_mutex_unlock(&lazy_dir_mutex_array[j]);
}
static inline int compute_dir_lock_nr(
const struct hashmap *map,
unsigned int hash)
{
return hashmap_bucket(map, hash) % LAZY_MAX_MUTEX;
}
static struct dir_entry *hash_dir_entry_with_parent_and_prefix(
struct index_state *istate,
struct dir_entry *parent,
struct strbuf *prefix)
{
struct dir_entry *dir;
unsigned int hash;
int lock_nr;
/*
* Either we have a parent directory and path with slash(es)
* or the directory is an immediate child of the root directory.
*/
assert((parent != NULL) ^ (strchr(prefix->buf, '/') == NULL));
if (parent)
hash = memihash_cont(parent->ent.hash,
prefix->buf + parent->namelen,
prefix->len - parent->namelen);
else
hash = memihash(prefix->buf, prefix->len);
lock_nr = compute_dir_lock_nr(&istate->dir_hash, hash);
lock_dir_mutex(lock_nr);
dir = find_dir_entry__hash(istate, prefix->buf, prefix->len, hash);
if (!dir) {
FLEX_ALLOC_MEM(dir, name, prefix->buf, prefix->len);
hashmap_entry_init(&dir->ent, hash);
dir->namelen = prefix->len;
dir->parent = parent;
hashmap_add(&istate->dir_hash, &dir->ent);
if (parent) {
unlock_dir_mutex(lock_nr);
/* All I really need here is an InterlockedIncrement(&(parent->nr)) */
lock_nr = compute_dir_lock_nr(&istate->dir_hash, parent->ent.hash);
lock_dir_mutex(lock_nr);
parent->nr++;
}
}
unlock_dir_mutex(lock_nr);
return dir;
}
/*
* handle_range_1() and handle_range_dir() are derived from
* clear_ce_flags_1() and clear_ce_flags_dir() in unpack-trees.c
* and handle the iteration over the entire array of index entries.
* They use recursion for adjacent entries in the same parent
* directory.
*/
static int handle_range_1(
struct index_state *istate,
int k_start,
int k_end,
struct dir_entry *parent,
struct strbuf *prefix,
struct lazy_entry *lazy_entries);
static int handle_range_dir(
struct index_state *istate,
int k_start,
int k_end,
struct dir_entry *parent,
struct strbuf *prefix,
struct lazy_entry *lazy_entries,
struct dir_entry **dir_new_out)
{
int rc, k;
int input_prefix_len = prefix->len;
struct dir_entry *dir_new;
dir_new = hash_dir_entry_with_parent_and_prefix(istate, parent, prefix);
strbuf_addch(prefix, '/');
/*
* Scan forward in the index array for index entries having the same
* path prefix (that are also in this directory).
*/
if (k_start + 1 >= k_end)
k = k_end;
else if (strncmp(istate->cache[k_start + 1]->name, prefix->buf, prefix->len) > 0)
k = k_start + 1;
else if (strncmp(istate->cache[k_end - 1]->name, prefix->buf, prefix->len) == 0)
k = k_end;
else {
int begin = k_start;
int end = k_end;
assert(begin >= 0);
while (begin < end) {
int mid = begin + ((end - begin) >> 1);
int cmp = strncmp(istate->cache[mid]->name, prefix->buf, prefix->len);
if (cmp == 0) /* mid has same prefix; look in second part */
begin = mid + 1;
else if (cmp > 0) /* mid is past group; look in first part */
end = mid;
else
die("cache entry out of order");
}
k = begin;
}
/*
* Recurse and process what we can of this subset [k_start, k).
*/
rc = handle_range_1(istate, k_start, k, dir_new, prefix, lazy_entries);
strbuf_setlen(prefix, input_prefix_len);
*dir_new_out = dir_new;
return rc;
}
static int handle_range_1(
struct index_state *istate,
int k_start,
int k_end,
struct dir_entry *parent,
struct strbuf *prefix,
struct lazy_entry *lazy_entries)
{
int input_prefix_len = prefix->len;
int k = k_start;
while (k < k_end) {
struct cache_entry *ce_k = istate->cache[k];
const char *name, *slash;
if (prefix->len && strncmp(ce_k->name, prefix->buf, prefix->len))
break;
name = ce_k->name + prefix->len;
slash = strchr(name, '/');
if (slash) {
int len = slash - name;
int processed;
struct dir_entry *dir_new;
strbuf_add(prefix, name, len);
processed = handle_range_dir(istate, k, k_end, parent, prefix, lazy_entries, &dir_new);
if (processed) {
k += processed;
strbuf_setlen(prefix, input_prefix_len);
continue;
}
strbuf_addch(prefix, '/');
processed = handle_range_1(istate, k, k_end, dir_new, prefix, lazy_entries);
k += processed;
strbuf_setlen(prefix, input_prefix_len);
continue;
}
/*
* It is too expensive to take a lock to insert "ce_k"
* into "istate->name_hash" and increment the ref-count
* on the "parent" dir. So we defer actually updating
* permanent data structures until phase 2 (where we
* can change the locking requirements) and simply
* accumulate our current results into the lazy_entries
* data array).
