git/lockfile.h

302 lines
10 KiB
C
Raw Normal View History

#ifndef LOCKFILE_H
#define LOCKFILE_H
/*
* File write-locks as used by Git.
*
* The lockfile API serves two purposes:
*
* * Mutual exclusion and atomic file updates. When we want to change
* a file, we create a lockfile `<filename>.lock`, write the new
* file contents into it, and then rename the lockfile to its final
* destination `<filename>`. We create the `<filename>.lock` file
* with `O_CREAT|O_EXCL` so that we can notice and fail if somebody
* else has already locked the file, then atomically rename the
* lockfile to its final destination to commit the changes and
* unlock the file.
*
* * Automatic cruft removal. If the program exits after we lock a
* file but before the changes have been committed, we want to make
* sure that we remove the lockfile. This is done by remembering the
* lockfiles we have created in a linked list and setting up an
* `atexit(3)` handler and a signal handler that clean up the
* lockfiles. This mechanism ensures that outstanding lockfiles are
* cleaned up if the program exits (including when `die()` is
* called) or if the program is terminated by a signal.
*
* Please note that lockfiles only block other writers. Readers do not
* block, but they are guaranteed to see either the old contents of
* the file or the new contents of the file (assuming that the
* filesystem implements `rename(2)` atomically).
*
* Most of the heavy lifting is done by the tempfile module (see
* "tempfile.h").
*
* Calling sequence
* ----------------
*
* The caller:
*
* * Allocates a `struct lock_file` either as a static variable or on
* the heap, initialized to zeros. Once you use the structure to
* call the `hold_lock_file_for_*()` family of functions, it belongs
* to the lockfile subsystem and its storage must remain valid
* throughout the life of the program (i.e. you cannot use an
* on-stack variable to hold this structure).
*
* * Attempts to create a lockfile by calling
* `hold_lock_file_for_update()` or `hold_lock_file_for_append()`.
*
* * Writes new content for the destination file by either:
*
* * writing to the file descriptor returned by the
* `hold_lock_file_for_*()` functions (also available via
* `lock->fd`).
*
* * calling `fdopen_lock_file()` to get a `FILE` pointer for the
* open file and writing to the file using stdio.
*
* When finished writing, the caller can:
*
* * Close the file descriptor and rename the lockfile to its final
* destination by calling `commit_lock_file()` or
* `commit_lock_file_to()`.
*
* * Close the file descriptor and remove the lockfile by calling
* `rollback_lock_file()`.
*
* * Close the file descriptor without removing or renaming the
* lockfile by calling `close_lock_file()`, and later call
* `commit_lock_file()`, `commit_lock_file_to()`,
* `rollback_lock_file()`, or `reopen_lock_file()`.
*
* Even after the lockfile is committed or rolled back, the
* `lock_file` object must not be freed or altered by the caller.
* However, it may be reused; just pass it to another call of
* `hold_lock_file_for_update()` or `hold_lock_file_for_append()`.
*
* If the program exits before `commit_lock_file()`,
* `commit_lock_file_to()`, or `rollback_lock_file()` is called, the
* tempfile module will close and remove the lockfile, thereby rolling
* back any uncommitted changes.
*
* If you need to close the file descriptor you obtained from a
* `hold_lock_file_for_*()` function yourself, do so by calling
* `close_lock_file()`. See "tempfile.h" for more information.
*
*
* Under the covers, a lockfile is just a tempfile with a few helper
* functions. In particular, the state diagram and the cleanup
* machinery are all implemented in the tempfile module.
*
*
* Error handling
* --------------
*
* The `hold_lock_file_for_*()` functions return a file descriptor on
* success or -1 on failure (unless `LOCK_DIE_ON_ERROR` is used; see
* "flags" below). On errors, `errno` describes the reason for
* failure. Errors can be reported by passing `errno` to
* `unable_to_lock_message()` or `unable_to_lock_die()`.
*
* Similarly, `commit_lock_file`, `commit_lock_file_to`, and
* `close_lock_file` return 0 on success. On failure they set `errno`
* appropriately, do their best to roll back the lockfile, and return
* -1.
*/
#include "tempfile.h"
struct lock_file {
struct tempfile tempfile;
};
/* String appended to a filename to derive the lockfile name: */
#define LOCK_SUFFIX ".lock"
#define LOCK_SUFFIX_LEN 5
/*
* Flags
* -----
*
* The following flags can be passed to `hold_lock_file_for_update()`
* or `hold_lock_file_for_append()`.
*/
/*
* If a lock is already taken for the file, `die()` with an error
* message. If this flag is not specified, trying to lock a file that
* is already locked returns -1 to the caller.
*/
#define LOCK_DIE_ON_ERROR 1
/*
* Usually symbolic links in the destination path are resolved. This
* means that (1) the lockfile is created by adding ".lock" to the
* resolved path, and (2) upon commit, the resolved path is
* overwritten. However, if `LOCK_NO_DEREF` is set, then the lockfile
* is created by adding ".lock" to the path argument itself. This
* option is used, for example, when detaching a symbolic reference,
* which for backwards-compatibility reasons, can be a symbolic link
* containing the name of the referred-to-reference.