*
* We do not need to lock the lazy_entries array because
* we have exclusive access to the cells in the range
* [k_start,k_end) that this thread was given.
*/
lazy_entries[k].dir = parent;
if (parent) {
lazy_entries[k].hash_name = memihash_cont(
parent->ent.hash,
ce_k->name + parent->namelen,
ce_namelen(ce_k) - parent->namelen);
lazy_entries[k].hash_dir = parent->ent.hash;
} else {
lazy_entries[k].hash_name = memihash(ce_k->name, ce_namelen(ce_k));
}
k++;
}
return k - k_start;
}
struct lazy_dir_thread_data {
pthread_t pthread;
struct index_state *istate;
struct lazy_entry *lazy_entries;
int k_start;
int k_end;
};
static void *lazy_dir_thread_proc(void *_data)
{
struct lazy_dir_thread_data *d = _data;
struct strbuf prefix = STRBUF_INIT;
handle_range_1(d->istate, d->k_start, d->k_end, NULL, &prefix, d->lazy_entries);
strbuf_release(&prefix);
return NULL;
}
struct lazy_name_thread_data {
pthread_t pthread;
struct index_state *istate;
struct lazy_entry *lazy_entries;
};
static void *lazy_name_thread_proc(void *_data)
{
struct lazy_name_thread_data *d = _data;
int k;
for (k = 0; k < d->istate->cache_nr; k++) {
struct cache_entry *ce_k = d->istate->cache[k];
ce_k->ce_flags |= CE_HASHED;
hashmap_entry_init(&ce_k->ent, d->lazy_entries[k].hash_name);
hashmap_add(&d->istate->name_hash, &ce_k->ent);
}
return NULL;
}
static inline void lazy_update_dir_ref_counts(
struct index_state *istate,
struct lazy_entry *lazy_entries)
{
int k;
for (k = 0; k < istate->cache_nr; k++) {
if (lazy_entries[k].dir)
lazy_entries[k].dir->nr++;
}
}
static void threaded_lazy_init_name_hash(
struct index_state *istate)
{
int err;
int nr_each;
int k_start;
int t;
struct lazy_entry *lazy_entries;
struct lazy_dir_thread_data *td_dir;
struct lazy_name_thread_data *td_name;
if (!HAVE_THREADS)
return;
k_start = 0;
nr_each = DIV_ROUND_UP(istate->cache_nr, lazy_nr_dir_threads);
lazy_entries = xcalloc(istate->cache_nr, sizeof(struct lazy_entry));
td_dir = xcalloc(lazy_nr_dir_threads, sizeof(struct lazy_dir_thread_data));
td_name = xcalloc(1, sizeof(struct lazy_name_thread_data));
init_dir_mutex();
/*
* Phase 1:
* Build "istate->dir_hash" using n "dir" threads (and a read-only index).
*/
for (t = 0; t < lazy_nr_dir_threads; t++) {
struct lazy_dir_thread_data *td_dir_t = td_dir + t;
td_dir_t->istate = istate;
td_dir_t->lazy_entries = lazy_entries;
td_dir_t->k_start = k_start;
k_start += nr_each;
if (k_start > istate->cache_nr)
k_start = istate->cache_nr;
td_dir_t->k_end = k_start;
err = pthread_create(&td_dir_t->pthread, NULL, lazy_dir_thread_proc, td_dir_t);
if (err)
die(_("unable to create lazy_dir thread: %s"), strerror(err));
}
for (t = 0; t < lazy_nr_dir_threads; t++) {
struct lazy_dir_thread_data *td_dir_t = td_dir + t;
if (pthread_join(td_dir_t->pthread, NULL))
die("unable to join lazy_dir_thread");
}
/*
* Phase 2:
* Iterate over all index entries and add them to the "istate->name_hash"
* using a single "name" background thread.