*/
#define LOCK_NO_DEREF 2
/*
* Attempt to create a lockfile for the file at `path` and return a
* file descriptor for writing to it, or -1 on error. If the file is
* currently locked, retry with quadratic backoff for at least
* timeout_ms milliseconds. If timeout_ms is 0, try exactly once; if
* timeout_ms is -1, retry indefinitely. The flags argument and error
* handling are described above.
*/
extern int hold_lock_file_for_update_timeout(
struct lock_file *lk, const char *path,
int flags, long timeout_ms);
/*
* Attempt to create a lockfile for the file at `path` and return a
* file descriptor for writing to it, or -1 on error. The flags
* argument and error handling are described above.
*/
static inline int hold_lock_file_for_update(
struct lock_file *lk, const char *path,
int flags)
{
return hold_lock_file_for_update_timeout(lk, path, flags, 0);
}
/*
* Like `hold_lock_file_for_update()`, but before returning copy the
* existing contents of the file (if any) to the lockfile and position
* its write pointer at the end of the file. The flags argument and
* error handling are described above.
*/
extern int hold_lock_file_for_append(struct lock_file *lk,
const char *path, int flags);
/*
* Append an appropriate error message to `buf` following the failure
* of `hold_lock_file_for_update()` or `hold_lock_file_for_append()`
* to lock `path`. `err` should be the `errno` set by the failing
* call.
*/
extern void unable_to_lock_message(const char *path, int err,
struct strbuf *buf);
/*
* Emit an appropriate error message and `die()` following the failure
* of `hold_lock_file_for_update()` or `hold_lock_file_for_append()`
* to lock `path`. `err` should be the `errno` set by the failing
* call.
*/
extern NORETURN void unable_to_lock_die(const char *path, int err);
/*
* Associate a stdio stream with the lockfile (which must still be
* open). Return `NULL` (*without* rolling back the lockfile) on
* error. The stream is closed automatically when `close_lock_file()`
* is called or when the file is committed or rolled back.
*/
static inline FILE *fdopen_lock_file(struct lock_file *lk, const char *mode)
{
return fdopen_tempfile(&lk->tempfile, mode);
}
/*
* Return the path of the lockfile. The return value is a pointer to a
* field within the lock_file object and should not be freed.
*/
static inline const char *get_lock_file_path(struct lock_file *lk)
{
return get_tempfile_path(&lk->tempfile);
}
static inline int get_lock_file_fd(struct lock_file *lk)
{
return get_tempfile_fd(&lk->tempfile);
}
static inline FILE *get_lock_file_fp(struct lock_file *lk)
{
return get_tempfile_fp(&lk->tempfile);
}
/*
* Return the path of the file that is locked by the specified
* lock_file object. The caller must free the memory.
*/
extern char *get_locked_file_path(struct lock_file *lk);
/*
* If the lockfile is still open, close it (and the file pointer if it
* has been opened using `fdopen_lock_file()`) without renaming the
* lockfile over the file being locked. Return 0 upon success. On
* failure to `close(2)`, return a negative value and roll back the
* lock file. Usually `commit_lock_file()`, `commit_lock_file_to()`,
* or `rollback_lock_file()` should eventually be called if
* `close_lock_file()` succeeds.
*/
static inline int close_lock_file(struct lock_file *lk)
{
return close_tempfile(&lk->tempfile);
}
/*
* Re-open a lockfile that has been closed using `close_lock_file()`
* but not yet committed or rolled back. This can be used to implement
* a sequence of operations like the following:
*
* * Lock file.
*
* * Write new contents to lockfile, then `close_lock_file()` to
* cause the contents to be written to disk.
*
* * Pass the name of the lockfile to another program to allow it (and
* nobody else) to inspect the contents you wrote, while still
* holding the lock yourself.
*
* * `reopen_lock_file()` to reopen the lockfile. Make further updates
* to the contents.
*
* * `commit_lock_file()` to make the final version permanent.
*/
static inline int reopen_lock_file(struct lock_file *lk)
{
return reopen_tempfile(&lk->tempfile);
}
/*
* Commit the change represented by `lk`: close the file descriptor
* and/or file pointer if they are still open and rename the lockfile
* to its final destination. Return 0 upon success. On failure, roll
* back the lock file and return -1, with `errno` set to the value
* from the failing call to `close(2)` or `rename(2)`. It is a bug to
* call `commit_lock_file()` for a `lock_file` object that is not
* currently locked.
*/
extern int commit_lock_file(struct lock_file *lk);
/*
* Like `commit_lock_file()`, but rename the lockfile to the provided
* `path`. `path` must be on the same filesystem as the lock file.
*/
static inline int commit_lock_file_to(struct lock_file *lk, const char *path)
{
return rename_tempfile(&lk->tempfile, path);
}
/*
* Roll back `lk`: close the file descriptor and/or file pointer and
* remove the lockfile. It is a NOOP to call `rollback_lock_file()`
* for a `lock_file` object that has already been committed or rolled
* back.
*/
static inline void rollback_lock_file(struct lock_file *lk)
{
delete_tempfile(&lk->tempfile);
}
#endif /* LOCKFILE_H */