* (Testing showed it wasn't worth running more than 1 thread for this.)
*
* Meanwhile, finish updating the parent directory ref-counts for each
* index entry using the current thread. (This step is very fast and
* doesn't need threading.)
*/
td_name->istate = istate;
td_name->lazy_entries = lazy_entries;
err = pthread_create(&td_name->pthread, NULL, lazy_name_thread_proc, td_name);
if (err)
die(_("unable to create lazy_name thread: %s"), strerror(err));
lazy_update_dir_ref_counts(istate, lazy_entries);
err = pthread_join(td_name->pthread, NULL);
if (err)
die(_("unable to join lazy_name thread: %s"), strerror(err));
cleanup_dir_mutex();
free(td_name);
free(td_dir);
free(lazy_entries);
}
static void lazy_init_name_hash(struct index_state *istate)
{
if (istate->name_hash_initialized)
return;
trace_performance_enter();
hashmap_init(&istate->name_hash, cache_entry_cmp, NULL, istate->cache_nr);
hashmap_init(&istate->dir_hash, dir_entry_cmp, NULL, istate->cache_nr);
if (lookup_lazy_params(istate)) {
hashmap: add API to disable item counting when threaded This is to address concerns raised by ThreadSanitizer on the mailing list about threaded unprotected R/W access to map.size with my previous "disallow rehash" change (0607e10009ee4e37cb49b4cec8d28a9dda1656a4). See: https://public-inbox.org/git/adb37b70139fd1e2bac18bfd22c8b96683ae18eb.1502780344.git.martin.agren@gmail.com/ Add API to hashmap to disable item counting and thus automatic rehashing. Also include API to later re-enable them. When item counting is disabled, the map.size field is invalid. So to prevent accidents, the field has been renamed and an accessor function hashmap_get_size() has been added. All direct references to this field have been been updated. And the name of the field changed to map.private_size to communicate this. Here is the relevant output from ThreadSanitizer showing the problem: WARNING: ThreadSanitizer: data race (pid=10554) Read of size 4 at 0x00000082d488 by thread T2 (mutexes: write M16): #0 hashmap_add hashmap.c:209 #1 hash_dir_entry_with_parent_and_prefix name-hash.c:302 #2 handle_range_dir name-hash.c:347 #3 handle_range_1 name-hash.c:415 #4 lazy_dir_thread_proc name-hash.c:471 #5 <null> <null> Previous write of size 4 at 0x00000082d488 by thread T1 (mutexes: write M31): #0 hashmap_add hashmap.c:209 #1 hash_dir_entry_with_parent_and_prefix name-hash.c:302 #2 handle_range_dir name-hash.c:347 #3 handle_range_1 name-hash.c:415 #4 handle_range_dir name-hash.c:380 #5 handle_range_1 name-hash.c:415 #6 lazy_dir_thread_proc name-hash.c:471 #7 <null> <null> Martin gives instructions for running TSan on test t3008 in this post: https://public-inbox.org/git/CAN0heSoJDL9pWELD6ciLTmWf-a=oyxe4EXXOmCKvsG5MSuzxsA@mail.gmail.com/ Signed-off-by: Jeff Hostetler <jeffhost@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2017-09-06 23:43:48 +08:00
/*
* Disable item counting and automatic rehashing because
* we do per-chain (mod n) locking rather than whole hashmap
* locking and we need to prevent the table-size from changing
* and bucket items from being redistributed.
*/
hashmap_disable_item_counting(&istate->dir_hash);
threaded_lazy_init_name_hash(istate);
hashmap: add API to disable item counting when threaded This is to address concerns raised by ThreadSanitizer on the mailing list about threaded unprotected R/W access to map.size with my previous "disallow rehash" change (0607e10009ee4e37cb49b4cec8d28a9dda1656a4). See: https://public-inbox.org/git/adb37b70139fd1e2bac18bfd22c8b96683ae18eb.1502780344.git.martin.agren@gmail.com/ Add API to hashmap to disable item counting and thus automatic rehashing. Also include API to later re-enable them. When item counting is disabled, the map.size field is invalid. So to prevent accidents, the field has been renamed and an accessor function hashmap_get_size() has been added. All direct references to this field have been been updated. And the name of the field changed to map.private_size to communicate this. Here is the relevant output from ThreadSanitizer showing the problem: WARNING: ThreadSanitizer: data race (pid=10554) Read of size 4 at 0x00000082d488 by thread T2 (mutexes: write M16): #0 hashmap_add hashmap.c:209 #1 hash_dir_entry_with_parent_and_prefix name-hash.c:302 #2 handle_range_dir name-hash.c:347 #3 handle_range_1 name-hash.c:415 #4 lazy_dir_thread_proc name-hash.c:471 #5 <null> <null> Previous write of size 4 at 0x00000082d488 by thread T1 (mutexes: write M31): #0 hashmap_add hashmap.c:209 #1 hash_dir_entry_with_parent_and_prefix name-hash.c:302 #2 handle_range_dir name-hash.c:347 #3 handle_range_1 name-hash.c:415 #4 handle_range_dir name-hash.c:380 #5 handle_range_1 name-hash.c:415 #6 lazy_dir_thread_proc name-hash.c:471 #7 <null> <null> Martin gives instructions for running TSan on test t3008 in this post: https://public-inbox.org/git/CAN0heSoJDL9pWELD6ciLTmWf-a=oyxe4EXXOmCKvsG5MSuzxsA@mail.gmail.com/ Signed-off-by: Jeff Hostetler <jeffhost@microsoft.com> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2017-09-06 23:43:48 +08:00
hashmap_enable_item_counting(&istate->dir_hash);
} else {
int nr;
for (nr = 0; nr < istate->cache_nr; nr++)
hash_index_entry(istate, istate->cache[nr]);
}
istate->name_hash_initialized = 1;
trace_performance_leave("initialize name hash");
}
/*
* A test routine for t/helper/ sources.
*
* Returns the number of threads used or 0 when
* the non-threaded code path was used.
*
* Requesting threading WILL NOT override guards
* in lookup_lazy_params().
*/
int test_lazy_init_name_hash(struct index_state *istate, int try_threaded)
{
lazy_nr_dir_threads = 0;
lazy_try_threaded = try_threaded;
lazy_init_name_hash(istate);
return lazy_nr_dir_threads;
}
void add_name_hash(struct index_state *istate, struct cache_entry *ce)
{
if (istate->name_hash_initialized)
hash_index_entry(istate, ce);
}
name-hash.c: fix endless loop with core.ignorecase=true With core.ignorecase=true, name-hash.c builds a case insensitive index of all tracked directories. Currently, the existing cache entry structures are added multiple times to the same hashtable (with different name lengths and hash codes). However, there's only one dir_next pointer, which gets completely messed up in case of hash collisions. In the worst case, this causes an endless loop if ce == ce->dir_next (see t7062). Use a separate hashtable and separate structures for the directory index so that each directory entry has its own next pointer. Use reference counting to track which directory entry contains files. There are only slight changes to the name-hash.c API: - new free_name_hash() used by read_cache.c::discard_index() - remove_name_hash() takes an additional index_state parameter - index_name_exists() for a directory (trailing '/') may return a cache entry that has been removed (CE_UNHASHED). This is not a problem as the return value is only used to check if the directory exists (dir.c) or to normalize casing of directory names (read-cache.c). Getting rid of cache_entry.dir_next reduces memory consumption, especially with core.ignorecase=false (which doesn't use that member at all). With core.ignorecase=true, building the directory index is slightly faster as we add / check the parent directory first (instead of going through all directory levels for each file in the index). E.g. with WebKit (~200k files, ~7k dirs), time spent in lazy_init_name_hash is reduced from 176ms to 130ms. Signed-off-by: Karsten Blees <blees@dcon.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-28 07:57:48 +08:00
void remove_name_hash(struct index_state *istate, struct cache_entry *ce)
{
if (!istate->name_hash_initialized || !(ce->ce_flags & CE_HASHED))
return;
ce->ce_flags &= ~CE_HASHED;
hashmap_remove(&istate->name_hash, &ce->ent, ce);
name-hash.c: fix endless loop with core.ignorecase=true With core.ignorecase=true, name-hash.c builds a case insensitive index of all tracked directories. Currently, the existing cache entry structures are added multiple times to the same hashtable (with different name lengths and hash codes). However, there's only one dir_next pointer, which gets completely messed up in case of hash collisions. In the worst case, this causes an endless loop if ce == ce->dir_next (see t7062). Use a separate hashtable and separate structures for the directory index so that each directory entry has its own next pointer. Use reference counting to track which directory entry contains files. There are only slight changes to the name-hash.c API: - new free_name_hash() used by read_cache.c::discard_index() - remove_name_hash() takes an additional index_state parameter - index_name_exists() for a directory (trailing '/') may return a cache entry that has been removed (CE_UNHASHED). This is not a problem as the return value is only used to check if the directory exists (dir.c) or to normalize casing of directory names (read-cache.c). Getting rid of cache_entry.dir_next reduces memory consumption, especially with core.ignorecase=false (which doesn't use that member at all). With core.ignorecase=true, building the directory index is slightly faster as we add / check the parent directory first (instead of going through all directory levels for each file in the index). E.g. with WebKit (~200k files, ~7k dirs), time spent in lazy_init_name_hash is reduced from 176ms to 130ms. Signed-off-by: Karsten Blees <blees@dcon.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-28 07:57:48 +08:00
if (ignore_case)
remove_dir_entry(istate, ce);
name-hash.c: fix endless loop with core.ignorecase=true With core.ignorecase=true, name-hash.c builds a case insensitive index of all tracked directories. Currently, the existing cache entry structures are added multiple times to the same hashtable (with different name lengths and hash codes). However, there's only one dir_next pointer, which gets completely messed up in case of hash collisions. In the worst case, this causes an endless loop if ce == ce->dir_next (see t7062). Use a separate hashtable and separate structures for the directory index so that each directory entry has its own next pointer. Use reference counting to track which directory entry contains files. There are only slight changes to the name-hash.c API: - new free_name_hash() used by read_cache.c::discard_index() - remove_name_hash() takes an additional index_state parameter - index_name_exists() for a directory (trailing '/') may return a cache entry that has been removed (CE_UNHASHED). This is not a problem as the return value is only used to check if the directory exists (dir.c) or to normalize casing of directory names (read-cache.c). Getting rid of cache_entry.dir_next reduces memory consumption, especially with core.ignorecase=false (which doesn't use that member at all). With core.ignorecase=true, building the directory index is slightly faster as we add / check the parent directory first (instead of going through all directory levels for each file in the index). E.g. with WebKit (~200k files, ~7k dirs), time spent in lazy_init_name_hash is reduced from 176ms to 130ms. Signed-off-by: Karsten Blees <blees@dcon.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-28 07:57:48 +08:00
}
static int slow_same_name(const char *name1, int len1, const char *name2, int len2)
{
if (len1 != len2)
return 0;
while (len1) {
unsigned char c1 = *name1++;
unsigned char c2 = *name2++;
len1--;
if (c1 != c2) {
c1 = toupper(c1);
c2 = toupper(c2);
if (c1 != c2)
return 0;
}
}
return 1;
}
static int same_name(const struct cache_entry *ce, const char *name, int namelen, int icase)
{
int len = ce_namelen(ce);
/*
* Always do exact compare, even if we want a case-ignoring comparison;
* we do the quick exact one first, because it will be the common case.
*/
if (len == namelen && !memcmp(name, ce->name, len))
return 1;
if (!icase)
return 0;
name-hash.c: fix endless loop with core.ignorecase=true With core.ignorecase=true, name-hash.c builds a case insensitive index of all tracked directories. Currently, the existing cache entry structures are added multiple times to the same hashtable (with different name lengths and hash codes). However, there's only one dir_next pointer, which gets completely messed up in case of hash collisions. In the worst case, this causes an endless loop if ce == ce->dir_next (see t7062). Use a separate hashtable and separate structures for the directory index so that each directory entry has its own next pointer. Use reference counting to track which directory entry contains files. There are only slight changes to the name-hash.c API: - new free_name_hash() used by read_cache.c::discard_index() - remove_name_hash() takes an additional index_state parameter - index_name_exists() for a directory (trailing '/') may return a cache entry that has been removed (CE_UNHASHED). This is not a problem as the return value is only used to check if the directory exists (dir.c) or to normalize casing of directory names (read-cache.c). Getting rid of cache_entry.dir_next reduces memory consumption, especially with core.ignorecase=false (which doesn't use that member at all). With core.ignorecase=true, building the directory index is slightly faster as we add / check the parent directory first (instead of going through all directory levels for each file in the index). E.g. with WebKit (~200k files, ~7k dirs), time spent in lazy_init_name_hash is reduced from 176ms to 130ms. Signed-off-by: Karsten Blees <blees@dcon.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-28 07:57:48 +08:00
return slow_same_name(name, namelen, ce->name, len);
}
int index_dir_exists(struct index_state *istate, const char *name, int namelen)
{
struct dir_entry *dir;
lazy_init_name_hash(istate);
dir = find_dir_entry(istate, name, namelen);
return dir && dir->nr;
}
void adjust_dirname_case(struct index_state *istate, char *name)
{
const char *startPtr = name;
const char *ptr = startPtr;
lazy_init_name_hash(istate);
while (*ptr) {
while (*ptr && *ptr != '/')
ptr++;
if (*ptr == '/') {
struct dir_entry *dir;
dir = find_dir_entry(istate, name, ptr - name);
if (dir) {
memcpy((void *)startPtr, dir->name + (startPtr - name), ptr - startPtr);
startPtr = ptr + 1;
}
ptr++;
}
}
}
struct cache_entry *index_file_exists(struct index_state *istate, const char *name, int namelen, int icase)
{
struct cache_entry *ce;
unsigned int hash = memihash(name, namelen);
lazy_init_name_hash(istate);
ce = hashmap_get_entry_from_hash(&istate->name_hash, hash, NULL,
struct cache_entry, ent);
hashmap_for_each_entry_from(&istate->name_hash, ce,
struct cache_entry, ent) {
if (same_name(ce, name, namelen, icase))
return ce;
}
return NULL;
}
name-hash.c: fix endless loop with core.ignorecase=true With core.ignorecase=true, name-hash.c builds a case insensitive index of all tracked directories. Currently, the existing cache entry structures are added multiple times to the same hashtable (with different name lengths and hash codes). However, there's only one dir_next pointer, which gets completely messed up in case of hash collisions. In the worst case, this causes an endless loop if ce == ce->dir_next (see t7062). Use a separate hashtable and separate structures for the directory index so that each directory entry has its own next pointer. Use reference counting to track which directory entry contains files. There are only slight changes to the name-hash.c API: - new free_name_hash() used by read_cache.c::discard_index() - remove_name_hash() takes an additional index_state parameter - index_name_exists() for a directory (trailing '/') may return a cache entry that has been removed (CE_UNHASHED). This is not a problem as the return value is only used to check if the directory exists (dir.c) or to normalize casing of directory names (read-cache.c). Getting rid of cache_entry.dir_next reduces memory consumption, especially with core.ignorecase=false (which doesn't use that member at all). With core.ignorecase=true, building the directory index is slightly faster as we add / check the parent directory first (instead of going through all directory levels for each file in the index). E.g. with WebKit (~200k files, ~7k dirs), time spent in lazy_init_name_hash is reduced from 176ms to 130ms. Signed-off-by: Karsten Blees <blees@dcon.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-28 07:57:48 +08:00
void free_name_hash(struct index_state *istate)
{
if (!istate->name_hash_initialized)
return;
istate->name_hash_initialized = 0;
hashmap_free(&istate->name_hash, 0);
hashmap_free(&istate->dir_hash, 1);
name-hash.c: fix endless loop with core.ignorecase=true With core.ignorecase=true, name-hash.c builds a case insensitive index of all tracked directories. Currently, the existing cache entry structures are added multiple times to the same hashtable (with different name lengths and hash codes). However, there's only one dir_next pointer, which gets completely messed up in case of hash collisions. In the worst case, this causes an endless loop if ce == ce->dir_next (see t7062). Use a separate hashtable and separate structures for the directory index so that each directory entry has its own next pointer. Use reference counting to track which directory entry contains files. There are only slight changes to the name-hash.c API: - new free_name_hash() used by read_cache.c::discard_index() - remove_name_hash() takes an additional index_state parameter - index_name_exists() for a directory (trailing '/') may return a cache entry that has been removed (CE_UNHASHED). This is not a problem as the return value is only used to check if the directory exists (dir.c) or to normalize casing of directory names (read-cache.c). Getting rid of cache_entry.dir_next reduces memory consumption, especially with core.ignorecase=false (which doesn't use that member at all). With core.ignorecase=true, building the directory index is slightly faster as we add / check the parent directory first (instead of going through all directory levels for each file in the index). E.g. with WebKit (~200k files, ~7k dirs), time spent in lazy_init_name_hash is reduced from 176ms to 130ms. Signed-off-by: Karsten Blees <blees@dcon.de> Signed-off-by: Junio C Hamano <gitster@pobox.com>
2013-02-28 07:57:48 +08:00
}